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Abstract: This observational pilot study examined the association between diet, meal pattern and
glucose over a 2-week period under free-living conditions in 26 adults with dysglycemia (D-GLYC)
and 14 with normoglycemia (N-GLYC). We hypothesized that a prolonged eating window and late
eating occasions (EOs), along with a higher dietary carbohydrate intake, would result in higher
glucose levels and glucose variability (GV). General linear models were run with meal timing
with time-stamped photographs in real time, and diet composition by dietary recalls, and their
variability (SD), as predictors and glucose variables (mean glucose, mean amplitude of glucose
excursions [MAGE], largest amplitude of glucose excursions [LAGE] and GV) as dependent variables.
After adjusting for calories and nutrients, a later eating midpoint predicted a lower GV (β = −2.3,
SE = 1.0, p = 0.03) in D-GLYC, while a later last EO predicted a higher GV (β = 1.5, SE = 0.6,
p = 0.04) in N-GLYC. A higher carbohydrate intake predicted a higher MAGE (β = 0.9, SE = 0.4,
p = 0.02) and GV (β = 0.4, SE = 0.2, p = 0.04) in N-GLYC, but not D-GLYC. In summary, our data
suggest that meal patterns interact with dietary composition and should be evaluated as potential
modifiable determinants of glucose in adults with and without dysglycemia. Future research should
evaluate causality with controlled diets.

Keywords: continuous glucose monitoring; diet composition; meal timing; normoglycemic; dysglycemic

1. Introduction

Dietary carbohydrates (CHOs) are recognized as major determinants of glucose levels
and glucose variability (GV) [1,2]. Interventional and epidemiological studies suggest
that an excess calorie intake [3], particularly food with a high glycemic load [4,5], are key
contributors to overall obesity risk and metabolic dysfunction [6,7]. In addition, meal timing
is an important component of peripheral clocks that influence robust circadian rhythms;
therefore, the frequency and timing of eating occasions (EOs) and the duration of the eating
window are gaining traction as important risk factors for metabolic outcomes [8–11].

Higher GV is associated with the development and worsening of type 2 diabetes
(T2D) [12]. Although CHO content and quality have been shown to predict GV in adults
with and without dysglycemia [13], there is a paucity of data on the influence of meal

Nutrients 2024, 16, 1295. https://doi.org/10.3390/nu16091295 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu16091295
https://doi.org/10.3390/nu16091295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-9040-5348
https://orcid.org/0000-0003-1327-1937
https://orcid.org/0000-0003-1354-1749
https://orcid.org/0000-0001-9718-9310
https://orcid.org/0000-0001-8255-3175
https://doi.org/10.3390/nu16091295
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu16091295?type=check_update&version=1


Nutrients 2024, 16, 1295 2 of 12

timing and dietary behaviors on daily glucose excursions in individuals with prediabetes
or normoglycemia. Moreover, it is yet unclear whether meal timing and/or its variability
can impact daily glycemic fluctuations. The use of continuous glucose monitoring systems
(CGMs) combined with dietary monitoring in real time with smartphone apps [14–16] pro-
vides a unique opportunity to assess the impact of meal timing and diet and their variability
on mean glucose levels and glucose excursions with minimal daily life disruptions [14,17].

In this pilot study, we aim to investigate the association between meal patterns and
dietary intake with glucose monitored using a CGM in free-living conditions in individuals
with and without dysglycemia. We hypothesize that a prolonged eating window and
late EO times would predict greater glucose levels and glucose variability (GV), and that
dietary composition would be the main driver of glucose levels and GV. Additionally, we
hypothesize that these effects would be more pronounced in individuals with dysglycemia.

2. Methods
2.1. Study Design

Data for this pilot study were derived from two separate studies conducted at the
Columbia University Irving Medical Center: the New York Time Restricted EATing to
improve cardiometabolic health (NY-TREAT) randomized clinical trial [18] and the Glucose,
Activity, Diet, and Sleep Assessment Study (GLADS), a cross-sectional observational study.
All participants signed informed consent prior to enrollment. Data on glucose, meal
patterns and diet were collected during a 2-week assessment period under free-living
conditions (Supplemental Figure S1). Data from the NY-TREAT study were collected
during a 2-week ambulatory period under free-living conditions prior to randomization.

