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Abstract: Isoflavones have multiple actions on cell functions. The most prominent one is 

the activation of estrogen receptors. Other functions are often overlooked, but are equally 

important and explain the beneficial health effects of isoflavones. Isoflavones are potent 
dual PPARα/γ agonists and exert anti-inflammatory activity, which may contribute to the 

prevention of metabolic syndrome, atherosclerosis and various other inflammatory 

diseases. Some isoflavones are potent aryl hydrocarbon receptor (AhR) agonists and 

induce cell cycle arrest, chemoprevention and modulate xenobiotic metabolism. This 

review discusses effects mediated by the activation of AhR and PPARs and casts a light on 

the concerted action of isoflavones. 
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1. Introduction 

 

1.1. Systematics of Isoflavones 

 

Isoflavones are a subgroup of plant phenols, which make up a group of aromatic secondary plant 

metabolites derived from the shikimate pathway and phenylpropanoid metabolism [1]. These 

compounds are widely distributed in all plant species and include simple phenol, phenolic acids, 

phenylacetic acids, hydroxycinnamic acids (e.g., caffeic acid, ferulic acid), coumarins, stilbens (e.g., 

resveratrol), flavonoids, lignans, lignins, and condensed tannins. Flavonoids are characterized by a 

core structure of a C6-C3-C6 flavone skeleton in which the C3 portion is commonly cyclized with 

oxygen (Figure 1). They vary in the degree and location of unsaturation and oxidation [1,2]. 

Figure 1. Structure of the flavonoids [with two aromatic benzol rings (A and B rings)] and 

a C3 portion cyclized with oxygen (C ring). 

 

The group of flavonoids includes anthocyanins, flavans, flavanones, flavones, flavonols, and 

isoflavonoids. Isoflavonoids are characterized by being substituted by various hydroxyl and/or 

methoxy groups. This group includes, for example, genistein, daidzein, formononetin, biochanin A, 

and glycitein [2,3] (Figure 2). 

Figure 2. Structure of isoflavones: (A) genistein, (B) daidzein, (C) formononetin, (D) 

biochanin A, and (E) glycitein. 
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1.2. Dietary Sources and Intake of Isoflavones 
 

Isoflavones are found in trace amounts in fruits such as apples [4] and strawberries [5] and plant 

seeds such as sesame [5] and sunflowers [4]. But the main sources are legumes, especially the 

Fabaceae family, in particular soy [4,6,7] and red clover [8,9].  

Soy is widely used in Asia as a staple food and consumed regularly in traditional food items such as 

tofu, miso, natto, edamame (whole soybeans), soybean paste, and shoyu (fermented soy sauce). Hence, 

the isoflavone intake among Asians is about a factor of 100 higher than that of people in the Western 

world. The daily isoflavone intake among Southeast Asians ranges between 15 and 47 mg [10-16], 

while Western people consume only between 0.15 and 1.7 mg isoflavones per day [17-21].  

Red clover (Trifolium pratense) is widely used as a fodder crop in the Western world. In former 

times, it was also used in dried and milled form as a flour extender and as a salad ingredient. Today, it 

is mostly consumed as a food supplement for the amelioration of menopausal complaints.  

The isoflavone composition of soy and red clover differs. Soy isoflavones are mainly daidzein, 

genistein, and glycitein, but the predominant isoflavones of red clover are formononetin and biochanin 

A, while daidzein and genistein are found only in trace amounts [8,9].  

 

1.3. Metabolism and Bioavailability of Isoflavones 
 

Most of the isoflavones are bound as glucosides in plants. There is evidence that hydrolysis of the 

sugar moiety is needed for absorption [22], but the data are inconsistent; some studies report no 

difference between the absorption of aglycones and glucosides [23-25], while others found that 

aglycones were absorbed more efficiently [26,27]. Nevertheless, aglycone absorption seems to be 

unaffected by food matrix and food processing [28] or isoflavone source [29]. 

After oral uptake, the gastrointestinal tract is the main absorption site of isoflavones. Intestinal -

glucosidases catalyze hydrolysis of the sugar moiety  [30], and the gut microflora further metabolize 

the agylcones. The metabolites that result depend on the individual microflora and can differ to a great 

extent. During metabolism, formononetin and biochanin A are demethylated to daidzein and genistein, 

respectively. 

The most significant metabolite, however, is certainly equol. Excretion of this metabolite of 

daidzein has been associated with a reduced risk of breast and prostate cancers [31-34]. The incidence 

of breast and prostate cancers is lower among Asians in comparison to people in the Western 

world [35], although breast cancer incidence is rising in Asia [36-39], probably because of lifestyle 

and nutrition changes that increasingly are oriented towards a Western lifestyle. Not everyone can 

produce equol, and the prevalence of so-called equol producers ranges from 30–50% [40-49].  

Another metabolite of daidzein is O-desmethylangolensin (ODMA). In comparison to daidzein and 

equol, ODMA has a weaker affinity for estrogen receptors (ERs)  [50]. Daidzein is converted to 

ODMA because of a ring cleavage, while equol arises after the elimination of a carbonyl-group 

(Figure 3).  
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Figure 3. Possible metabolism products of daidzein. 
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Various other metabolites of isoflavones have been identified [51-53]. As mentioned, the emerging 

metabolite pattern is inter-individually different and depends on the intestinal microflora. For further 

information on bioavailability, there are several excellent reviews that have their main focus on this 

topic [54-58], but it should be noted that isoflavones are among the most bioavailable polyphenols. 

 

1.4. Metabolic Diseases 
 

Cardiovascular diseases like myocardial infarct and cerebrovascular diseases are the principal cause 

of death worldwide, representing 30% of all global deaths in 2005. If current trends continue, by 2015, 

an estimated 20 million people will suffer from cardiovascular diseases [59]. A sedentary lifestyle and 

excessive energy intake lead to an increase in the prevalence of obesity. An excess of body fat, 

especially visceral fat, is a key factor for developing the metabolic syndrome [60,61]. The 

International Diabetes Federation has defined the metabolic syndrome as central obesity (waist 

circumference ≥94 cm for male Europeans and ≥90 cm for male South Asians, Chinese, and Japanese 

and ≥80 cm for female Europeans, South Asians, Chinese, and Japanese) plus any two of the following 

four factors: raised triglycerides ≥150 mg/dL (1.7 mmol/L) or specific treatment for this lipid 

abnormality; reduced HDL (high density lipoprotein) cholesterol of <40 mg/dL (1.03 mmol/L) in 

males and <50 mg/dL (1.29 mmol/L) in females or specific treatment for this lipid abnormality; raised 

blood pressure, with a systolic blood pressure ≥130 or diastolic blood pressure ≥85 mm Hg or 

treatment of previously diagnosed hypertension; raised fasting plasma glucose ≥100 mg/dL (5.6 

mmol/L), or previously diagnosed type 2 diabetes [62]. Cardiovascular diseases are more prevalent 

among patients with this syndrome [63-67]. 

