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Abstract: An ensemble of confounding factors, such as an unhealthy diet, obesity, physical inactivity,
and smoking, have been linked to a lifestyle that increases one’s susceptibility to chronic diseases and
early mortality. The circulatory metabolome may provide a rational means of pinpointing the advent
of metabolite variations that reflect an adherence to a lifestyle and are associated with the occurrence
of chronic diseases. Data related to four major modifiable lifestyle factors, including adherence to the
Mediterranean diet (estimated on MedDietScore), body mass index (BMI), smoking, and physical
activity level (PAL), were used to create the lifestyle risk score (LS). The LS was further categorized
into four groups, where a higher score group indicates a less healthy lifestyle. Drawing on this,
we analyzed 223 NMR serum spectra, 89 MASLD patients and 134 controls; these were coupled to
chemometrics to identify “key” features and understand the biological processes involved in specific
lifestyles. The unsupervised analysis verified that lifestyle was the factor influencing the samples’
differentiation, while the supervised analysis highlighted metabolic signatures. The metabolic ratios
of alanine/formic acid and leucine/formic acid, with AUROC > 0.8, may constitute discriminant
indexes of lifestyle. On these grounds, this research contributed to understanding the impact of
lifestyle on the circulatory metabolome and highlighted “prudent lifestyle” biomarkers.
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1. Introduction

Today, the overconsumption of food and the adoption of a sedentary lifestyle in
conjunction with excess adiposity result in metabolic variations that may indicate the onset
of several disorders, such as abdominal obesity, insulin resistance, dyslipidemia, and an
elevated blood pressure. Importantly, lifestyle habits have complicated connections and are
often grouped into certain combinations among individuals. In fact, lifestyle risk factors,
including an unhealthy diet, physical inactivity, as well as smoking, may have a cumulative
impact on health, and have all been linked to an elevated risk of chronic diseases and
early mortality [1–4], as sedulously documented in the literature [5]. Therefore, the early
detection and management of chronic diseases is what characterizes preventive medicine,
with multiple World Health Organization (WHO) studies deeply oriented towards this
concept [4,6–8]. It is remarkable that 60% of individuals in the US have one chronic disease
and 40% have two or more [9].

The most common chronic liver disease is metabolic dysfunction-associated steatotic
liver disease (MASLD) [10]. It refers to a group of diseases spanning from simple hepatic
steatosis (SS) or non-alcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH)
and even cirrhosis [11]. Because of the obesity and diabetes epidemics, the prevalence of
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MASLD is estimated to triple in developed countries and some Asian areas by 2030 [12].
Lifestyle and environmental factors, such as an unhealthy diet, physical inactivity and
smoking, as well as metabolic health determinants, including obesity, play an essential role
in MASLD development [13–16].

Metabolic patterns may be used to interpret the adherence to a specific lifestyle by
providing insights into metabolic pathways, given the fact that they are easier to correlate
with the phenotype, act as direct signatures of biochemical activity, and play a central
role in disease development, cellular signaling and physiological control. Other research
pertaining to the high-throughput quantification of blood metabolites has elucidated nu-
merous phenotypic aspects (i.e., age, BMI), and even clinical endpoints (i.e., type 2 diabetes,
all-cause mortality). Specifically, omics studies have utilized the NMR-based approach to
explore the metabolic responses to obesity, dietary exposures [17], physical activity [18],
aging, disease onset, mortality and even smoking [19], which constitute the confounding
factors of a lifestyle. Therefore, it evident that metabolic profiles are affected by a number
of clinical and demographic factors, such as sex, age, body mass index (BMI), smoking,
alcohol consumption, and medication use, such as lipid-lowering and anti-inflammatory
drugs, with all these parameters constituting a lifestyle.

Few studies to date have provided a measurable fingerprint within the metabolome
that determines whether the direction of a lifestyle is curing, or at least modifying, the
subject’s metabolome away from or closer to a healthy status. Taking into account the
paucity of literature, showing metabolites’ fluctuations in the context of adherence to a
specific lifestyle is essential to addressing this issue. It is, therefore, critical to comprehend
the frequent occurrence of chronic diseases in people with unhealthy lifestyles and improve
public awareness.

On these grounds, this research aspired to investigate whether circulatory metabolomic
modifications reflect individual lifestyle patterns and then to pinpoint key “prudent
lifestyle” metabolites. For this purpose, we employed data from four modifiable lifestyle
risk factors (adherence to Mediterranean diet score, BMI, smoking, Physical Activity
Level—PAL) to create a lifestyle risk score (LS). Our cohort included 89 MASLD patients
and 134 controls who were assessed for their dietary patterns in our previous study [19,20].
The study population was categorized into four groups based on the LS score, where a
higher score group is indicative of a less healthy lifestyle. Furthermore, the serum NMR-
based metabolomics data of the cohort were investigated through exploratory analysis and
biomarker and pathway analysis in an effort to detect and quantify the cohort’s metabolic
response to the impact of these four modifiable lifestyle risk factors, as expressed by
the lifestyle classifications, and further investigate their involvement in the incident of
chronic diseases.