2.2. Participants

Inclusion and exclusion criteria for both groups are listed in Supplemental Table
S1. In brief, the 26 D-GLYC participants were between the ages of 50 and 75 years, with
overweight or obesity (body mass index [BMI] 25–44.9 kg/m2) and prediabetes or T2D
treated with diet and/or metformin and HbA1C < 7.5%, with a habitual long daily eat-
ing window (≥14 h). The 14 participants in N-GLYC were ≥18 years, had a BMI of
20–35 kg/m2 and no history of prediabetes or T2D. For both studies, exclusion criteria
included a history of sleep disorders, shift work, bariatric surgery and current engagement
in weight loss with or without medication.

2.3. Blood Pressure and Anthropometry

Blood pressure was measured in triplicate with a digital monitor (Digital Automatic
Blood Pressure Monitor HEM-907XL, Omron Healthcare, Inc., Kyoto, Japan) in a stan-
dardized manner after a 10 min rest in a sitting position. The first reading was discarded
and the average of the second and third readings was recorded. Height and weight were
measured in duplicate. In N-GLYC, height was measured to the nearest 1 mm using a
mechanical stadiometer (SECA 222, Seca, Hamburg, Germany) and weight was measured
after voiding, in light clothing, to the nearest 0.1 kg using a calibrated digital scale (Tanita
BWB-800, Tanita, Arlington Heights, IL, USA). In D-GLYC, participants were asked to void,
remove all garments and jewelry, and were provided a hospital gown by the study staff,
after which triplicate anthropometric measures were obtained; body weight was measured
to the nearest 0.1 kg (Ohaus Champ General Purpose Bench Scale, Ohaus Corp., Pine Brook,
NJ, USA); height was measured to the nearest 1 mm using a stadiometer (Holtain Ltd.,
Crymych, UK), as previously described [18]. The BMI was calculated as body weight in
kilograms (kg) divided by body height in meters squared. All anthropometric measures
were obtained on day 1 of the 2-week assessment.

2.4. Glucose

Interstitial glucose was recorded every 15 min with a CGM (Abbott Freestyle Libre
Pro, Abbott Park, IL, USA) [19] placed on the non-dominant upper arm during the first
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visit (Supplemental Figure S1). At the end of the 2 weeks, CGM data were downloaded
from LibreView software Version 1.0 and were subject to data review. The following
data were removed from analyses: (1) readings obtained the day of CGM insertion until
4:00 a.m. the following day to accommodate for equilibrium; (2) data of the entire 24 h
day when a CGM dislodgement event or malfunction occurred, with dislodgement events
reported by the participant and accompanied by missing data with or without a preceding
malfunction (i.e., at least eight consecutive glucose readings below 50 mg/dL immediately
before dislodgement). For N-GLYC, glucose data were used from day 2 to 14. In D-GLYC,
only data from days 2 to 12 were included, as the diet was controlled on days 13 and 14 [18].
After a data review, a total of 17,082 individual glucose values were available from N-GLYC
participants, of which 15,980 (93.5%) were analyzed, while 29,807 glucose readings were
available from D-GLYC participants, of which 25,021 (83.9%) were analyzed.

Data generated with the CGM were computed with EasyGV v8.6 software [20] and
included: (1) mean glucose; (2) mean amplitude of glycemic excursion (MAGE), ignoring
excursions of 1 standard deviation (SD) or less; (3) the largest amplitude of glycemic
excursion (LAGE), calculated as the difference between the maximum and minimum blood
glucose values; and (4) SD of glucose as a marker of GV.

2.5. Dietary Intake

Participants were instructed to complete up to six 24 h dietary recalls using the vali-
dated web-based Automated Self-Administered 24-hour® (ASA24®) Dietary Assessment
Tool [21] on non-consecutive weekdays and at least one weekend day with instructions
to maintain their typical dietary intake. Participants received e-mail reminders from the
study staff to ensure data collection. Time-stamped dietary recalls were validated with a
photo-based smartphone application, as described below. Responses from dietary recalls
were coded and downloaded directly from the ASA24® backend, which included param-
eters of dietary intake, including caloric intake, grams of CHO, protein, total fat, sugar,
fiber and alcohol. The percentage of daily CHO, protein, total fat and the sugar-to-CHO
ratio and fiber-to-CHO ratio were calculated for each participant, and the within-person
variability of dietary intake and percentages were calculated as the SD of the 2-week energy
and nutrient intake.