Adipose tissue is an active endocrine organ producing a great variety of hormones and cytokines 

that are involved in glucose metabolism, lipid metabolism, inflammation, coagulation, and blood 

pressure. An increase in visceral fat mass is associated with an increase in secreted bioactive molecules 

including tumor necrosis factor (TNF)α, interleukin (IL)-6, angiotensinogen, and plasminogen 

activator inhibitor type 1 [68-71]. The concentration of adiponectin, a hormone that increases insulin 

sensitivity, has been identified to be significantly lower in the adipose tissue or serum of obese mice or 

humans than in lean control mice [72,73]. The enhanced secretion of inflammatory factors in adipose 
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tissue from obese animals and humans results in a low chronic inflammatory stage that is associated 

with enhanced development of diabetes mellitus, the metabolic syndrome, and atherosclerosis [61,73]. 

 

1.4.1. Peroxisome proliferator-activated receptors  and  
 

Isoflavones activate the ligand-dependent transcription factors known as peroxisome proliferator-

activated receptors (PPARs). These are class II nuclear receptors, a class that heterodimerizes with 

retinoid X receptor and binds to direct repeat sequences of nucleotides, which are PPAR response 

elements in the case of PPARs [74]. The subtypes PPAR and  vary concerning tissue distribution. 

PPAR is found mainly in adipose tissue but also in liver, kidney, intestine, and muscle [75,76]. 

PPAR is mainly expressed in liver, kidney, heart, muscle, and small intestine [76,77]. Furthermore, 

PPAR and  are found in inflammatory and immune cells such as monocytes, macrophages, B and T 

cells, and dendritic cells, and in vascular wall cell types such as endothelial and smooth muscle cells, 

linking them to a role in inflammatory responses [76-78]. Fatty acids and their derivatives are the main 

natural ligands of all PPAR subtypes. PPAR ligands include the fatty acids palmitic acid, petroselinic 

acid, oleic acid, linolenic acid, linoleic acid, and arachidonic acid [79,80], and fatty acid derivates like 

15-deoxy-delta 12,14-prostaglandin J2 (15d-PGJ2) [81,82]. PPAR is activated by the peroxisome 

proliferator WY 14,643 and by linoleic, -linolenic, -linolenic, arachidonic, docosahexaenoic, and 

eicosapentaenoic acids, and by eicosanoids like 8(S)-hydroxyeicosatetraenoic acid, ±8-

hydroxyeicosapentaenoic acid, and carbocyclin  [81]. The synthetic ligands of PPAR comprise the 

glitazones [82,83], tyrosine-based agonists, and non-steroidal anti-inflammatory drugs like fenoprofen, 

ibuprofen, and indomethacin  [80], and the synthetic ligands of PPAR include the fibrates  [81].  

PPARs play a role in improving several perturbations of the metabolic syndrome. The main 

function of PPAR, which has been defined as a drug target for type 2 diabetes, is adipocyte 

differentiation and insulin sensitization [83-85]. PPAR activation leads to a modulation of factors 

secreted by adipose tissue. Factors that promote insulin resistance, namely TNF, leptin, IL-6, and 

resistin, are reduced, and factors that promote insulin sensitivity, like adiponectin, 

phosphoenolpyruvate carboxykinase, fatty acid transport protein, and insulin receptor substrate-2, are 

upregulated [86-90]. Activation of PPAR further promotes adipogenesis and lipid storage in 

subcutaneous adipose tissue. The result is a redistribution of adipose tissue from harmful visceral fat 

mass to subcutaneous depots by activation of the involved genes, including fatty acid binding protein, 

phosphoenolpyruvate carboxykinase, acyl-CoA synthase, diacylglycerol acyltransferase 1, fatty acid 

transport protein, and lipoprotein lipase [87,91,92]. 

PPAR activation leads to an improved lipid profile by elevating HDL levels and reducing plasma 

triglyceride levels. The reduction of plasma triglyceride levels is achieved by induction of genes that 

decrease the availability of triglycerides for hepatic very low-density lipoprotein (VLDL) 

secretion [93,94] and by an increased lipoprotein lipase (LPL)-mediated lipolysis of triglyceride-rich 

plasma lipoproteins like chylomicrons and VLDL particles [95]. This pathway is mediated by 

increased expression of LPL and the LPL activator apolipoprotein A-V and reduced expression of the 

LPL inhibitor apolipoprotein C-III [96,97]. HDL levels are elevated by increased hepatic 

apolipoprotein A-I and –II expression through PPAR activation [98,99]. 
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1.4.2. Inflammation and Atherosclerosis 
 

Atherosclerosis is a complex, chronic process involving the contribution of several factors including 

injury to the endothelium, proliferation of vascular smooth muscle cells, migration of monocytes or 

macrophages, and involvement of mediators like growth factors and cytokines [100]. In brief, 

endothelial dysfunction, an early marker of atherosclerosis, can be induced by elevated low-density 

lipoproteins (LDL), hypertension, or toxins after smoking and is associated with decreased nitric oxide 

(NO) synthesis [101]. An inflammatory response plays a major role in the progression of 

atherosclerosis. Oxidized lipoprotein, T cells, and macrophages enter into the vessel wall, which leads 

to enhanced oxidative stress in vascular cells and to an activation of intracellular signaling molecules. 

T cells recognize oxidized LDL or heat shock proteins and locally release pro-inflammatory 

cytokines [102]. Macrophages induce collagen breakdown in atherosclerotic plaques by secreting 

matrix metalloproteinases (MMPs) [103,104]. In this way, the inflammatory response plays a major 

role in the initiation of atherosclerotic plaque formation and their destabilization. The rupture of a 

plaque underlies most of the acute coronary syndromes such as myocardial infarction, unstable angina, 

and coronary death [105]. 

PPARs are expressed in cells that are involved in several processes of atherosclerosis. In this way, 

PPAR plays a role in improving cellular processes that contribute to atherosclerosis. Mechanisms are 

based on the correction of endothelial dysfunction, suppression of a chronic inflammatory 

process [86], reduction of foam cells and fatty streak formation [77,106], attenuating plaque evolution, 

and promoting plaque stabilization [107,108].  

PPAR activation contributes to improvement of several atherosclerotic stages by downregulating 

pro-inflammatory genes [109] and inhibiting foam cell formation by enhancing expression of ATP-

binding cassette A1 transport protein and thus increasing cholesterol efflux from macrophages and 

foam cells to HDL [110, 111]. Furthermore, a PPAR agonist was reported to inhibit MMP-12 

expression in monocyte-derived macrophages, thus leading to an inhibition of atheromatous plaque 

rupture [112]. By decreasing tissue factor expression, the PPAR agonist fenofibrate reduces initiation 

of blood coagulation and thus thrombotic complications after plaque rupture. Furthermore, fenofibrate 

significantly enhances endothelial regrowth and plaque stability [113].  