2. Materials and Methods
2.1. Study Population and Design

This study used a sample set of 223 participants (89 MASLD patients and 134 controls)
from a Greek case–control study [20]. Information regarding the study’s methodology is
available elsewhere [20]. Adults without self-declared concurrent liver damage were tested
for MASLD at the time of enrollment. Any congenital or acquired liver disease, chronic
viral hepatitis, hepatotoxic drug exposure, excessive alcohol consumption, life-threatening
diseases or psychiatric disorders impairing the patient’s ability to provide written informed
consent, and pregnancy or lactation were all exclusion criteria. All research participants
were briefed about the study’s objectives and completed a written consent form. This study
was approved by the Ethics Committee of Harokopio University of Athens (38074/13-07-
2012), based on the Helsinki Declaration.

MASLD Diagnosis

Herein, liver ultrasound (U/S) was used as the imaging method for disease diagnosis.
Liver biopsy remains the diagnostic reference standard for MASLD, due to its high accuracy
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in detection and staging of the disease [21]. However, biopsy has some disadvantages;
it is invasive, expensive, and can occasionally result in serious side effects. On the other
hand, U/S is recommended as the first-line examination for individuals with a high risk
of this disease, given that it is reasonably priced, widely accessible, non-invasive, suitable
for follow-up exams, and incredibly practical and friendly to the patients. Thus, liver U/S
was applied in all participants to assess the stage of MASLD. Depending on the results,
the participants were then divided into cases and controls. Controls were those with no
(healthy liver subjects) or mild hepatic steatosis (grade 1 subjects), and cases were those
with moderate (grade 2 subjects) and severe hepatic steatosis (grade 3 subjects).

2.2. Data Collection

Demographic, family, as well as individual medical history interviews were under-
taken by trained personnel. Anthropometric measures were also obtained for all partic-
ipants. Body weight, height, and waist circumference were all measured, and the BMI
was calculated by dividing weight (kg) by height (m2). The waist and hip circumferences
were obtained, and the waist to hip ratio (WHR) was calculated. Based on their smoking
status, individuals were categorized as current smokers or non-smokers. The validated
brief self-reported Athens Physical Activity Questionnaire (APAQ) [21] was used to collect
physical activity data, which were then utilized to compute each participant’s PAL and
total energy expenditure. A semi-quantitative self-reported food frequency questionnaire
(FFQ) [22] was used to quantify dietary habits. After a 12 h overnight fast, blood tests were
performed; these evaluated the lipidemic and glycemic profile, as well as liver enzymes.
The Friedewald equation was used to calculate the low-density lipoprotein cholesterol
(LDL-C) and the homeostatic model assessment (HOMA-IR) was used to quantify the
degree of insulin resistance.

2.3. Construction of Lifestyle Risk Score

The LS was constructed using data from four modifiable lifestyle factors, specifi-
cally adherence to the Mediterranean diet, as evaluated by using the MedDietScore, BMI,
smoking and PAL. The MedDietScore [23] was calculated using the following nine dietary
components: non-refined cereals, potatoes, fruits, vegetables, legumes, fish, red meat and
products, poultry, and full-fat dairy products. A MedDietScore ≤ 20 (median) was con-
sidered to reflect an unhealthy diet. The high-risk group for smoking (current smokers
vs. non-smokers) included those with a current smoking status, for BMI, those with a
BMI ≥ 24.99 kg/m2 and for PAL, those with PAL ≤ 1.37 (median). Participants received
a score of 2 for each of the four aforementioned lifestyle factors if they engaged in an
unhealthy lifestyle; otherwise, they received a score of 1. The sum of these four scores
resulted in a total lifestyle risk score ranging from 3 to 8. Higher scores imply an unhealthier
way of life. Four groups were created based on the overall LS: LS 3–4 (score 3–4), LS 5
(score 5), LS 6 (score 6), LS 7–8 (score 7–8).

2.4. Univariate Analysis of the Anthropometrics, Physiological Parameters and LS Score

Categorical variables are given as absolute frequencies, and quantitative variables are
shown as mean ± SD, since all of them were considered as normally distributed based on
the central limit theorem (CLT). For the evaluation of differences between the LS groups,
analysis of variance (ANOVA) with Tukey’s post hoc test was implemented. The Chi-square
test was applied for the comparison of the LS groups of categorical variables represented
as numbers.

2.5. Circulatory Metabolome Analysis
NMR-Metabolomics Pipeline

Serum NMR spectra were acquired using a Varian-600 MHz NMR spectrometer
equipped with a 1H{13C/15N} 5 mm PFG Automatable Triple Resonance probe at 25 ◦C,
as previously described [24]. Briefly, the CPMG pulse sequence with presaturation water
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suppression was applied, collecting 128 transients with 64 K data points, with a relaxation
delay of 5 s and an acquisition time of 4 s. Details of the serum sample pretreatment,
including methanol (1:2 v/v) extraction, centrifuging, as well as reconstitution in buffer, are
also presented in [24].

The 1H-NMR spectra process and metabolite annotation are also described in [24].
Briefly, MestreNova (v. 10.1) software was applied for the preprocess of the spectra (manual
phase correction, automatic baseline correction and sinc apodization), normalization to
the total area, binning with 0.001 ppm, and peak alignment against the superimposed
spectrum.

The application of an in-house automated metabolite identification platform, i.e.,
Metaboneer [25], enabled the identification of 42 metabolites.