2.6. Eating Patterns

On day 1, participants downloaded the validated research software application my-
CircadianClock Version 7.5.5 (mCC app, Salk Institute, La Jolla, CA, USA) on their personal
smartphone and received a 10 min coaching session by the study staff on how to record
time-stamped photos, in real time, of all food and caloric beverages immediately prior to
ingestion [16,22]. The study staff had access to the backend of the app and provided feed-
back and assistance as needed. All data were transferred to a remote server immediately
upon submission [16]. Given the interval of a 24 h day from wake to sleep extending past
midnight for some participants, the 24 h period was arbitrarily adjusted to start at 4:00 a.m.
and end at 3:59 a.m. the following day to account for EOs occurring after 12:00 a.m. EOs
were defined as any caloric intake that takes place throughout a 24 h day except water.

Eating pattern parameters assessed included the 2-week mean eating window (interval
during which 95% of EOs occur) [23], as well as the 2-week mean ± SD of daily number of
EOs, time of first and time of last EO and eating midpoint (median timepoint between the
first and last EO). Adherence to logging was defined as (1) the documentation of two or
more EOs separated by 5 h and (2) logging for at least 70% of the days. To ensure adherence,
the research staff tracked all participant entries and sent push notifications directly through
the mCC application. Participants also received automatic push reminders to log their EOs,
including beverages.
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2.7. Statistical Analyses

All data were screened for outliers. Categorical variables, such as sex, age, ethnicity,
race and prediabetes or T2D status, were compared with a chi-squared test (Table 1).
Continuous variables were first tested for normal distribution using the Shapiro–Wilk
test. Pearson’s and Spearman’s correlations were performed to assess relationships in
parametric/nonparametric variables. Independent t tests and Mann–Whitney U tests were
used to compare continuous variables in parametric and nonparametric data, respectively.
Continuous variables were represented as mean ± SD for each group.

Table 1. Participant characteristics.

Variable
N-GLYC D-GLYC Pearson Chi-Sq

n (%) n (%)

Gender
Male 5 (35.7) 7 (26.9)

0.563
Female 9 (64.3) 19 (73.1)

Age group

<35 years 4 (28.6) 0 (0)

<0.001

35–44 years 3 (21.4) 0 (0)

45–54 years 2 (14.3) 3 (11.5)

55–64 years 5 (35.7) 14 (53.8)

>65 years 0 (0) 9 (34.6)

Ethnicity
Hispanic 2 (14.3) 6 (23.1)

0.507
Non-Hispanic 12 (85.7) 20 (76.9)

Race
White 9 (64.3) 9 (34.6)

0.072
Non-White 5 (35.7) 17 (65.4)

Status
Prediabetes 0 (0) 23 (88.5)

<0.001
T2D 0 (0) 3 (11.5)

Participant characteristics. Gender, age, diabetes and medication status clinically confirmed. Race and ethnicity
information obtained through self-report. Significance shown in bold.

Cross-sectional continuous data were analyzed using a general linear model to ex-
amine the associations between diet, eating pattern, behavioral variability and glucose
parameters. Eating pattern parameters were analyzed with adjustments for daily dietary
composition, including caloric intake and grams of CHO, protein, total fat, sugar, fiber and
alcohol consumed.

Baseline characteristics were explored descriptively for all participants using SPSS
(IBM SPSS Statistics for Windows, Version 29.0 IBM Corp, Armonk, NY, USA). General
linear model analyses were carried out using statistical software package SAS version 9.4
(Cary, NC, USA) and data were expressed as mean ± SE. The statistical significance level
was set at α = 0.05. All analyses were performed first with both groups combined and then
in each group separately.