 

1.4.3. PPAR Activation in in vitro Assays 
 

Activation of PPAR and  and modulation of adipocyte differentiation in vitro are associated with 

putative antidiabetic or antilipidemic activity in vivo. Several studies have shown binding and/or 

activation of PPAR or PPAR by the isoflavones genistein, daidzein, biochanin A, formononetin, and 

glycitein and the metabolites equol, ODMA, 6-hydroxydaidzein, 3´-hydroxygenistein, 6´-hydroxy-

ODMA, angolensin, dihydrogenistein, dihydrobiochanin A, dihydroformononetin, dihydrodaidzein, 

and p-ethylphenol (Table 1). Generally, the transactivational activities were higher for biochanin A 

and genistein than for daidzein or formononetin. Several metabolites showed higher PPAR or PPAR 
binding and activation properties than their precursors, including equol, ODMA, 6-hydroxydaidzein, 

and 3´hydroxygenistein [114,115]. 
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Table 1. The isoflavones as PPAR and PPAR ligands or activators. 

PPAR PPAR PPAR 
Ref 

Transactivation Ligands Transactivation 

  
biochanin A, genistein, 
daidzein, equol 

 [116]

 genistein genistein  [117]
daidzein  daidzein  [118]
genistein    [119]
  daidzein  [120]
genistein, daidzein  genistein, daidzein  [121]

 

biochanin A, genistein, 
daidzein, equol, ODMA, 6-
hydroxydaidzein,  
3´-hydroxygenistein,  
6´-hydroxy-ODMA, 
angolensin, dihydrogenistein, 
dihydrobiochaninA, 
dihydroformononetin, 
dihydrodaidzein,  
p-ethylphenol 

biochanin A, genistein, 
daidzein, equol, ODMA,  
6-hydroxydaidzein,  
3´-hydroxygenistein,  
6´-hydroxy-ODMA, 
dihydrogenistein, 
dihydrodaidzein  
 

 [115]
 

biochanin A, genistein, 
daidzein, ODMA, 6-
hydroxydaidzein,  
3´-hydroxygenistein 

   [114]

genistein, daidzein  genistein, daidzein, glycitein  [122]
daidzein, equol    [123]
biochanin A, formononetin, 
genistein 

biochanin A, genistein, 
daidzein 

biochanin A, formononetin, 
genistein 

 [124]

 

Obesity and adipose tissue mass are associated with the number and volume of adipocytes, which 

result from adipocyte differentiation and triglyceride storage. Several studies have investigated the 

influence of isoflavones on adipocyte differentiation in 3T3-L1 cells. In these assays, 3T3-L1 

preadipocytes are incubated with a differentiation medium and isoflavones simultaneously to test the 

effect on differentiation and the inhibition of lipid accumulation. In the maturation of preadipocytes, 

the transcription factors PPAR and CCAT/enhancer binding protein (C/EBPs) play a major role. First, 

the expression of C/EBPβ and C/EBPδ is induced by components of the differentiation medium (such 

as insulin, dexamethasone, and 3-isobutyl-1-methylxanthine) [125]. This induction leads to increased 

expression of PPAR2, C/EBPα, and sterol responsive element-binding protein (SREBP)-1, which in 

addition to a role in adipogenesis is responsible for the expression of mature adipocyte-specific genes 

like lipogenic enzymes, fatty acid binding proteins, and other secreted factors [85,126,127]. 

Much of the literature has focused on genistein, which inhibits adipogenesis at concentrations 

between 1 and 200 µM through various mechanisms: downregulation of the expression of adipocyte-

specific genes including C/EBP and β, PPAR  [128, 129], fatty acid synthase [128-130], adipocyte 

fatty acid binding protein, SREBP-1, perilipin, LPL, and hormone-sensitive lipase [128]; 
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downregulation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) activity [131] and the 

action of AMP-activated kinase [132]; enhancement of leptin secretion, increased expression of the 

adipogenesis inhibitor preadipocyte factor 1 (Pref-1) [129], and inhibition of janus-activated kinase 

(JAK)2-mediated adipocyte differentiation [130]. Interestingly, genistein, a PPAR activator, inhibits 

adipocyte differentiation in vitro and thereby exerts putative anti-obesity activity. Other mechanisms 

for putative anti-obesity activity of genistein include the inhibition of lipid accumulation in human 

adipocytes [128, 130], possibly caused by inhibition of the activity of glycerol-3-phosphate 

dehydrogenase [128] and induction of apoptosis of mature adipocytes [132,133].  

Only a few studies have investigated adipocyte differentiation in the context of the other 

isoflavones. Shen et al. [124] showed that biochanin A induces lipid accumulation in preadipocytes at 

a low concentration (1 µM) and formononetin and genistein at higher concentrations (3 or 15 µM). 

Daidzein did not induce adipocyte differentiation at this concentration range. Cho et al. [123] reported 

that daidzein enhanced adipocyte differentiation in 3T3-L1 cells at concentrations between 10 and 100 

µM and C3H10T1/2 stem cells at concentrations between 1 and 20 µM and that even its metabolite 

equol increased adipocyte differentiation in C3H10T1/2 cells at concentrations between 0.1 and 20 

µM. These data indicate the putative role of the isoflavones genistein (only at high concentrations), 

daidzein, formononetin, and biochanin A and the metabolite equol in fat redistribution and thus in 

reducing harmful visceral fat mass and simultaneously insulin resistance. 

Dang et al. [117,118] found that in mesenchymal progenitor cells that can differentiate into 

osteoblasts or adipocytes, genistein and daidzein showed a biphasic effect. Adipogenesis was inhibited 

at low concentrations of genistein (0.1–10 µM) or daidzein (10–20 µM) and enhanced at high 

concentrations of genistein (>10 µM) or daidzein (>30 µM). Dang et al. [117,118] explained the 

observed effects by an interaction of PPAR and ER with activation of ER, leading to an inhibition of 

adipogenesis at a low concentration and PPAR activation leading to enhancement of adipogenesis at a 

high concentration.  

In addition to adipocyte mass, inflammation plays a major role in chronic diseases like diabetes and 

in the progression of atherosclerosis. Therefore, the anti-inflammatory activity of isoflavones and their 

metabolites in various cell culture systems is of great interest (Table 2). Cells are exposed to an 

inflammatory stimulus like lipopolysaccharide (LPS) or interferon (IFN)-. The subsequent 

inflammatory response is characterized by a sequential release of pro-inflammatory cytokines like 

TNF, IL-6, IL-8, IL-1β, or IFN-  [134] The nuclear transcription factor-B (NFB) controls the 

expression of pro-inflammatory cytokines, adhesion molecules, chemokines, growth factors, or 

inducible enzymes such as cyclooxygenase 2 (COX-2) and the inducible nitric oxide synthase (iNOS). 