2.6. Multivariate Data Analysis
2.6.1. Post Processing of NMR Spectral Data

SIMCA-P (version 14.0, Umetrics, Umeå, Sweden) was applied. The spectral data
were mean-centered and Pareto scaled (Par), and the unsupervised Principal Component
Analysis (PCA) models were extracted at a confidence level of 95%. The mathematical
background and applications of these methods have been extensively discussed.

2.6.2. Identification of Important Features

First, principal component analysis was employed in order to visualize any relations
(trends, outliers) among the observations (samples). A PCA model estimates the systematic
variation in a data matrix using a low-dimensional model plane. The spectral data were
mean-centered with Pareto scaling (Par) and the PCA model was extracted at a confidence
level of 95%.

Loading and contribution plots were extracted to reveal the variables that bear class
discriminating power.

2.6.3. Model Validation

The quality of the models (PCA) was described by the goodness-of-fit R2 (0 ≤ R2 ≤ 1)
and the predictive ability Q2 (0 ≤ Q2 ≤ 1) values. The R2 explained the variation, thus
constituting a quantitative measure of how well the data of the training set were mathemat-
ically reproduced. The overall predictive ability of the model was assessed by using the
cumulative Q2, representing the fraction of the variation of Y that could be predicted by
the model, which was extracted according to the internal cross-validation default method
of the software SIMCA-P 14. Q2 is considered a de facto default diagnostic parameter for
validating models in metabolomics. In particular, the difference between the goodness of
fit and the predictive ability remained always lower than 0.3 (R2X(cum) − Q2(cum) < 0.3),
and the goodness of fit never equaled one (R2X(cum) ̸= 1). Therefore, if the extracted
models abided by these rules, their robustness and predictive response were enhanced and
over-fitting was effaced.

2.6.4. Metabolic Markers and Associated Metabolic Pathways

The web-based MetaboAnalyst (V5.0) platform (https://www.metaboanalyst.ca/ (ac-
cessed on 1 March 2023)) was utilized for biomarker discovery, classification and the
pathway mapping of metabolites exhibiting AUROCs > 0.7 to enable the exploration of
disease-related metabolites and pinpoint the most relevant pathways.

The ASCII file containing the aligned spectra after their reduction into spectral buckets
of 0.001 ppm was used as the input data type for analysis with MetaboAnalyst. From the
available modules, we also used Biomarker Analysis to extract ROC curves, and the levels
of metabolites exhibiting a sub-optimal and higher performance were framed in box plots.

The metabolites exhibiting superior AUROC accuracy were compiled in a one-column
compound list that was in turn implemented for Enrichment Analysis and Pathway Analy-
sis. Specifically, the metabolic pathway analysis (MetPA) algorithms included the hyperge-

https://www.metaboanalyst.ca/
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ometric test for over-representation analysis, and the relative betweenness centrality for
pathway topology analysis based on the KEGG library was applied. Metabolic pathways
with a hypergeometric test p-value less than 0.05 were considered to be disturbed. Metabo-
lite Set Enrichment Analysis (MSEA) was also performed for the metabolites exhibiting
AUROC > 0.8, and a metabolite set library based on the disease signatures’ library for the
blood substrate was applied. MSEA monitors whether these metabolites are represented
more often than expected in an attempt to identify biologically meaningful patterns.

3. Results and Discussion
3.1. Participant Characteristics

In Table 1, the main characteristics of the study participants, categorized based on the
LS group, are shown. This study comprised 223 participants, 15 of whom had LS 3–4, 50 of
whom had LS 5, 82 of whom had LS 6, and 76 of whom had LS 7–8.

The number of MASLD patients was observed to increase progressively with increas-
ing LS. The mean LS of cases was also higher than that of the controls (p-value < 0.0001)
(Figure 1). Sex differences were also detected between the LS groups. A higher FLI, BMI
and WHR, lower MedDietScore, lower physical activity, higher current smoking status,
lower AST/ALT ratio, higher insulin and HOMA-IR, lower high-density lipoprotein (HDL)
and higher triglyceride (TG) content were found to characterize the individuals with in-
creased LS (p-value < 0.05). The incidence of hypertension and metabolic syndrome (MetS)
rose progressively with increasing LS. As shown in Table 1, the LS 7–8 group is the most
burdened compared to the others.

Table 1. Baseline characteristics of the participants according to the lifestyle risk score (LS).

LS 3–4
(N = 15)

LS 5
(N = 50)

LS 6
(N = 82)

LS 7–8
(N = 76) p-Value

Cases/Controls
(89/134) 0/15 15/35 32/50 42/34 2.15 × 10−4

FLI 8.34 ± 7.36 ** † ¶ 30.90 ± 29.46 **,* 38.2 ± 30.94 † # 51.90 ± 28.38 ¶ * # 3.24 × 10−7

Age (years) 43.85 ± 11.27 48 ± 10.75 46.20 ± 12.08 44.93 ± 12.13 0.413

Sex
(Females—%) 73.3 62 65.8 46 0.04

MedDietScore 23.23 ± 1.54 † ¶ 21.80 ± 2.42 § * 19.41 ± 3.84 † § # 17.46 ± 4.743 ¶ * # 4.48 × 10−10