3. Results

A total of 43 participants (14 N-GLYC and 29 D-GLYC) completed the 2-week assess-
ment. CGM malfunctions occurred for three participants in D-GLYC who were removed
from the analyses (Supplemental Figure S2); therefore, 40 participants (n = 14 N-GLYC and
n = 26 D-GLYC) were include in the final analysis.

3.1. Participant Characteristics

Participants were predominantly women in both groups; D-GLYC participants were
older (p < 0.001), had a higher diastolic blood pressure (p = 0.004), weight (p = 0.004) and
BMI (p < 0.001), and 23 of them had prediabetes (p < 0.001) (Tables 1 and 2) compared to
N-GLYC. Body composition measurements of fat mass and fat-free mass were available for
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the D-GLYC group, but there were no significant associations between body composition
and glucose parameters (Supplemental Table S2).

Table 2. Descriptive characteristics.

Variable N-GLYC (n = 14) D-GLYC (n = 26) p Value

Anthropometrics

Systolic BP 113.8 ± 10.9 121.9 ± 12.8 0.052
Diastolic BP 71.0 ± 9.2 77.9 ± 9.8 0.036 *
Height (cm) 170.2 ± 10.6 165.4 ± 9.8 0.154
Weight (kg) 71.5 ± 11.8 88.9 ± 19.3 0.004 *
BMI (kg/m2) 24.9 ± 5.1 32.3 ± 5.3 <0.001 *

Glucose

Glycosylated hemoglobin (HbA1c) N/A 5.9 ± 0.3 N/A
Homeostatic model assessment for insulin resistance (HOMA-IR) N/A 4.9 ± 4.1 N/A
Total number of CGM readings 1117 ± 277 962 ± 201 <0.001 *
Mean glucose 96.40 ± 10.37 97.5 ± 10.4 0.754
Glucose variability 18.6 ± 4.7 19.7 ± 7.7 0.865
Mean amplitude of glycemic excursions (MAGE) 46.5 ± 10.8 51.8 ± 20.7 0.610
Largest amplitude of glycemic excursions (LAGE) 130.93 ± 23.61 136.8 ± 44.3 0.585
Min glucose reading 50.1 ± 11.9 52.2 ± 9.8 0.496
Max glucose reading 181.0 ± 21.7 189.0 ± 42.5 1.000
% in range 93.0 ± 7.9 94.8 ± 6.4 0.744

Eating patterns

Number of days logging 13.4 ± 1.9 11.1 ± 0.3 <0.001 *
Good logging days (%) 92.3 ± 12.7 91.3 ± 11.1 0.429
Daily number of EOs 6 ± 2.3 6.2 ± 2.8 0.966
Eating window duration (hh:mm) 13:37 ± 1:05 14:21 ± 2:05 0.452
Time of first eating occasion (hh:mm) 9:19 ± 1:51 9:15 ± 1:44 0.903
Time of last eating occasion (hh:mm) 20:09 ± 1:37 19:46 ± 1:51 0.522
Eating midpoint (hh:mm) 15:10 ± 1:51 14:40 ± 1:44 0.398

Dietary composition

Mean number of recalls 5.4 ± 1.3 4.8 ± 1.0 0.050
Calories 1827 ± 415 1824.9 ± 628 0.571
Protein (gr) 81.5 ± 25.3 75.4 ± 19.89 0.403
Total fat (gr) 73.3 ± 24.0 82.7 ± 32.9 0.411
Carbohydrate (gr) 206.0 ± 47.5 189.4 ± 87.3 0.119
Sugar (gr) 81.7 ± 24.7 78.5 ± 39.6 0.379
Sugar-to-carbohydrate ratio 0.4 ± 0.1 0.4 ± 0.1 0.568
Fiber (gr) 20.0 ± 7.6 20.9 ± 11.6 0.989
Fiber-to-carbohydrate ratio 0.1 ± 0.0 0.1 ± 0.0 0.357
Protein (%) 17.9 ± 3.7 17.4 ± 3.9 0.496
Total fat (%) 35.4 ± 5.4 39.7 ± 7.0 0.051
Carbohydrate (%) 46.0 ± 7.2 43.3 ± 8.1 0.303
Alcohol (gr) 7.2 ± 5.9 4.6 ± 10.2 0.008 *

Nonparametric data compared using Mann–Whitney U test, parametric data compared with Student’s t test.
* Significance shown in bold. Glucose variability defined as glucose SD. Abbreviations: CGM—continuous glucose
monitor; EO—eating occasion; hh:mm—hours and minutes. N/A = data not available and group comparisons
cannot be performed.

