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Abstract: Oxidative stress results from an imbalance between excessive formation of 

reactive oxygen species (ROS) and/or reactive nitrogen species and limited antioxidant 

defences. Endothelium and nitric oxide (NO) are key regulators of vascular health. NO 

bioavailability is modulated by ROS that degrade NO, uncouple NO synthase, and inhibit 

synthesis. Cardiovascular risk conditions contribute to oxidative stress, causing an 

imbalance between NO and ROS, with a relative decrease in NO bioavailability. Dietary 

flavonoids represent a range of polyphenolic compounds naturally occurring in plant foods. 

Flavonoids are potentially involved in cardiovascular prevention mainly by decreasing 

oxidative stress and increasing NO bioavailability. 

Keywords: oxidative stress; endothelial dysfunction; atherosclerosis; antioxidants; 

flavonoids 

 

1. Introduction 

Oxidative stress has been considered a mechanism involved in the pathogenesis of ischemic heart 

disease and atherogenesis, in cancer and other chronic diseases, and it also plays a major role in the 

aging process [1-3]. Oxidative damage by free radicals has been well investigated within the context of 
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oxidant/antioxidant balance. Indeed, oxidative stress describes various deleterious processes resulting 

from an imbalance between the excessive formation of reactive oxygen and/or nitrogen species and 

limited antioxidant defences. In this regard, cardiovascular risk factors significantly cause oxidative 

stress, which contributes to a disruption in the balance between nitric oxide (NO) and reactive oxygen 

species, with a resulting relative decrease in NO bioavailability. The resulting endothelial dysfunction 

has been supposed to be the first step of atherosclerosis. Further, the majority of cardiovascular 

diseases follow from complications of atherosclerosis. In addition, an important initiating event for 

atherosclerosis may well be the transport of oxidized low-density lipoprotein across the endothelium 

into the artery wall [1-3]. Diet and nutrition play a fundamental role in cardiovascular prevention and 

in maintaining physiological homeostasis. Recent literature emphasizes the potential therapeutic 

effects of micronutrients found in natural products, indicating positive applications for controlling the 

pathogenesis of chronic cardiovascular disease driven by cardiovascular risk factors and oxidative 

stress [1,4,5]. Nutritional compounds that display anti-inflammatory and antioxidant effects have 

specific applications in preventing oxidative stress-related injury, which characterizes the pathogenesis 

of cardiovascular disease. Polyphenolic compounds, mainly flavonoids, are ubiquitous dietary 

components. Dietary flavonoids represent a diverse range of polyphenolic compounds that occur 

naturally in plant foods. Flavonoids from food have been reported to be potentially involved in 

cardiovascular prevention mainly by decreasing oxidative stress and increasing NO bioavailability. 

They are able to modulate genes associated with metabolism, stress defence, drug metabolizing 

enzymes, detoxification and transporter proteins [1,4,5]. Their overall effect is protective in 

overcoming damaging effects of cardiovascular risk factors and in delaying the onset of  

atherosclerosis [1,4-6]. Thus, they have naturally been associated with the hypothesis that their redox 

activities may confer them with specific health benefits. Their prevalence in plant derived foods has 

supported this point of view and inspired new research for human intervention trials with flavonoid-

rich food items in order to investigate their ability to protect from cardiovascular risk [1,4,5]. In recent 

years, there has been a remarkable interest in scientific studies focusing on oxidative stress. The 

reasons seem to be the knowledge about reactive oxygen and nitrogen species metabolism, the 

definition and clinical role of markers for oxidative damage, the evidence linking cardiovascular 

diseases and oxidative stress, and the identification of flavonoids and other dietary polyphenol 

antioxidants able to act as bioactive molecules with health benefits deriving from flavonoid-rich diet. 

In this brief review, the potential role for flavonoids in prevention of oxidative stress by modulating 

endothelial mechanisms responsible for the atherosclerotic process will be discussed. 

2. Oxidative Stress and Endothelial Dysfunction 

All aerobes including plants, aerobic bacteria, and humans, suffer damage when exposed to oxygen 

concentrations higher than normal, signifying that they have no excess of antioxidant defenses [7]. 