PAL 1.51 ± 0.10 ¶ 1.52 ± 0.21 * 1.45 ± 0.24 # 1.27 ± 0.17 ¶ * # 2.01 × 10−10

Smoking status
(current smoker—%) 0 8 30.4 55.2 1.44 × 10−8

BMI (kg/m2) 22.42 ± 1.48 **
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PAL 1.51 ± 0.10 ¶ 1.52 ± 0.21 * 1.45 ± 0.24 # 1.27 ± 0.17 ¶ * # 2.01 × 10−10 

Smoking status 

(current smoker—%) 
0 8 30.4 55.2 1.44 × 10−8 

BMI (kg/m2) 22.42 ± 1.48 **  ¶ 26.28 ± 5.03 **,* 27.85 ± 5.10  29.41 ± 4.73 ¶ * 9.49 × 10−7 

WHR 0.77 ± 0.07 † ¶  0.86 ± 0.12  * 0.85 ± 0.08 # 0.90 ± 0.09 † ¶ * # 2.74 × 10−6 

AST (U/L) 20.40 ± 4.89 21.44 ± 4.78 21.94 ± 6.48 21.22 ± 7.28 0.641 

ALT (U/L) 20.27 ± 11.19 22.40 ± 9.39 25.06 ± 13.19 26.04 ± 12.89 0.272 

AST/ALT 

Ratio 
1.14 ± 0.36 † 1.06 ± 0.33 0.98 ± 0.29 0.90 ± 0.35 † 0.005 

0.86 ± 0.12
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(N = 82) 
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0/15 15/35 32/50 42/34 2.15 × 10−4 

FLI 8.34 ± 7.36 ** † ¶ 30.90 ± 29.46 **,* 38.2 ± 30.94 † # 51.90 ± 28.38 ¶ * # 3.24 × 10−7 

Age (years) 43.85 ± 11.27 48 ± 10.75 46.20 ± 12.08 44.93 ± 12.13 0.413 

Sex 

(Females—%) 
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BMI (kg/m2) 22.42 ± 1.48 **  ¶ 26.28 ± 5.03 **,* 27.85 ± 5.10  29.41 ± 4.73 ¶ * 9.49 × 10−7 

WHR 0.77 ± 0.07 † ¶  0.86 ± 0.12  * 0.85 ± 0.08 # 0.90 ± 0.09 † ¶ * # 2.74 × 10−6 

AST (U/L) 20.40 ± 4.89 21.44 ± 4.78 21.94 ± 6.48 21.22 ± 7.28 0.641 

ALT (U/L) 20.27 ± 11.19 22.40 ± 9.39 25.06 ± 13.19 26.04 ± 12.89 0.272 

AST/ALT 

Ratio 
1.14 ± 0.36 † 1.06 ± 0.33 0.98 ± 0.29 0.90 ± 0.35 † 0.005 

* 0.85 ± 0.08 # 0.90 ± 0.09 † ¶ * # 2.74 × 10−6

AST (U/L) 20.40 ± 4.89 21.44 ± 4.78 21.94 ± 6.48 21.22 ± 7.28 0.641

ALT (U/L) 20.27 ± 11.19 22.40 ± 9.39 25.06 ± 13.19 26.04 ± 12.89 0.272

AST/ALT
Ratio 1.14 ± 0.36 † 1.06 ± 0.33 0.98 ± 0.29 0.90 ± 0.35 † 0.005

GammaGT (U/L) 18.80 ± 15.63 20.54 ± 15.35 23.36 ± 19.99 23.37 ± 15.78 0.643

FGlu (mg/dL) 85.27 ± 8.92 85.12 ± 7.93 86.01 ± 9.80 89.49 ± 12.03 0.063

FIns (µU/mL) 9.56 ± 3.35 11.18 ± 5.04 10.87 ± 4.75 # 14.14 ± 8.72 # 0.003

HOMA-IR 2.01 ± 0.88 2.38 ± 1.67 * 2.05 ± 1.37 # 3.2 ± 1.88 * # 0.003

TC (mg/dL) 186.2 ± 45.51 203.14 ± 41.36 203.23 ± 35.86 204.04 ± 34.85 0.393
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Table 1. Cont.

LS 3–4
(N = 15)

LS 5
(N = 50)

LS 6
(N = 82)

LS 7–8
(N = 76) p-Value

LDL (mg/dL) 108.66 ± 36.30 128.81 ± 37.09 126.39 ± 33.32 126.67 ± 26.29 0.194

HDL (mg/dL) 64.38 ± 16.15 ¶ 57.02 ± 12.39 * 57.97 ± 14.05 # 49.76 ± 11.16 ¶ * # 2 × 10−5

TG (mg/dL) 66.40 ± 45.30 ¶ 86.81 ± 43.38 * 94.85 ± 54.06 # 117.85 ± 62.63 ¶ * # 0.001

Hyperlipidemia (%) 26.6 58 50 56.5 0.149

DMII (%) 0 0 4 5 0.33

Hypertension (%) 13.3 34 32.9 55.2 0.002

MetS (%) 6 28 26.8 42.1 0.024

Values given as mean ± SD for quantitative variables and numbers or relative frequencies (%) for categorical
variables. p-value: ANOVA p-value for quantitative and chi-square p-value for categorical variables. †, ¶, §, *, #, **,
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AST/ALT 