Adherence with meal logging was excellent, with over 90% of days displaying good
logging in both groups (Table 2), and although groups differed in the duration of ambulatory
period, there were no differences in eating pattern parameters (daily number of EOs, eating
window, time of first EO, time of last EO and eating midpoint). There was an average of
5 ± 1 dietary recalls in each group, with no group differences in the mean calorie intake
(p = 0.571) despite a greater alcohol intake in N-GLYC (p = 0.008), and a trend for a greater
percentage of energy intake from fat in D-GLYC (p = 0.051) (Table 2).
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Although N-GLYC participants had a smaller range of glucose readings over 2 weeks
(Figure 1), the mean glucose, MAGE, LAGE and GV were not different between groups
(Table 2). In D-GLYC only, the mean glycosylated hemoglobin (HbA1c) was 5.9 ± 0.3,
while the homeostatic model assessment for insulin resistance (HOMA-IR) was 4.9 ± 4.1
(Table 2). Correlations between HOMA-IR and glucose parameters were not significant
(Supplemental Table S3), and there was a significant negative correlation between HOMA-
IR and fiber intake, fiber intake variability and alcohol intake (Supplemental Table S4).
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significantly between groups (Table 2). Red dashed line = indicates the threshold for interstitial
glucose readings above 200 mg/dL.

3.2. Effect of Meal Pattern and Its Variability on Mean Glucose, Glucose Excursions and GV

We assessed whether meal patterns influenced glucose and its variability. Meal pat-
terns did not predict glucose levels nor GV in the combined analyses. In N-GLYC, a
later time of last EO predicted a higher GV (β = 1.5, SE = 0.6, p = 0.04). In D-GLYC, a
higher variability in the number of EOs predicted a higher mean glucose (β = 6.6, SE = 2.4,
p = 0.02), while a later eating midpoint was associated with a lower GV (β = −2.3, SE = 0.1,
p = 0.03).

3.3. Effect of Diet Composition and Its Variability on Mean Glucose, Glucose Excursions and GV

We then assessed whether diet composition influenced glucose and its variability.
Contrary to our hypothesis, neither dietary CHO, sugar nor fiber predicted mean glucose
in combined or separate analyses by cohort. On the other hand, a higher protein intake
predicted higher mean glucose only in D-GLYC (β = 0.2, SE = 0.1, p = 0.03). Alcohol intake
variability negatively predicted mean glucose in the combined analyses (β = −0.4, SE = 0.2,
p = 0.03) and N-GLYC (β = −0.7, SE = 0.3, p = 0.04), but not in D-GLYC (Figure 2).

No element of diet composition predicted MAGE or LAGE in the combined analyses
or in the D-GLYC. In N-GLYC only, higher intakes of CHO (β = 0.9, SE = 0.4, p = 0.02),
sugar (β = 0.3, SE = 0.1, p = 0.02) and sugar-to-CHO ratio (β = 75.8, SE = 27.7, p = 0.02)
were associated with a higher MAGE, a higher sugar-to-CHO ratio (β = 166.6, SE = 60.7,
p = 0.02) and higher sugar variability (β = 1.0, SE = 0.3, p = 0.01) were associated with
a higher LAGE; and a higher fiber (β = −1.7, SE = 0.8, p = 0.04), fiber-to-CHO ratio
(β = −490.2, SE = 224.6, p = 0.05) and protein intake (β = −0.7, SE = 0.2 = 0.01) was
associated with lower LAGE (Figure 2).