Successively, iNOS and COX-2 induce the production of pro-inflammatory mediators  [135]. The 

inflammatory state is resolved by anti-inflammatory cytokines including IL-4, IL-10, IL-13, and IFN-

 [134]. 

In cell culture assays, isoflavones downregulate several pro-inflammatory mediators like TNF,  

IL-6, IL-8, IL-1β, NO, prostaglandin E2 (PGE2), monocyte chemoattractant protein-1, IL-8, and 

intercellular adhesion molecule-1, or upregulate anti-inflammatory cytokines like IL-10 (Table 2). The 

expression of various proteins involved in the production of inflammatory mediators like iNOS, COX-

2, NFκB, and signal transducer and activator of transcription 1 (STAT-1) is downregulated or their 

activity is inhibited. Most data on putative anti-inflammatory activity are from studies with genistein, 
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but daidzein, formononetin, biochanin A, glycitein, and the metabolites equol and ODMA also 

positively influence the profile of secreted mediators. 

Furthermore, isoflavones inhibit monocyte adhesion to TNF–activated human umbilical vein 

endothelial cells during flow. Because monocyte adhesion to endothelial cells is among the early steps 

of the inflammatory cascade and contributes to atherosclerotic development, isoflavones could help to 

prevent atherosclerosis by this mechanism [116]. 

Table 2. Influence of isoflavones on the secretion of various inflammatory markers in cell lines. 

Compounds Cell line 
Downregulated pro-
inflammatory mediators 

Upregulated anti-
inflammatory 
mediators 

Ref. 

genistein, equol RAW 264.7 NO, PGE2   [136]

genistein, 
daidzein, 
formononetin 
biochanin A 
equol 
ODMA 

RAW 264.7 

TNF, IL-6, iNOS, NFκB 
TNF, IL-6, iNOS, NFκB 
iNOS 
TNF, IL-6, iNOS, NFκB, 
Cox-2 
TNF, IL-6, COX-2 
TNF, IL-6 

 
IL-10 
IL-10 

 [114]

genistein HBMEC 

TNF, IL-1β, monocyte 
chemoattractant protein-1, 
IL-8, intercellular 
adhesion molecule-1 

  [137]

genistein, daidzein 
murine J774 
macrophages 

iNOS, NO    [138]

genistein 
Human 
chondrocytes 

COX-2, NO   [139]

biochanin A MC3T3-E1 cells TNF, IL-6, NO   [140]
genistein PBLs TNF, IL-8   [141]

genistein 
mesencephalic 
neuron-glia 
cultures 

TNF, NO, superoxide   [142]

daidzein, 
formononetin 

mesencephalic 
neuron-glia 
cultures 

TNF, NO, superoxide   [143]

biochanin A 
mesencephalic 
neuron-glia 
cultures 

TNF, NO, superoxide   [144]

genistein 
alveolar 
macrophages 

TNF   [145]
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Table 2. Cont. 

daidzein 
 
 
genistein 

PBMC 

higher concentrations 
reduced IL-10 and IFN-γ 
levels  
 
IL-2, IL-4, IL-10, IFN- 
mRNA and protein 

low concentration 
increased IL-2, IL-4, 
and IFN- 

 [146]

genistein 
 

RAW 264.7 NO, PGE2   [147]

genistein RAW 264.7 PGE2, iNOS, COX-2   [148]
genistein, 
daidzein, glycetein 

RAW 264.7 NO, iNOS   [149]

genistein, 
daidzein, equol 

MCF-7 cells COX-2   [150]

HBMEC (human brain microvascular endothelial cells); MC3T3-E1 (osteoblasts); MCF-7 
(human breast cancer cell line); PBL (human peripheral blood mononuclear and/or 
polymorphonuclear leukocytes); PBMC (peripheral blood mononuclear cells); RAW 264.7 
(mouse macrophage). 

 

1.4.4. PPAR activation by isoflavones and its health effects 
 

Given that cardiovascular diseases have reached epidemic proportions, it is of great interest that 

isoflavones exert in vitro activities that link them to putative antilipidemic, anti-obesity, antidiabetic 

and anti-inflammatory effects in vivo. The isoflavones genistein, daidzein, biochanin A, formononetin, 

and glycitein and several red clover metabolites like equol, ODMA, 6-hydroxydaidzein, 3´-

hydroxygenistein, 6´-hydroxy-ODMA, dihydrogenistein, and dihydrodaidzein activate PPAR and , 
indicating putative antilipidemic and antidiabetic properties in vivo. Furthermore, adipogenesis is 

modulated by isoflavones. Most studies report an inhibitory effect of genistein, which may result in 

anti-obesity activity. Other studies report an inducing effect of genistein on adipogenesis. Biochanin A, 

formononetin, daidzein, and the metabolite equol enhance adipocyte differentiation and thus may 

promote fat redistribution from harmful visceral fat to subcutaneous fat. With a reduction in visceral 

fat mass, the risk for the metabolic syndrome and consequently cardiovascular diseases is reduced. 

Furthermore, isoflavones modulate cytokine secretion in cell culture assays, which indicates putative 

anti-inflammatory activities in vivo. Because inflammation plays a major role in atherosclerosis, anti-

inflammatory activity may have a great influence on improving this disease. 

Several results of in vitro assays are in agreement with outcomes from human or animal studies. 

Most animal studies were performed with genistein supplementation. An improvement of glucose 

levels or insulin resistance with isoflavone supplementation has been shown in obese or hypertensive 

rodent models [121,151-153] and in human studies [154]. Genistein supplementation further led to 

lower lipid levels and increased HDL levels [151,152,155], to an improvement in vascular health 

attributable to NO- and prostaglandin-dependent pathways [151,156], and to a stabilization of the 

atherosclerotic lesion, possibly because of reduced MMP-3 expression, based on results in rodent 

models and rabbits [157].  
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Supplementation with isoflavones from red clover or daidzein alone improved the lipid profile by 

increasing HDL and decreasing LDL, plasma total cholesterol, or triglyceride levels in rodent or rabbit 

models [153,158]. Furthermore, supplementation with isoflavones led to an attenuation of 

atherosclerosis in studies with rabbits, possibly because of an inhibition of LDL oxidation [159] or 

reduction of fatty streak formation [158].  

In human studies with postmenopausal women with type 2 diabetes, isoflavones from red clover 

reduced diastolic and systolic blood pressure [160]. With administration of only 40 mg of isoflavones, 

however, no effect on lipid profile was observed in postmenopausal women with 

hypercholesterolemia [161]. In another study with postmenopausal hypercholesteremic participants, 

after a 6-week daily intake of 90 mg of isoflavones, vascular reactivity was improved, but blood 

cholesterol was not lowered [162]. A recent meta-analysis determined that soy isoflavones 

significantly reduced serum total and LDL cholesterol but had no influence on HDL cholesterol. The 

extent of LDL level reduction was greater in participants with hypercholesterolemia than in those 

without hypercholesterolemia [163].  