Ratio 
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: p ≤ 0.05 for multiple comparisons using the Tukey’s post hoc test. FLI: Fatty Liver Index; PAL: Physical activity
level; BMI: Body mass index; WHR: Waist-to-hip ratio; AST: Aspartate transaminase; ALT: Alanine transaminase;
GammaGT: Gamma-glutamyltransferase; FGlu: Fasting glucose; FIns: Fasting insulin; HOMA-IR: Homeostasis
Model Assessment—Insulin Resistance; TC: Total cholesterol; LDL: Low-density lipoprotein; HDL: High-density
lipoprotein; TG: Triglycerides; DMII; Diabetes Mellitus II; MetS: Metabolic Syndrome.
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Figure 1. The violin plot depicts the distribution of the lifestyle risk score (LS) for MASLD cases and
controls. Notes: p-value was obtained using independent samples t-test. * Statistically significant
(p-value < 0.05) between groups.

3.2. The NMR Metabolic Patterns Interpret Lifestyle Trends

The circulatory metabolites’ composition when facilitating multivariate data analysis
may enable the discerning of metabolic variations and their relation to variables of interest,
such as nutritional habits, smoking, obesity and physical exercise, thus representing the
adherence to a specific lifestyle.

3.2.1. Exploratory Analysis

A PCA model with two components (A = 2) on the host of 223 serum NMR spectra
provided an overview of the samples’ clustering, highlighted outliers and enabled an
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evaluation of whether a differentiation could be observed (Figure 2). Interestingly, the
unsupervised analysis revealed a clear linear trend along the second component, essentially
portraying the transition from a sedentary to a unhealthy lifestyle (1st and 2nd quadrants)
to an active and healthier lifestyle (3rd and 4th quadrants). In particular, the PCA model
pinpoints a clear grouping of subjects categorized as LS 3–4 in the 3rd and 4th quadrants;
meanwhile, on top of this group lie the subjects categorized as LS 5, across the second
component (PC2) are located the subjects categorized as LS 6, then passing to the 1st and
2nd quadrants are the subjects categorized as LS 7–8. This result further enhances the
notion that lifestyle modulates, in a significant way, metabolic profiles and is attributed to
an ensemble of factors, as represented by the lifestyle categorization.
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More information from the PCA model (Figure 2) can be obtained by extracting the
contribution plots for each lifestyle group. For instance, a contribution plot for the samples
from LS 3–4 was extracted (Figure 3A) by comparing their average values to the average
value of the rest of the samples in order to pinpoint the variables that contribute to the
clustering of each lifestyle group, thus showing the metabolic responses that are caused
by adherence to a lifestyle. Specifically, the up-regulation of formic acid, the glutamic acid
of the proteinogenic amino acid glycine, the phospholipid constituent phosphorylcholine
(ChoP), glycine, as well as the biogenic amine creatine was observed in samples from
LS 3–4, while BCAAs (valine, leucine, isoleucine) and methionine displayed a decreased
concentration.
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Figure 3. PCA contribution plots of the samples of LS 3–4 (A), 5 (B), 6 (C), 7–8 (D) (1: valine,
leucine, isoleucine, alanine, 2: glutamic acid, 3: phosphorylcholine, 4: glycine, 5: arginine, 6: Formic
acid, 7: methionine, 8: creatine, 9: glucose, 10: tyrosine, 11: 3-hydroxybutyric acid, 12: creatinine,
13: acetoacetate, 14: choline).

The metabolite phosphorylcholine (ChoP) is evidence of fruit and vegetable intake [26].
ChoP is the hydrophilic polar head group of some phospholipids that also consist, in part,
of the potent inflammation mediators PAF (platelet-activating factor) and PAF-like lipids.
In fact, ChoP has various properties that could potentially promote and protect against
disease, depending on the pathogen and the type of inflammatory reaction [27].

Formic acid plays a central role in human metabolism, contributing to nucleotide
synthesis, while alterations in formate metabolism have been related to human pathological
conditions such as cancer, neurological disorders, obesity and CVD. Higher levels of
formic acid have been framed as a metabolic response to a lifestyle involving weight loss
treatment [26,28].

Glycine constitutes a potent antioxidant-scavenging free radical that is fundamen-
tal to the antioxidative defense of leukocytes. Additionally, this metabolite bears anti-
inflammatory, immunomodulatory, and cytoprotective attributes. In one study, glycine was
positively attributed to an adherence to a healthy lifestyle [29]. Hasegawa et al. [30] has
studied the inverse relationship between glycine and the occurrence of MASLD. Congruent
with this observation, the high concentration of glycine was monitored in LS 3–4, the group
in which no sample was diagnosed with MASLD.

Glutamic acid is reported to be an ample transmitter in the nervous system, promot-
ing 40% of all synapses in the brain. This metabolite facilitates the transport of reducing
agents across the mitochondrial membrane and regulates glycolysis and the cellular re-
dox state through the malate/aspartate shuttle [31]. Other research has documented the
impact of glutamate imbalance on glutamatergic neurotransmission through anxiety and
stress [32,33]. Another study estimated a healthy lifestyle index (encompassing parameters
such as diet, BMI, physical activity, lifetime alcohol, smoking, diabetes, hepatitis) that
can be attributed to the concentration of serum metabolites such as glutamic acid and
phosphatidylcholine [34].
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The endogenous metabolite creatine is deemed essential in the network of energy
transfer by cardiovascular research [35]. In our study, increased levels of creatine were
attributed to the LS 3–4 group, which follows an active and healthier lifestyle. In alignment
with our results, the levels of creatine have previously been related to an improved plasma
metabolic profile in women [28]. There is substantial evidence that this metabolite may
prevent the occurrence of fatty liver in high-fat and choline-deficient diets, as well as in
hepatoma cells in vitro [36].