Finally, none of the dietary parameters or their variability predicted GV in the com-
bined analyses. However, in the N-GLYC only, a higher percentage of energy from CHO
intake (β = 0.4, SE = 0.2, p = 0.03) and a higher sugar-to-CHO ratio (β = 35.8, SE = 11.5,
p = 0.01) were associated with a higher GV, while a higher protein intake in grams (β = −0.1,
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SE = 0.04, p = 0.03) and percentage of energy (β = −0.7, SE = 0.3, p = 0.04) were associated
with a lower GV. Counterintuitively, in the D-GLYC group, a higher sugar-to-CHO ratio
was associated with a lower GV (β = −0.4, SE = 0.2, p = 0.03) (Figure 2).
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parameters. Eating patterns were adjusted for caloric intake, carbohydrate (gr), protein (gr), total fat
(gr), sugar (gr), fiber (gr) and alcohol (gr). (A) Diet and eating pattern behavior over two weeks as
predictors of mean glucose and glucose variability. (B) Diet and eating pattern behavior variability
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positive predictions; red boxes indicate significantly negative predictions. Data analyzed using a
generalized linear model. Significance set at 0.05. Abbreviations: CHO—carbohydrate; EO—eating
occasion; GV—glucose variability defined as glucose SD; LAGE—largest amplitude of glucose
excursion; MAGE—mean amplitude of glucose excursion; SD—standard deviation.

4. Discussion

In this study, we investigated the effect of eating patterns, diet composition and
the variability of these behaviors on glucose levels and GV in adults with and without
dysglycemia assessed over a 2-week period under free-living conditions. There were no
clear differences in glucose control between the two groups, despite one group being
classified as having dysglycemia and being older. This finding could be related to the
D-GLYC group having a mean glycosylated hemoglobin (HbA1c) of 5.9 ± 0.3%, putting
this group’s average value on the lower range of prediabetes classification [24].

Our data supported our hypothesis that some aspects of eating patterns could modu-
late glucose levels and GV in segregated analyses. In D-GLYC, a higher variability of daily
EOs was associated with a higher mean glucose, which supported our hypothesis, as irreg-
ular meal intakes have been shown to be associated with a higher insulin resistance [25].
Our data also revealed that a later time of the last EO was associated with a higher GV in
N-GLYC, while a later eating midpoint was associated with a lower GV in D-GLYC. Our re-
sults for meal timing seemed to replicate previous findings in N-GLYC, but not D-GLYC. A
long eating window and later timing have all been linked to glucose intolerance and higher
glucose levels [26] and an earlier eating window was shown to enhance metabolic benefits
of TRE in individuals at risk of T2D [27], with evidence from randomized clinical trials
indicating that following a time-restricted eating diet (TRE) [27–29] leads to improvements
in glucose homeostasis. However, midpoint results are best assessed in the context of first
and last EO timing, and the effect of diet seemed to surpass that of the eating window.
While the reasons underlying group discrepancies in response to meal frequency and timing
remain unclear, it is plausible that the observed differences reflected the stringent inclusion
criteria employed in the D-GLYC group. Notably, participation in this group necessitated
a prolonged eating window. Future studies employing larger and more heterogeneous
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participant pools, encompassing a wider range of eating window durations, are warranted
to address this question. Additionally, implementing controlled dietary interventions with
manipulated eating window durations could offer further insights into the potential role of
meal timing.

As expected, dietary CHO contributed to glucose excursions. Interestingly, this was
only observed in the N-GLYC group. These findings also contradicted prior findings
with CHO intake being one of the primary drivers of glucose levels and fluctuations in
adults with and without T2D [1,2,30–33]. To further explore this finding, we segregated
CHO intake by type. A higher sugar and a sugar-to-CHO ratio predicted higher glucose
excursions and greater GV in N-GLYC, but a higher sugar-to-CHO ratio was associated
with lower GV in D-GLYC. Sugar intake is a recognized determinant of the increased
prevalence of T2D [34], and previous reports revealed that, compared to a habitual diet,
a healthy low-CHO intake promoted greater reductions in fasting plasma glucose and a
higher percentage of time in range glucose readings [35], with the effects of sugars on the
blood glucose response being proportional to the CHO they replaced [36,37]. Fiber intake
and the fiber-to-CHO ratio were associated with lower glucose excursions in N-GLYC, but
no associations were found in D-GLYC. Fiber is widely favored as a dietary complement
for glucose management, as it reduces post-prandial glucose excursions [38,39]; however,
this favorable effect is only apparent when at least 25 g of daily fiber is consumed [40],
and our study showed a lower fiber intake than the current recommendations in both
groups, which may have dampened any potential protecting effect of fiber reported in the
literature. Our results replicated the known effects of sugar and fiber on glucose found
in the literature in the N-GLYC group only; however, the inverse relationship was found
between the sugar-to-CHO ratio and GV, and the lack of associations seen between fiber
and glucose levels in D-GLYC suggests that the recommended amount of sugar and fiber
intake may be of greater importance in high-risk groups.