Although several isoflavones function as PPAR agonists, their intake does not cause weight gain 

as has been described for full agonists like glitazones. In fact, in various animal and human studies, 

isoflavone intake has led to a slight weight reduction [133,152,164-166].  

The anti-inflammatory activity of isoflavone supplementation was also demonstrated in several 

human and animal studies. In animal models, soy isoflavones reduced LPS-induced inflammation by 

reducing IL-1β, IL-6, NO, and PGE2 production [167]. In hyperlipidemic rabbits, the level of C-

reactive protein (CRP) was reduced [158]. Soy isoflavone intake has led to a significant reduction of 

blood CRP, IL-6, and TNFα levels in a study of patients with end-stage renal failure and systemic 

inflammation [168]. Conclusively, isoflavones exert simultaneous anti-inflammatory and antilipidemic 

activity, thus putatively leading to more effective agents for preventing or reducing atherosclerosis. 

The anti-inflammatory activity of isoflavones not only improves atherosclerosis but also helps with 

other diseases associated with inflammation. Examples are the improvement of chronic colitis in a 

rodent model [169], inhibition of LPS-induced dopaminergic neurodegeneration in rats [143], 

amelioration of collagen-induced rheumatoid arthritis in a rodent model [170,171], inhibition of pro-

inflammatory cytokines in a neurodegenerative cell system [137], reduction of airway inflammation in 

an in vitro system due to inhibition of eosinophil leukotriene synthesis [172], amelioration of 

alveolitis [145], and putative prevention of osteoporosis due to anti-inflammatory activity in 

osteoblasts [140]. 

Of great importance is the physiological relevance of in vitro data. The serum concentration of 

isoflavones in humans after administration of supplements of concentrated isoflavones can reach 

approximately 10 µM [173]. An isoflavone-rich diet leads to plasma concentrations of 1 to  

2.4 µM [174]. Those are ranges in which isoflavones already exert their PPAR activation or anti-

inflammatory activities. 

 

1.5. Xenobiotic Metabolism and Cell Cycle Control 
 

Isoflavones are known as multitasking bioactive compounds. Their best-investigated aspect is their 

(anti)estrogenic activity. But as described above, they also modulate PPAR signal cascades. Beyond 
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that, these compounds are ligands of the aryl hydrocarbon receptor (AhR). In the following section, we 

will describe this receptor and its implications in physiological processes, as well as possible effects of 

isoflavones via AhR activation. 

 

1.5.1. The aryl hydrocarbon receptor  
 

The AhR is a transcription factor involved in developmental processes as well as in normal 

physiological pathways such as cell cycle regulation or xenobiotic metabolism. It is a member of the 

basic helix-loop-helix (bHLH) Per-ARNT-Sim (Pas) family and also shares elementary features of the 

mode of action of nuclear receptors. Reports have clearly established manifold crosstalk and 

interaction with nuclear receptors [175-177]. The AhR is a phylogenetically ancient protein that has 

been conserved during evolution [178] because of its important adaptive functions regarding extrinsic 

signals, such as light and exogenous compounds as well as metabolism and cell cycle control. These 

functions are also reflected in the diversity and heterogenicity of its ligands, which include 

physiologically occurring compounds like tryptophan [179], arachidonic acid metabolites [180,181], 

heme metabolites [182], indigoids [183,184], cAMP [185], equine estrogen [186], and UV products of 

tryptophan [187]; plant-derived compounds such as indoles [179,188,189] and flavonoids [190,191]; 

and anthropogenic chemicals such as dioxin [192], polybrominated diephenyl ethers [193], and 

polychlorinated biphenyls [194]. Beyond that, it is believed that the AhR has endogenous ligands that 

have not been found so far, although it has been intensively studied since its discovery in 1976 by 

Poland et al. [195]. Furthermore, its expression patterns during embryonic stages indicate a 

significance of this receptor in development and ontology that is very likely not driven by exogenous 

ligand activation. Studies with AhR knockout mice have shown severe impairment of organ functions 

including liver, immune system, and reproductive organs because of deficient differentiation processes 

arising from lost AhR functions.  

Given the role of AhR in mediating adaptation responses to environmental signals, important AhR 

target genes include those of the xenobiotic signal transduction pathway, such as those encoding 

enzymes of phase I and II of xenobiotic metabolism like CYP1A1 and GSTYa. But as would be 

expected from its functions in cell regulation and apoptosis, this receptor also controls genes encoding 

regulators of growth, cell proliferation, and the cell cycle.  

The entirety of AhR functions that are mediated via isoflavones through agonistic or antagonistic 

modulation of this pathway remains elusive. Nevertheless, isoflavones can be regarded as selective 

AhR modulators (sAhRMs).   

 

1.5.2. AhR in vitro assays 
 

Given the heterogenicity and variety of AhR ligands [179-186,193,194,196-209], using easily 

executed screening assays to identify its ligands only makes sense. Several in vitro test systems that 

screen for AhR ligands have been reported. First and foremost, these screenings have been 

implemented as operative instruments in the search for endocrine disrupters, as it has been shown that 

pollutants can exert anti-estrogenic effects via AhR that include a modulation of ER pathways without 

direct interaction with the ERs [210-214]. Because of this background and the high affinity of 
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anthropogenic halogenated aromatic hydrocarbons (HAHs) for the AhR, a chemical class that  includes 

polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxins (PCDDs), but also non-

halogenated polycyclic aromatic hydrocarbons (PAHs) [194,207-209], toxicologists have intensively 

studied the AhR for a long time. Over the years, the research focus has shifted towards naturally 

occurring AhR ligands that could act as sAhRMs and could be useful in cancer prevention and 

therapy [215,216]. Because a wide spectrum of flavonoids that occur abundantly in medicinal plants as 

well as in food function as AhR ligands [189,191,217-223], the elucidation of AhR activation via those 

compounds has become of great interest.  

Table 3. Agonistic and antagonistic effects of isoflavones on the AhR. 