Halliwell and Gutteridge [7] defined free radicals as molecules or molecular fragments containing one 

or more unpaired electrons in atomic or molecular orbitals. This unpaired electron(s) usually gives a 

considerable degree of reactivity to the free radical. Radicals derived from oxygen represent the most 

important class of radical species generated in living systems [1-3,6-9]. Reactive oxygen species are 

produced by various oxidase enzymes, including nicotinamide-adenine dinucleotide phosphate 

(NADPH) oxidase, xanthine oxidase, uncoupled endothelial NO synthase (eNOS), cyclooxygenase, 
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glucose oxidase, lipooxygenase, and mitochondrial electron transport [6-9]. An imbalance between 

oxidants and antioxidants in favor of the oxidants, potentially leading to damage, has been defined 

“oxidative stress” [9]. The term describes a metabolic condition of cells, organs, or the entire organism 

characterized by an oxidative overload [7-9]. Indeed, the excess reactive oxygen species can damage 

cellular lipids, proteins, or DNA impairing their normal function. Because of this, oxidative stress has 

been implicated in a number of human diseases as well as in the ageing process. The delicate balance 

between beneficial and harmful effects of free radicals is a very important aspect of living 

organisms [7-9]. Superoxide anion is considered the “primary” reactive oxygen species and can further 

interact with other molecules to generate “secondary” reactive oxygen species, either directly or 

prevalently through enzyme- or metal-catalysed processes [8]. Further, superoxide anion may react 

with other radicals including NO. The product peroxynitrite is also a very powerful oxidant and 

belongs to the reactive nitrogen species, i.e. derived from NO. The sources of reactive oxygen species 

are a variety of cell types, including vascular smooth muscle cells, endothelial cells (ECs) and 

mononuclear cells. Several lines of evidence demonstrate that oxidative stress plays an important role 

in the pathogenesis and development of cardiovascular diseases. The susceptibility of vascular cells to 

oxidative stress is a function of the overall balance between the degree of oxidative stress and the 

antioxidant defence capability. Further, NADH/NADPH oxidase is the most important source of 

reactive oxygen species in the vasculature and inactivation of NADH/NADPH oxidase may contribute 

to the improvement in endothelial dysfunction in patients with atherosclerosis [10,11]. Increased 

production of reactive oxygen species has been demonstrated to impair endothelial function in 

humans [11-13]. An imbalance of reduced production of NO and increased production of reactive 

oxygen species may be involved in impaired endothelium-dependent vasodilation in patients with 

cardiovascular risk factors and diseases. It has been reported that a vicious cycle of endothelial 

dysfunction and oxidative stress leads to development of atherosclerosis [1-11]. NO is constitutively 

generated in endothelial cells from its precursor L-arginine by the action of eNOS (converting L-

arginine to citrulline) in the presence of cofactors such as tetrahydrobiopterin. NO diffuses to the 

vascular smooth muscle cells and activates the soluble guanylate cyclase, which leads to cGMP-

mediated vasodilatation. The cGMP acts as a second messenger leading to many of the biological 

effects of NO such as relaxation of smooth muscle and inhibition of platelet aggregation [12-14]. Shear 

stress is a key activator of eNOS in normal physiology, and this adapts organ perfusion to changes in 

cardiac output [12-14]. NOS appears in at least three isoforms: NOS 1 (or cNOS), a constitutive 

isoform in central and peripheral nervous system as well as in platelets; NOS 2 (or iNOS), the 

inducible form of the enzyme, is found in myocytes, macrophages and ECs and is activated by 

immunological and inflammatory stimuli; NOS 3 (or eNOS), an endothelial isoform which plays a 

very important role in the vascular homeostasis. The constitutive eNOS-derived NO production is 

beneficial for the cardiovascular system, while the large amounts of NO produced by iNOS as part of 

inflammatory processes favors the synthesis of the cytotoxic peroxynitrite, promoting 

atherogenesis [13,14]. 