The low concentration of BCAAs may be the result of a decreased consumption of
red and processed meat. Consistent evidence documents that the increased consumption
of red meat and processed meat can be attributed to an increased risk of diabetes and
cardiovascular disease (CVD) [37]. BCAAs have been related to the risk of diabetes or CVD
in previous studies [38]. The consumption of carbonated drinks and even fruit juice has
also been attributed to increased leucine and isoleucine levels in the plasma substrate [39].

In Figure 3B, the class discriminant spectral regions for LS 5 are displayed, thus indicat-
ing increased contents of glutamine and arginine and low concentrations of BCAAs (Valine,
leucine, isoleucine) and methionine. In fact, the amino acid arginine acts as a precursor for
the synthesis of protein, nitric oxide, creatine, polyamines, agmatine, and urea. It is also
well known that among the amino acids, arginine is a potent activator of mammalian target
of rapamycin complex 1 (mTORC1), a metabolic rheostat and central signaling hub that, in
accordance with nutrient availability, determines anabolic and catabolic processes [40].

Subsequently, the contribution plot of LS 6 (Figure 3C) showed a high content of
glycine and a low concentration of BCAAs (valine, leucine, isoleucine), glucose and tyrosine.
The low concentration of glucose may be attributed to a reduced total energy intake [41,42].

Finally, the contribution plot of LS 7–8 (Figure 3D) indicated an extremely high content
of BCAAs (valine, leucine, isoleucine), a high content of acetoacetate, methionine, tyrosine
and creatinine, and low concentrations of 3-hydroxy butyrate, glutamine, choline and
phosphorylcholine. This metabolic profile is an inverse equivalent of the metabolites that
characterize LS 3–4. This further proves that these two groups have different lifestyle
habits. Several research investigations have found higher plasma BCAA levels in MASLD
patients [43–45]. Interestingly, the LS 3–4 group, which does not include subjects with
MASLD, displayed downregulated levels of BCAAs, whereas the BCAA levels were greater
in the LS 7–8 group, which encompassed patients with severe liver disease [43–45]. Lake
et al. [46] discovered that the serum leucine, isoleucine, and valine levels, which comprise
BCAAs, increased significantly as steatosis proceeded to NASH. This increase has been
associated with hepatic fat accumulation in the early stages of MASLD. The tyrosine
levels were positively related to NAFLD severity for both males and females in our recent
study [24], as also observed in other studies [43,47–51]. Another study on the serum
metabolome highlighted that elevated levels of BCAAs and aromatic amino acids are
predictive biomarkers of T2D [52].

Another metabolite that is increased in LS 7–8 is creatinine, an endogenous substrate
stemming mainly from creatine in muscle and related to muscular function [53]. In addition,
the creatinine concentration in blood and urine serves as a marker of kidney disease. The
ATTICA study revealed that greater adherence to the Mediterranean diet is associated with
lower serum urea and creatinine levels [54]. Interestingly, recent studies have attributed
the serum uric acid/creatinine ratio to NAFLD severity [55].

Fluctuations in the ketone bodies (acetoacetate, 3-hydroxybutyrate) can be associated
with dietary habits that involve the consumption of a carbohydrate-restricted, high-fat diet.
Another factor that affects the levels of 3-hydroxybutyrate in the blood is the occurrence
of ketosis. Acetoacetate (AcAc) constitutes a ketone body primarily produced in the
liver when the conditions of excessive fatty acid breakdown occur, such as in diabetes
mellitus resulting in diabetic ketoacidosis. This metabolite is an indispensable energy
source in times of limited glucose supply, like bHB; acetoacetate synthesis is higher when
undergoing fasting, endurance exercise, and malnutrition. An increased concentration



Nutrients 2024, 16, 1235 10 of 18

of such ketone bodies may indicate diabetic hyperglycemia and also point to a disturbed
glucose metabolism in the prediabetic state [56].

3.2.2. Distinct Metabolite Markers

Furthermore, we performed supervised analysis to validate the distinct metabolomic
bouquet and to extract potential metabolites that could serve as biomarkers. An OPLS-DA
model (Figure 4) was extracted by comparing the healthiest expected lifestyle (3–4) to the
unhealthiest lifestyle (7–8).
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acid, 9. 3-hydroxybutyrate, 10. serine, 11. phosphorylcholine, 12. betaine, 13. glycine).

The OPLS-DA discrimination was validated through permutation testing and receiver
operator characteristic (ROC) curves (Supplementary Figure S1).