Agonistic effects Antagonistic effects Assay Ref. 
Dai(+)* Dai(-), Gen(-) Gel mobility shift assay (agonistic effects) 

LBA (rat hepatic cytosol) (antagonistic effects) 
 [220] 

 Dai(-), Gen(+),  
Gly(-), Equ(+) 

LBA (mammalian liver cell cytosol)  [218] 

Dai(+), Gen(+), 
Gly(+), Equ(-) 

 
CALUX (mouse hepatoma cells)  [217] 

 Gen(-) LBA (rat hepatic cytosol)  [224] 
 Dai(+)*,Gen (-) 

Dai(-),Gen (-) 
SW-ELISA (Hepa-1c1c7) 
CALUX (HepG2 cells) 

 [225] 

Dai(+), Gen(+) 
Dai(-), Gen(-) 
Dai(-), Gen(-) 

 Transactivation assay (Hepa-1 cells) 
Transactivation assay (HepG2 cells) 
Transactivation assay (MCF-7 cells) 

 [190] 

 Dai(-), Gen(-) LBA (rat hepatic cytosol)  [191] 
Dai(+)*, Gen(+)* Dai(+), Gen(+) CYP1A1 expression in HepG2 cells  [226] 

Bio(+) Bio(+) 
CYP1A1 expression in MCF-7 cells 
LBA (rat hepatic cytosol) 

 [227] 

Bio(+)* 
 
 

 
Bio(+) 

CALUX (MCF-7 cells) 
CYP1A1 and CYP1B1 expression in MCF-7 
cells 

 [228] 

Bio(+)#, Dai(-),  
Equ(+)*, For(+)#, 
Gen(-) 

 Transactivation assay (yeast) 
 [189] 

Biochanin A (Bio), Daidzein (Dai), Equol (Equ), Formononetin (For), Genistein (Gen), Glycitein 
(Gly), (+) effect, (-) no effect, * weak ligand, # potent activator, ligand binding assay (LBA), 
HepG2 (human hepatocellular carcinoma cell line), Hepa-1 (murine hepatoma cell line), MCF-7 
(human breast cancer cell line). 

 

In vitro bioassays can be used to examine whether a compound can induce (a) AhR transformation, 

nuclear accumulation, and DNA binding as measured by gel retardation analysis, (b) displacement of 

labeled AhR ligands in competitive ligand binding assays, or (c) expression of target genes or enzyme 

induction. Examples of applied assays are listed in Table 3. Some of the assays allow a distinction 

between agonist and antagonists. The chemically activated luciferase expression assay is a 

transactivation assay that has been used to measure whether a compound can induce AhR-dependent 
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gene expression in intact cells. Similar test systems based on yeasts as model organisms rather than 

mammalian cells as well as other reporter systems (e.g., -galactosidase instead of luciferase) have 

been used. Cell lines with endogenous receptor expression can be used for the measurement of 

endogenous target gene expression. These tests are more complex and time-consuming but also 

provide more specific information.  

Overall, in various in vitro bioassays, isoflavones exhibit agonistic or antagonistic effects on the 

AhR, as summarized in Table 3. 

Depending on test systems, small discrepancies among the results exist. Daidzein and genistein 

seem to be only weak agonists or partial agonists [220,226], while biochanin A and formononetin have 

exhibited potent agonistic properties in a recombinant yeast transactivation assay [189]. Chan et 

al. [228] found biochanin A to be only a weak AhR agonist. The reasons for the inconsistency of 

results are explained by different cell lineages as well as the origin of the AhR. Generally, it is 

recommended that assays should involve human AhR in recombinant systems because species 

differences in sensitivity have been observed [229]. Also, there is the consideration that most assays 

are performed with mammalian cell lines, which contain more metabolizing enzymes than yeast. 

Metabolism via hepatic cells could lead to different results because the compound that elicits the 

measured effect could be the metabolite and not the parent compound. On the other hand, these results 

are expected to be a better reflection of the real in vivo situation. 

 

1.5.3. Cytochrome P450 enzyme CYP1A1  
 

Organisms are exposed to a multitude of compounds through environment and food. Whether the 

exposure is volitional or not, eventually most of these compounds must be eliminated in one form or 

another from the body. To cope with the elimination of endogenous or exogenous compounds, the 

organism has a detoxification system that includes various enzymes. During phase I of xenobiotic 

metabolism, compounds are oxidized with the objective of achieving higher polarity and reactivity in 

preparation for the conjugation reaction of phase II, which leads to production of more hydrophilic 

compounds. Phase I reactions are accomplished mostly by cytochrome P450 enzymes that catalyze 

monooxygenase reactions. Among others, the enzymes CYP1A1, CYP1A2, CYP1B1, and CYP2S1 

are classical target genes of the AhR [230-232]. Toxicologists have intensively studied CYP1A1 

because it is responsible for the bioactivation of several carcinogenic compounds. The current general 

view on the impact of CYP1A1 has been undergoing a change, however. Some compounds cannot be 

detoxified without a preceding CYP1A1 activation and the aftermath without CYP1A1 is much more 

severe, which appears to contradict the fact that this same enzyme is responsible for bioactivation 

pathways producing noxious metabolites. Although CYP1A1 knockout mice are viable, develop 

normally, and show no obvious difference in phenotype compared to wild-type littermates [233], they 

die within 30 days after benzo[a]pyrene exposure while wild-type mice show no outward signs of 

toxicity [234].  

Thus, a total blockade of CYP1A1 is not advisable because it is indeed part of the detoxification 

system. The crucial factor is a balanced action of phase I and phase II enzymes. Nevertheless, a 

modulation of this pathway as a whole, instead of a targeted knockdown of one enzyme, could be 

useful. Also potentially useful would be knowledge of exactly how the modulation occurs, considering 
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that the composition of ingested food could interfere with administered therapeutics. An example is 

grapefruit juice, which alters the pharmacokinetics of several drugs via interaction with CYP3A4 (as 

reviewed by Nowack [235]).  

Many naturally occurring plant compounds interact with the xenobiotic pathway, functioning as 

AhR ligands, including isoflavones. Their modulation of CYP1A1 can take place in various ways, as 

will be discussed in the following. Most studies report a suppression of AhR-agonist–induced 

CYP1A1 expression [236-241]. It is not quite clear to what extent this effect is caused by AhR-

antagonistic abilities of the isoflavones or if other bioactive properties of these compounds are 

responsible. Backlund et al. [236] reported for genistein and daidzein an inhibition of omeprazole-

induced CYP1A1 expression but not for the CYP1A1 expression mediated by 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene. Moreover, genistein potentiated induction 

caused by TCDD. Daidzein, on the other hand, inhibited omeprazole-stimulated CYP1A1 gene 

transcription but not complex formation of the AhR with its xenobiotic response elements, mediated 

by omeprazole. Also, daidzein did not inhibit TCDD-mediated CYP1A1 induction at the enzyme, 

mRNA, and transcriptional levels. The different modes of action may arise from the fact that genistein 

is a tyrosine kinase inhibitor. Lemaire et al. [241] investigated this question experimentally and found 

that another tyrosine kinase inhibitor inhibited CYP1A1 induction caused by omeprazole. In that 

study, genistein could not inhibit omeprazole-induced CYP1A1 expression, but the authors concluded 

that the failure was the result of a lower genistein concentration that was used because of the 

sensitivity of the cell model. As noted in earlier sections, isoflavones have been described as agonists 

as well as antagonists of the AhR. Thus, it is not surprising that studies report a direct induction of 

CYP1A1 expression mediated by isoflavones [226-228,237], while other studies did not report such 

results [242,243]. 