In normal vascular physiology, NO plays a key role to maintain the vascular wall in a quiescent 

state by inhibiting inflammation, cellular proliferation, and thrombosis [4,5,10-14]. The endothelium 

maintains vascular homeostasis through multiple complex interactions with cells in the vessel wall and 

lumen. Further, a “healthy” endothelium maintains vascular tone and structure by regulating the 
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balance between vasodilation and vasoconstriction [11-13]. On the contrary, in pathologic conditions, 

particularly with the presence of cardiovascular risk factors, the endothelium undergoes functional and 

structural alterations, thus losing its protective role and becoming a proatherosclerotic structure [11-13]. 

In the earliest stages, the principal endothelial alteration is merely functional and addressed as 

“endothelial dysfunction.” The fundamental feature of this condition is the impaired NO 

bioavailability. This can be the consequence of either a lowered production by eNOS or, more 

frequently, of an increased breakdown by reactive oxygen species [4,5,11-14]. The fundamental 

change involved in this process is a switch in signalling from a NO-mediated silencing of cellular 

processes toward activation by redox signalling. Further, it is intriguing to note that eNOS, which 

normally helps maintain the quiescent state of the endothelium, can switch to generate reactive oxygen 

species in certain circumstances as part of endothelial dysfunction. In this case, interestingly, eNOS 

itself can paradoxically produce superoxide, a process referred to as "eNOS uncoupling." Reduced 

levels of tetrahydrobiopterin or L-arginine lead to uncoupling of reduced NADPH oxidation and NO 

synthesis, with oxygen as terminal electron acceptor instead of L-arginine, resulting in the generation 

of superoxide by eNOS [1-5,11-15]. Degradation of tetrahydrobiopterin by reactive oxygen species is 

associated with an additional downregulation of eNOS [11-15]. According to this, it has been showed 

that supplementation of tetrahydrobiopterin improves endothelial function in vitro and in clinical 

studies involving patients with cardiovascular risk factors. Moreover, it has been observed that the 

grade of oxidative stress correlated with a deficiency of tetrahydrobiopterin, thus suggesting 

tetrahydrobiopterin deficiency and decreased eNOS activity may cause endothelial dysfunction in 

atherosclerotic patients through an increase in oxidative stress [10-15]. Thus, the ability of eNOS to 

regulate both the quiescent and the altered endothelial phenotype puts this enzyme at the center of 

endothelial homeostasis [10-15]. Following the above evidence we could affirm that intact function 

and integrity of the endothelium play a pivotal role for cardiovascular health. Insults to ECs by 

cardiovascular risk factors reduce or abolish the NO functions. In patients at high cardiovascular risk, 

the decline in endothelial NO bioavailability is attributed to: (1) the reduced expression of eNOS; 

(2) the deficiency of substrate or cofactors for eNOS and a deficient activation of eNOS caused by 

impaired cellular signaling; (3) the decreased capacity of ECs to synthesize and/or release NO; or 

(4) the inactivation of synthesized NO by reactive oxygen species [11-14]. All these abnormalities 

might induce endothelial dysfunction that is considered the earliest step in the pathogenesis of 

atherosclerosis. Both traditional and novel cardiovascular risk factors initiate a chronic inflammatory 

process that is accompanied by a loss of vasodilator and antithrombotic factors and an increase in 

vasoconstrictor and prothrombotic products [11-14]. It has been hypothesised that this endothelial-

dependent vascular imbalance is critical, not only in the initiation and progression of atherosclerosis, 

but also in the transition from a stable to an unstable disease state with the precipitation of acute 

vascular events [11-14]. It has been supposed that a dysfunctional endothelium may promote plaque 

activation, which leads to a higher plaque vulnerability, thus, successively inducing plaque 

destabilization and rupture. Concordant with this, the magnitude of endothelial dysfunction is an 

important and independent predictor of future development of cardiovascular risk and events [16-18]. 