A higher protein intake was associated with lower glucose excursions and GV in
N-GLYC, but with a higher 2-week mean glucose in D-GLYC. These findings partially
aligned with prior research, as a higher protein intake has been linked to an improved GV
and post-prandial glucose response, lower risk of developing T2D and higher likelihood of
T2D remission [41–43]. Although protein findings were present in a normoglycemic cohort,
the counterintuitive observation between protein and mean glucose in D-GLYC may also
be attributed to a lack of substantial CHO restrictions, as a high protein intake does not
affect plasma glucose in people with T2D unless caloric and CHO intake are markedly
reduced [44].

Participants in the N-GLYC group were younger and reported a higher alcohol con-
sumption, which aligned with research indicating a gradual decline in alcohol intake with
age [45]. Our study showed a significant association between higher alcohol intake vari-
ability and higher mean glucose for N-GLYC, supporting the well-established connections
between a high alcohol intake and elevated sugar content [46]. While alcohol consumption
in the D-GLYC group was highly variable, it did not predict daily glucose levels or vari-
ability. This observation could indicate a moderate drinking pattern, which is generally
recognized to have minimal or even a slight reduction in impact on blood glucose levels in
individuals with T2D [47].

The strengths of this study included the ecological assessment of diet and meal pattern
under free-living conditions in younger and older adults of racially and ethnically diverse
backgrounds with varying glucose tolerance levels. This allowed for the exploration of
differences in behavior and their variability as predictors of glucose, glucose excursions
and variability. To our knowledge, we were the first to assess the relationships between
diet, meal pattern and their variability and 24 h glucose parameters in normoglycemic
adults and adults with mild dysglycemia; hence, this study paves the way for considering
a comprehensive dietary behavior approach of CGM data interpretation.

There were limitations that warranted acknowledgement. The cross-sectional and
observational study design prevented establishing causality, age discrepancies between
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groups may have confounded the results and the small sample size reduced analytical
power, potentially yielding chance findings. Some findings may have resulted from selec-
tion bias given the rigid inclusion criteria in both studies (e.g., eating window); however,
differences in anthropometric parameters were present between groups, making results
generalizable to a wider population. Unmeasured factors (e.g., differences in diet during
morning, midday or evening) could have acted as confounders, and reported intake was
not evaluated for plausibility and could have led to participant recall bias. Nevertheless,
the ASA24 is the most appropriate method to assess diet in free-living conditions, and
participants underwent extensive training for ASA24 and had repeated measures, as previ-
ously suggested, to strengthen the data generated [48]. The study would have further been
strengthened by incorporating comprehensive assessments of body composition, including
the proportion of fat mass and fat-free mass in both groups, as these are known to impact
glucose metabolism [49,50]. Additionally, lower post-prandial glucose concentrations have
been shown to correlate with hunger rating and the subsequent energy intake [51]; there-
fore, qualitative assessments of hunger and post-prandial glucose dips could have provided
valuable insights and helped elucidate the drivers of meal timing and diet behaviors and
could be added in future studies.

5. Conclusions

In summary, these pilot data suggested that there were different modifiable dietary
and eating pattern determinants that may have impacted the 24 h glucose patterns and their
day-to-day variability in adults with and without dysglycemia. Eating frequency predicted
mean glucose in D-GLYC, while the time of the last EO predicted GV in N-GLYC, and the
eating midpoint predicted GV in D-GLYC. For diet, CHO, sugar and fiber intake predicted
glucose excursions and GV in N-GLYC, but not in D-GLYC. These results underscore the
need to further evaluate the role of meal frequency, timing and regularity as concomitant
dietary pattern predictors in healthy and metabolically impaired adults. Future research
should evaluate causality with controlled diets.
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