Isoflavones act also at a non-transcriptional level and directly inhibit the enzyme activity of 

CYP1A1 [226,228,237,244-247]. The inhibited metabolism of various compounds could account for 

the chemopreventive effects of isoflavones.   

Whether or not the CYP1A1-modulating effects of isoflavones are beneficial will depend not only 

on concerted action with other enzymes of the xenobiotic pathway but also on cell type or content. For 

example, CYP1A1 expression differs in human breast epithelial cells and breast tumor cells. While 

non–tumor-derived cells express intermediate CYP1A1 mRNA levels, ER-positive tumor cells 

express high levels, and CYP1A1 mRNA expression in ER-negative tumor cells is minimal or 

negligible  [248].  

 

1.5.4. Cell cycle control 
 

The control of the cell cycle is one of the principal tasks of the cell. Although the process is routine, 

the cell makes a decision at every nanosecond about its fate that can compromise normal replication, 

apoptosis, necrosis, or uncontrolled growth that can finally lead to cancer development. The AhR is 

known to regulate cell cycle progression through the control of several cell cycle checkpoint 

regulators. AhR ligands can arrest cells in various cycle phases. Examples of AhR-regulated cell 

regulators are Akt, p21, p27, p53, Bax, RelB, and NFB  [249-254]. Among others, these proteins 

cause cell growth inhibition through arrest or lead cells toward apoptosis.  
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Normally, Akt triggers survival signals in cells and functions as an anti-apoptotic factor. Because 

deregulated Akt signaling is associated with tumor promotion, the downregulation of Akt could be a 

target in cancer therapy. AhR-deficient cells show impairment in the Akt pathway, leading to the 

postulation that AhR antagonists could be useful as agents in cancer therapy [250]. A dysregulated 

NFB cascade has also been associated with tumor promotion and inflammation. Patel et al. [255] 

reported the suppression of NFB target gene expression arising from AhR activation by ligands, 

although the data indicated that no AhR target gene transcription was involved in this process. The 

antiproliferative effects of an agonist-activated AhR pathway are also mediated via the induction of 

tumor suppressors or the pro-apoptotic proteins p21, p27, p53, and Bax [249,252-254]. 

Several reports have shown the cell cycle–arresting effects of isoflavones. Given that the 

isoflavones act not only through the AhR pathway, it is not quite clear to what extent these effects are 

mediated via the AhR. Nevertheless, the effects obviously can be attributed at least partly to the AhR 

cascade. The ER pathway seems unlikely to be a mediator of the cell cycle–arresting effects of 

isoflavones, given that estrogens instead are assoicated with cell cycle promotion according to their 

physiological role in normal tissue proliferation. This association is true not only for tissues that are 

known to depend on the ER pathway for proliferation such as the breast, but also for others such as the 

urinary system [256].  

Because isoflavones are also known PPAR ligands, this route would also be a possibility for their 

cell cycle–interfering abilities. The natural PPAR ligand, 15d-PGJ2, a prostaglandin, represses cyclin 

D1 and inhibits cells in G1/S transition in a PPAR-pathway–dependent manner [257].  

As Table 4 shows, most studies have focused on genistein, and only a few reports have involved 

daidzein or other isoflavones. Also, it is evident that genistein causes an arrest in the G2/M phase of 

the cell cycle, while it seems that daidzein arrests cells in G0/G1. Concomitant with this arrest, several 

tumor suppressors are induced and key proteins modulated. Some studies have also reported tumor 

growth reduction in xenograft models or induction of apoptosis. 

Table 4. Effect of isoflavones on the cell cycle in human cells. 

Effect on cell cycle 
(cell type) 

Further effects Tested isoflavone (concentration) Ref. 

G2/M arrest 
(colon cancer)a 

 
Genistein (111 µM)  [258] 

G2/M arrest 
(prostate cancer)b 

Concomitant decrease of 
cyclin B 

Isoflavones from soybean cake; 
genistein most efficient (30–50 µM) 

 [259] 

G2/M arrest 
(bladder cancer)c 

Inhibition of cdc2 kinase 
activity 

Genistein (37 or 185 µM) 

 [260] 
 

Direct induction of 
apoptosis without alteration 
of cell cycle distribution 

Daidzein (39.3 or 196.7 µM) and 
biochanin A (35.2 or 175.9 µM) 

 
Suppression of tumor 
growth in vivo (xenograft 
model; mice) 

Genistein and combined isoflavones 

G2/M arrest 
(prostate cancer)d 

 
Genistein (18.5–74 µM)  [261] 
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Table 4. Cont. 

G2/M arrest 
(breast cancer cells 
overexpressing Bcl-2)e1 

 
Genistein (50 µM) 

 [262] 
G0/G1 arrest 
(control breast cancer 
cells)e2 

 
Genistein (50 µM) 

G2/M arrest 
(bladder cancer)f 

Reduction of tumor volume 
in vivo (xenograft model; 
mice) 

Genistein (50 µM)  [263] 

G2/M arrest 
(androgen-insensitive 
prostate cancer)g1 

Induction of tumor 
suppressor gene expression 
(p21, p16) 

Genistein (10 or 25 µM) 

 [264] 
G0/G1 arrest 
(androgen-sensitive 
prostate cancer)g2 

 
Induction of apoptosis 
(only in androgen-
insensitive cells) 

Genistein (10 or 25 µM) 

G2/M arrest 
(liver cancer)h 

Induction of tumor 
suppressor genes expression 
(p21), 
Accumulation of p53 protein 

Genistein (37–111 µM)  [265] 

G2/M arrest 
(leukemia cells)i 

Stimulates Raf-1 activation, 
Decreases Akt activation, 
Induction of p21 and cyclin 
B expression, 
Induction of apoptosis 

Genistein (10 or 25 µM)  [266] 

G2/M arrest 
(prostate cancer)j 

Increased p21 expression, 
Decreased cyclin B 
expression, 
Decreased NFB activity 

Genistein (15 or 30 µM)  [267] 

G1 cell arrest 
(androgen-sensitive 
prostate cancer)k 

Increased p27 and p21 
expression 

Genistein (≤20 µM) 
 [268] 

Induction of apoptosis Genistein (40–80 µM) 
G2/M arrest 
(non-tumorigenic breast 
cells)l 

Enhanced expression of p21 
and p53, but not p27 Genistein (30 µM)  [269] 

G2/M arrest 
(prostate cancer)m 

 
Genistein (20–100 µM)  [270] 

G2/M arrest 
(B cell leukemia)n 

Decreased IL-10 secretion, 
Upregulation of IFN 

Genistein (7.5–60 µM)  [271] 

G2/M arrest 
(breast cancer)o 

Increased cyclin B 
Genistein (15 or 30 µM)  [272] 

G2/M arrest 
(eye cancer; choroidal 
melanoma)p 

Induction of p21, but not 
required for cell cycle arrest Genistein (30 or 60 µM)  [273] 
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Table 4. Cont. 