The OPLS-DA model resolved the metabolic variation, and two clusters (lifestyle
3–4 and 7–8) were evident along the first component (Figure 4). The derived S-line plot
pinpointed the glucogenic amino acids alanine and isoleucine, acetoacetate, methionine,
acetic acid, serine, and threonine as metabolite markers positively correlated to lifestyle
7–8 (Figure 4b). On the other hand, the samples corresponding to lifestyle 3–4 exhibited
elevated levels of 3-hydroxybutyrate, glutamic acid, phosphorylcholine, betaine, glycine
and formic acid.
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3.2.3. Receiver Operating Characteristic (ROC) Curve Analysis for Metabolite Markers

The calculation of the AUC enabled us to further assess a quantitative measure for the
discriminatory potential of the OPLS-DA model (Figure 4) and avoid false selection.

Biomarker analysis (Figure 5) confirmed the ability of the proposed OPLS-DA to
discriminate biomarkers between the two groups, thus revealing a high Area Under the
Receiver Operating Characteristic curve (AUROC).
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Specifically, the ROC curves for each of the discriminant metabolites were estimated by
the use of MetaboAnalyst, as well as the top-ranked metabolite concentration ratios (based
on p-values). The latter choice may bear more information than the two corresponding
metabolite concentrations alone.

In fact, the diagnostic accuracy exhibited by leucine/serine, formic acid, formic
acid/tyrosine, formic acid/dimethylamine, alanine/methylamine, alanine/serine, ala-
nine/ethanolamine, formic acid/threonine, leucine, acetic acid, leucine/phosphorylcholine,
formic acid/acetoacetate, and leucine/serine was fair (0.8 > AUROC > 0.7) (Supplemen-
tary Figure S2), while an optimal diagnostic accuracy (AUROC > 0.8) was exhibited by
leucine/formic acid, formic acid/L-tyrosine, formic acid and alanine/formic acid.

The metabolite ratios of leucine/formic acid and alanine/formic acid increased signifi-
cantly in the samples from lifestyle 7–8, whereas formic acid/L-tyrosine and formic acid
decreased significantly compared to the healthy samples from lifestyle 3–4 (Figure 5).

These metabolite ratios enable biomarker candidates to determine adherence to a
healthy or unhealthy lifestyle with increased accuracy. The proposed biomarkers may not
be regarded as stand-alone lifestyle biomarkers, even if they could bring additional value
to early unhealthy lifestyle prediction when included in multi-biomarker approaches. In
particular, these ratios may constitute a metabolic trigger for the onset of chronic diseases,
but such a supposition needs further validation in independent studies.
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3.2.4. Metabolite Pathway Analysis

The identification of metabolic signatures related to lifestyle has garnered scientific
interest, but in order to gain meaningful information and design appropriate preven-
tive interventions, we must determine the metabolic pathways that are involved in the
development of the disease.

With the use of MetaboAnalyst 5.0 [2], we performed metabolite pathway analy-
sis to determine relevant metabolic pathways based on the identified metabolites with
AUROCs > 0.8 (i.e., L-alanine, L-leucine, L-tyrosine, formic acid). The pathway analysis
results are displayed in Figure 6. This reveals that lifestyle elicits significant changes in the
circulating metabolome, reflecting alterations in several metabolic pathways.
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Figure 6. Summary plots for over-representation analysis of the serum substrates. 1. Aminoacyl-tRNA
biosynthesis, 2. phenylalanine, tyrosine and tryptophan biosynthesis, 3. valine, leucine and isoleucine
biosynthesis, 4. ubiquinone and other terpenoid–quinone biosynthesis, and 5. phenylalanine
metabolism. The size of the circle varies accordingly to the higher centrality of the metabolite
in the related pathways (impact value).

Specifically, in response to adherence to a specific lifestyle, the primary disturbed
statistically significant pathways (p < 0.05) containing at least two compounds include
Aminoacyl-tRNA biosynthesis; phenylalanine, tyrosine and tryptophan biosynthesis; va-
line, leucine and isoleucine biosynthesis; ubiquinone and other terpenoid–quinone biosyn-
thesis; and phenylalanine metabolism (Supplementary Table S1). This reveals mainly a
perturbed amino acid metabolism.

Perturbations in metabolite levels usually occur in a dysregulated or exacerbated state
of a biological system, i.e., low or extreme physical activity [57], affecting the metabolism
of nitrogenous substances. A study by Lu et al. [58] also documented the pathways that
refer to amino acid imbalance when subjects adhere to multiple healthy lifestyle factors
and when the circulatory metabolome is affected. Amino acids are both the dynamic
structural building blocks of proteins and moreover are active signaling molecules that
regulate metabolism.
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Furthermore, the crosstalk between the metabolic pathway of ubiquinone, terpenoid
quinone biosynthesis and CAD has also been highlighted, proposing markers for diagnosis
as well as detection using the subjects’ serum [59].

These findings facilitate the expansion of biomarker research in the perturbed metabolic
pathways.

3.2.5. Metabolite Enrichment Analysis

We performed a hypergeometric test using over-representation analysis and pathway
topology analysis (Figure 7).
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The metabolic markers with AUROC > 0.8 were incorporated into the metabolite
enrichment analysis, in order to investigate metabolite attributions and uncover the disease
signatures in our serum samples by highlighting the probable association of lifestyle
with other medical conditions (Supplementary Table S2). The metabolic profiles were
associated with possible disease endpoints, including types of seizures, heart failure, and
mental disorders.