Endothelial dysfunction is also relevant to the later stages of the disease and seems to play a role in 

acute coronary syndromes [16]. In patients with established atherosclerosis, disturbed vasomotion 

associated with endothelial activation may contribute to transient myocardial ischemia and angina 
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pectoris [17,18]. Abnormalities of endothelial function are also present in patients with traditional 

atherosclerotic risk factors, including hypercholesterolemia, tobacco smoking, diabetes, and 

hypertension, prior to any clinical manifestations of atherosclerosis [17-20]. Endothelial dysfunction 

has been shown to be associated with an increase in reactive oxygen species in atherosclerotic animal 

models and human subjects with atherosclerosis [17-20]. Several investigators have shown that 

impaired endothelium-dependent vasodilation is found in the forearm, coronary, and renal vasculature 

in patients with cardiovascular disease [17-20]. Endothelial dysfunction also has prognostic 

implications and is associated with an increased risk of future cardiovascular events [21-23]. 

Particularly, a study [23] evaluating endothelium-dependent (plethysmography of forearm blood flow 

in response to acetylcholine) and -independent vasodilation (sodium nitroprusside), reported that 

endothelial dysfunction and increased vascular oxidative stress predicted the risk of cardiovascular 

events in patients with coronary artery disease. Patients experiencing cardiovascular events had lower 

vasodilator responses to acetylcholine (p < 0.001), but greater benefit from vitamin C administration 

(p < 0.01). Thus, these findings confirm the concept that oxidative stress may contribute not only to 

endothelial dysfunction but also to coronary artery disease activity [23]. Further, nutritional, or dietary 

oxidative stress denotes a disturbance of the redox state resulting from excess oxidative load or from 

inadequate nutrient supply favouring prooxidant reactions. Postprandial oxidative stress has been 

described in postprandial hyperglycemia and/or hyperlipidemia and is associated with a higher risk for 

atherosclerosis, diabetes, and obesity [9]. Additionally, endothelial function is impaired in the 

postprandial state of hyperlipidemic and hyperglycaemic subjects. Thus, postprandial oxidative stress 

could be considered as an important factor modulating cardiovascular risk. In spite of this, flow-

mediated dilation (FMD) was not affected by administration of a low-fat meal or a high-fat meal that 

included 1 g vitamin C and 800 IU vitamin E [24]. Therefore, it could be suggested that postprandial 

oxidative stress might be attenuated when dietary antioxidants are supplied together with a meal rich in 

oxidized or oxidizable lipids. Ingestion of dietary polyphenols, e.g., from wine, cocoa, or tea, improves 

endothelial dysfunction and lowers the susceptibility of LDL lipids to oxidation [9,24]. 

In the clinical setting, it seems of relevance to select appropriate interventions for both endothelial 

function and oxidative stress. This might be expected to greatly improve clinical outcomes. Therefore, 

given these findings one could also argue that the therapeutic correction of endothelial dysfunction 

may cause an improvement of prognosis in patients with cardiovascular risk factors or 

cardiovascular disease.  

3. Dietary Strategies Against Oxidative Stress  

Based on evidence of the importance of oxidative stress in cardiovascular damage, there has been 

great interest in developing strategies that target reactive oxygen species in the treatment of 

cardiovascular diseases. Therapeutic approaches that have been considered include mechanisms to 

increase antioxidant bioavailability or to reduce reactive oxygen species generation. The mechanisms 

involved in radical scavenging activity are complex, determined by the structure of the compound, 

redox status of the environment and interactions with other agents. In this regard, it is of interest that 

purified micronutrients isolated from natural products may be less effective than a combination 

observed in the natural product due to synergistic effects of interacting agents. 
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Relatively scant data still characterize the in vivo implications of these findings. Nevertheless, there 

have been studies suggesting that the regular or occasional consumption of polyphenols and/or 

flavonoid-rich foods exerts beneficial effects on blood pressure, insulin resistance, endothelial 

function, and oxidative stress [4-6]. Dietary antioxidants constitute a large group of compounds that 

differ in mechanism of action, bioavailability and side effects. A systematic analysis of the role of the 

various antioxidants in chronic diseases is retarded by the difficulty of employing death or clinical 

events as end points in intervention studies. Therefore, valid markers for oxidative stress, which show 

dose response and are sensitive to changes in dietary supply of antioxidants, are potentially of great 

value when trying to establish healthy dietary patterns, or when one component, like cocoa, tea or red 

wine, is studied [4-6,24-27]. Epidemiologic studies indicate that diets rich in fruit and vegetables are 

associated with a decreased incidence of adverse cardiovascular events, such as coronary artery disease 

and stroke [24-27]. This effect was ascribed, at least in part, to the high content of antioxidants, in 

particular polyphenolic compounds, such as flavonoids, in plant-based foods [4-6,24-27]. In this 

context, cocoa, some chocolates, red wine, and tea received much attention, because they are 

particularly rich in flavonoids, phytochemicals with strong antioxidant properties in vitro [4-6]. 