G2/M arrest 
(eye cancer; choroidal 
melanoma)q 

Upregulation of CDK1 and 
p21, but no effect of CDK2 
and p27 

Genistein (30 µM) 

 [274] 
G1 cell arrest 
(eye cancer; choroidal 
melanoma)q 

Upregulation of CDK2 and 
weakly p21 and p27 Daidzein (150 µM) 

G2/M arrest 
(eye cancer; choroidal 
melanoma)r 

Impairment of CDK1 
dephosphorylation, 
Weak accumulation of p53 
protein 

Genistein (60 µM)  [275] 

G2/M arrest 
(metastatic melanoma)s 

 
Genistein (60 µM)  [276] 

G2/M arrest 
(gastric cancer)t 

 
Genistein (25 or 60 µM) 

 [277] 
G1 cell arrest 
(gastric cancer)t 

 
Daidzein (25 or 60 µM) 

G2/M arrest 
(metastatic melanoma)u 

 
Genistein (60 µM) 

 [278] 
S phase arrest 
(metastatic melanoma)u 

 
Daidzein (60 µM) 

G0/G1 arrest 
(colon cancer)v 

Biphasic effect on cell 
growth  

Daidzein (5–100 µM)  [279] 

Listing of cell lines: a: Caco2-BBe, b: LNCap and PC-3, c: RT-4, J82, HT-1376, T24, 
TSGH8301, BFTC905 and E6,d: PC-3, e1:  MCF-7/PV, e2:  MCF-7/Bcl-2, f: HT-1376, 
UM-UC-3, RT-4, J82, and TCCSUP, g1: DuPro, g2: LNCap, h: HepG2, i: HL60 and NB4, 
j: PC-3, k: LNCap, l: MCF-10F, m: DU-145, n: Raji, 2F7 and JVM-13, o: T47D, ZR75.1, 
MDAMB-231 and BT20, p: OCM-1, q: OCM-1, r:  OCM-1, s: UISO-MEL-6, UISO-
MEL-4, UISO MEL-7 and UISO-MEL-8, t: HGC-27, u: WM451, v: LoVo. 

 

1.5.5. AhR activation by isoflavones and health effects  
 

In addition to a role in prenatal development and organogenesis, the AhR is in charge of several 

housekeeping functions. In normal physiology, this transcription factor regulates the cell cycle, 

metabolism, and reproduction. Transcriptomic analysis of tissue from AhR knockout mice has 

revealed that the AhR also regulates genes involved in protein synthesis, tissue maintenance, cell 

growth, differentiation, and apoptosis [280]. Gene expression profiling by Yoon et al. [281] extended 

the AhR sphere of influence to chemotaxis, immune response, signal transduction, inflammation, and 

tumor suppression. An activated AhR mediates all these functions. Because isoflavones act as selective 

AhR modulators, they are putative activators of the abovementioned AhR functions. 

The AhR has been intensively studied by toxicologists, because of TCDD-induced toxic responses. 

In the meantime, it emerged that those effects are mediated by a deregulated or over-activated AhR 

pathway resulting in a homeostatic imbalance (reviewed by Bock et al.  [282]). TCDD has a half-life 

of several years in humans [283,284]. Due to its poor metabolism, TCDD activates the AhR cascade 
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constitutively and elicits toxic responses such as impaired liver regeneration [285], the development of 

several tumor types [286-288] and inflammatory skin lesions [289] have been reported. Several studies 

evaluated the antagonistic properties of naturally occurring plant compounds on the AhR and the 

possibility to antagonize TCDD effects [191,203,218,220-222,225].  

But beside a constitutive activation of the AhR signalling cascade, the activated AhR can lead to the 

bioactivation of compounds during the xenobiotic metabolism. But as we have discussed in a previous 

chapter, a detoxification without a preceding CYP1A1 activation is even more problematic. It is 

noteworthy to mention that an activation of the AhR and the induction of CYP1A1 is not synonymous 

with toxic effects. Several AhR agonists are FDA-approved marketed therapeutics and are not toxic to 

rodents or humans [290].  

Nevertheless, possible negative aspects mediated by AhR activation can not be excluded. This 

could be also true for isoflavones, especially when the intake is extremely high due to excessive 

recommendations in package inserts of some dietary supplement products. Recommendations that are 

based on the intake of isoflavones by Asians, will probably not exert harmful effects.  

The AhR functions as a master regulator of several other cell cycle regulators. Among others, the 

AhR leads cells towards apoptosis by regulation or interaction with Akt, NFB, RelB, p21, p27, p53, 

and Bax. As described above, all of these proteins have influence on cell fate and can shift the balance 

to apoptosis when they are upregulated or downregulated, respectively.  

Studies have reported the same effects for the isoflavones (see also Table 4). Because they are 

bioactive compounds that stimulate more than the AhR cascade, it is not quite clear which of these 

effects can be attributed solely to AhR activation. It is only of theoretical interest, however, to separate 

the AhR-mediated isoflavone actions because in vivo, the sum of all effects will always be displayed.  

The anticarcinogenic properties that have been attributed to isoflavones arise in all likelihood from 

the concerted action that is partly the result of AhR modulation and manifests in a) cell cycle 

regulation, b) chemoprevention due to CYP enzyme activation, c) antiproliferative and apoptotic 

effects mediated by up- or downregulation of tumor suppressors or promotors, d) anti-estrogenicity 

that is a result of the AhR/ER interaction, and e) anti-inflammatory responses.  

 

2. General Conclusion 
 

Certain effects of isoflavones are mediated by either the PPARs or the AhR. With the analysis of in 

vitro effects it is possible to assign them to a mode of action and the associated receptor that mediates 

those effects. This is a methodical approach to dissect isoflavone action for a better understanding.  

Methodological shortcoming of in vitro studies is often the use of high isoflavone concentrations, 

which limits interpretation of the results and makes a comparison with in vivo data difficult. 

From the receptor interaction it is clear that isoflavones have an effect on the blood lipid profile, 

which is explained by the activation of PPAR pathways. This may also counteract certain symptoms of 

the metabolic syndrome. Isoflavones have also been suggested for prevention of the polycystic ovary 

syndrome. 

Its action on cancer may be partially due to an activation of the AhR pathway and the interaction of 

the AhR with the ER. Both effects have also been seen in vivo in clinical trials. Effects in vivo are 

modulated by bioavailability, which can limit the uptake of bioactive compounds to a great extent, but 
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also metabolism to probably more or less active compounds. This also explains the inter-individually 

response to isoflavones. 

Isoflavones are one of the best studied class compounds, but the focus was primarily on 

estrogenicity and other effects were mostly overlooked. 
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