In particular, the enrichment analysis pointed towards a link between the adherence to
a lifestyle and the risk of heart failure, myocardial injury, inflammatory diseases and seizure
disorders. This finding is in alignment with recent literature suggesting that lifestyle might
constitute a risk factor for chronic disease, despite the fact that the intrinsic causality is still
under examination [60].
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To date, there is accumulating evidence on the impact of weight management, exercise,
nutrition and dietary composition on cardiovascular disease (CVD) [61]. In agreement with
this, our results also found that heart failure and myocardial injury are a possible outcome
of an unhealthy lifestyle.

The low overall volume of habitual PA/exercise in LS 7–8 is positively correlated with
metabolomic signatures that align with worse cardiometabolic health, while physically
active subjects exhibit a “coherently healthier metabolic profile compared to their inactive
counterparts”. This may aid in reducing the increased cardiometabolic risk attributed to a
sedentary/inactive lifestyle [62].

Despite the beneficial health effects of physical activity being well recognized, physical
inactivity is estimated to amount to 9% of premature mortality worldwide [3]. Over the last
30 years, overweight and obesity have resulted in a concomitant increase in the prevalence
of co-morbidities such as cardiovascular disease and type 2 diabetes. Sedentary behavior
has also been framed as a factor that impacts this epidemic and is related to a high risk of
all-cause mortality [63].

Sedentariness is distinct from physical inactivity, as it involves certain activities in a
reclining, seated, or lying position, requiring very low energy expenditure. The issues with
this behavior have been associated with a lack of movement, and also with the stimulation
provided by replacing these activities. It has been proposed as an independent predictor
of metabolic risk even when a subject abides by current physical activity guidelines. In
recent decades, changes in the activity profile of subjects have marked the replacement of
vigorous physical activity and sleep with cognitive work. This is a potential neurogenic
stress factor, taking into account its hormonal and neurophysiological health impact.

Lifestyle choices may also impact the occurrence of seizures, with certain seizure
triggers already associated with an unhealthy lifestyle, such as a lack of sleep, overexertion
or physical fatigue, physical or emotional stress, alcohol and other drug use [64].

Interestingly, LS 7–8 was associated with the lowest physical activity and highest obe-
sity rates. Its metabolic profile was positively correlated with BCAA. These are significant
metabolites pertaining to numerous complex metabolic pathways, such as neurotransmis-
sion, and disorders of the amino acid metabolism that may impact neurological functions
in humans. Circulating BCAAs may be introduced to the brain to enable glutamate biosyn-
thesis and may either impede or evoke acute seizures [65]. This strengthens the case that
the metabolomic response is related to a person’s physical activity [57].

The probable effect that amino acid metabolism has on triggering heart diseases can be
explained, since most amino acid catabolic activities are found in the liver. Branched-chain
amino acid (BCAA) catabolism demands activity in several non-hepatic tissues, such as
cardiac muscle, the diaphragm, brain and kidney. This may in part explain the development
of MASLD in LS 6 and LS 7–8. Liver damage and the relationship between MASLD and
cardiovascular disease (CD) tends to be the primary driver of mortality in these individuals.

Other studies support the case that chronic epilepsy may negatively influence the
structural integrity of the heart and its vasculature, in turn causing “The Epileptic Heart”.
These negative influences result in cardiac electrical instability, susceptibility to arrhythmias,
and even variations in autonomic function [66].

Phenylketonuria was also revealed as a potential disease, but since it is an inher-
ited metabolic disorder that impairs the phenylalanine (Phe) metabolism, it is probably
loosely connected to lifestyle [67]. However, it may appear in a person with PKU after
the consumption of protein-rich foods, or grains or aspartame (milk, cheese, nuts, meat,
bread, pasta).

These findings in general confirm a bouquet of disease-related metabolites and pro-
mote a unified metabolomic background for common diseases. This potential clinical
utility for NMR-based metabolomics may translate into another source of discriminatory
information to assess the risk of a number of diseases.
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4. Conclusions

The present study investigated circulatory metabolomic modifications in relation to
lifestyle and thus to the covariates that influence it, such as BMI, dietary habits, physical
exercise and smoking. In fact, alterations in the serum metabolite concentration can
significantly influence cellular and whole-body function, resulting in acute and chronic
human diseases. Since metabolite fluctuations constitute the basis of most human diseases,
approaches that modulate the metabolism must constitute the “vanguard” of therapeutic
and preventative steps. Risk stratification is important in order to identify, as soon as
possible, high-risk individuals and establish disease prevention. Therefore, the rapid
monitoring of the circulatory metabolome that reflects individual lifestyle patterns may
play a preventive role in the development of chronic disorders.

Our results help to understand the influence of lifestyle on the circulatory metabolome
and pinpoint key “prudent lifestyle” metabolites. Metabolite–disease associations have
also been assessed, providing complementary information that aids in the prediction of
disease risk. The validation steps found that tyrosine, formic acid, leucine and alanine
are the putative metabolite markers that bear the impact of lifestyle in the serum. This
may enable correlations to be established between blood metabolites and the confounding
factors contributing to the overall biochemical picture of lifestyle. The potential connections
of liver diseases with the adherence to a lifestyle is documented by a number of studies
and should be considered in clinical practice. Last but not least, our findings implicate that
the metabolic response to a specific lifestyle could potentially trigger the development of
MASLD, heart issues and seizures.
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disturbed statistically significant pathways (p < 0.05). Table S2. Metabolite enrichment analysis to
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