Several lines of evidence suggest that flavonoids, a major class of polyphenols, are important bioactive 

constituents of the above mentioned foods and that there may be a causal relationship between 

flavonoid consumption and improvements in cardiovascular function.  

4. Polyphenols: Structure and Classification 

Polyphenols are the most abundant antioxidants in our diet and are common constituents of foods of 

plant origin and are widespread constituents of fruits, vegetables, cereals, olive, dry legumes, chocolate 

and beverages, such as tea, coffee and wine [4-6,28,29]. Despite their wide distribution, the health 

effects of dietary polyphenols have been attentively studied by nutritionists only in recent 

years [28,29]. Polyphenols comprise a wide variety of molecules that have a polyphenol structure (i.e., 

several hydroxyl groups on aromatic rings), but also molecules with one phenol ring, such as phenolic 

acids and phenolic alcohols. Polyphenols are divided into several classes, according to the number of 

phenol rings that they contain and to the structural elements that bind these rings to one another. 

Flavonoids comprise the most common group of plant polyphenols. More than 8,000 different 

flavonoids have been described and since they are prerogative of the kingdom of plants, they are part 

of our diet with a daily total intake amounting to 1 g/day, which is higher than all other classes of 

phytochemicals and known dietary antioxidants. In fact, the daily ingestion of β-carotene, vitamin C, 

and vitamin E from food often is estimated < 100 mg/day intake [1,4,26-29]. Flavonoids are structured 

as a common carbon skeleton of diphenyl propanes, two benzene rings (ring A and B) joined by a 

linear three-carbon chain (C6-C3-C6) usually forming an oxygenated heterocycle nucleus, the flavan 

nucleus (ring C). Depending on the structural complexity of flavonoids, particularly on the oxidation 

state of the central ring C, flavonoids are themselves subclassified as flavonols, flavones, flavanones, 

flavanols or flavan-3-ols (catechins and their oligomers: proanthocyanidins), isoflavones, and 

anthocyanins [4,27-29] (Figure 1). Regarding their distribution in foods, flavonoids could be 

considered ubiquitous antioxidants, nevertheless, some of them could be specific to particular foods, 

while others, such as quercetin, are found in all plant products [27-29]. Furthermore, a number of 

different factors, such as harvesting, environmental factors, and storage, may affect the polyphenol 
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content of plants. Additional variability in flavonoid content could be expected in finished food 

products because its availability is largely dependent on the cultivar type, geographical origin, 

agricultural practices, post-harvest handling and processing of the flavonoid containing  

ingredients [27-29]. 

Figure 1. Common structure of flavonoids (A) and classification (B). 

  

5. Flavonoids, Oxidative Stress and Endothelial Effects  

The review of epidemiological and mechanistic studies supports the role of flavonoids, particularly 

cocoa and tea flavanols, in protecting the cardiovascular system [4-6,26,27]. In this regard, many 

studies have shown that flavonoids demonstrate protective effects against the initiation and progression 

of atherosclerosis [1,4-6]. The bioactivity of flavonoids and related polyphenols appears to be 

mediated through a variety of mechanisms, though particular attention has been focused on their direct 

and indirect antioxidant actions. As antioxidants, polyphenols may protect cell constituents against 

oxidative damage and, therefore, limit the risk of various degenerative diseases associated to oxidative 

stress. In particular, it has been shown that the consumption of polyphenols limits the development of 

atheromatous lesions, inhibiting the oxidation of low density lipoprotein [30], which is considered a 

key mechanism in the endothelial lesions occurring in atherosclerosis. Moreover, mechanisms of 

antioxidant effects may include: (1) suppressing reactive oxygen species formation either by inhibition 

of enzymes or chelating trace elements involved in free radical production; (2) scavenging reactive 

oxygen species; and (3) upregulating or protecting antioxidant defences [1,4-6]. Further, they can also 

satisfy most of the antioxidant criteria. It has been hypothesized that their antioxidant properties may 

protect tissues against oxygen free radicals and lipid peroxidation [31,32]. Most flavonoids are 

effective radical scavengers. This property by itself does not imply a beneficial effect, because after 

scavenging a flavonoid radical is formed. A very reactive flavonoid radical would propagate rather than 

interrupt the deleterious events initiated by the radical attack. However, a flavonoid radical with high 

stability will not readily react. As a consequence, this flavonoid will act as an antioxidant [4,31-33]. 

Furthermore, prooxidant effects of polyphenols have been described [34], having opposite effects on 
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basic cell physiological processes: as antioxidants they may improve cell survival, as pro-oxidants they 

might induce apoptosis and block cell proliferation, thus acting as anti-carcinogenic factor [35]. 

However, emerging findings suggest a variety of potential mechanisms of action of polyphenols in 

preventing disease, which may be independent of their conventional antioxidant activities. Increasing 

evidence suggests that flavonoids might exert several other specific biological effects such as the 

inhibition or reduction of different enzymes and the interaction with signal transduction pathways and 

cell receptors [1,33,36]. In keeping to this, it was reported that flavonoids such as epigallocatechin 

gallate and resveratrol were able to inhibit the transcription factors NFkB and AP-1 via interaction 

with upstream signalling pathways (IKK phosphorylation, MAPK phosphorylation and PI3K/Akt 

phosphorylation) and/or by decreasing pro-inflammatory mediators (TNF-a, IL, PGE2) and activities of 

proinflammatory enzymes (COX 2, iNOS) [1,28]. Concordantly, a recent study by Rezzani et al. [37] 

showed that treatment with antioxidants such as pycnogenol and melatonin may protect the vasculature 

in an experimental model of genetic hypertension (spontaneously hypertensive rats). Of interest, they 

observed that both melatonin and pycnogenol treatment increased MMP2 expression toward that 

observed in control rats. Further, melatonin or pycnogenol administration decreased iNOS protein 

expression compared with untreated spontaneously hypertensive rats. A higher COX-2 expression was 

observed in untreated spontaneously hypertensive rats compared with controls, which was prevented 

by both melatonin and pycnogenol administration. Of note, although the endothelial response to 

acetylcholine was not fully normalized in treated spontaneously hypertensive rats, a significant 

improvement in mesenteric small resistance artery endothelial function was observed in treated rats 

compared with controls. Total aortic collagen content was significantly greater in untreated 

(corresponding to type I collagen-fibrotic collagen) compared with control rats, and with 

spontaneously hypertensive rats treated with melatonin or pycnogenol (prevalence of type III 

collagen–constitutive collagen) [6,37]. The molecular mechanisms by which phytochemicals interact 

with signal transmission cascades are not precisely known, and it has been hypothesised that the 

downregulation of transcription factors may be due to the direct scavenging of reactive oxygen 

species [1,4-6]. It has been observed [29] that exposure of human ECs to (–)-epicatechin (the most 

important flavanol in cocoa) resulted in elevation of cellular levels of NO and cyclic GMP and in 

protection against oxidative stress elicited by pro-inflammatory agonists. Therefore, the authors 

supposed that endothelial NO metabolism rather than general antioxidant activity is a major target of 

dietary flavanols and that NADPH oxidase activity may represent a crucial site of action. NO 

protection against oxidants and increased NO bioavailability have been suggested to be primarily 

responsible for the vascular health benefits derived from flavonoid-rich food and beverage 

consumption, particularly in conditions that are known to be characterized by either increased oxidant 

production or decreased antioxidant defense mechanisms or both [1,4-6,31-33,36,38]. It has been 

reported [39] that a single dose of a flavanol-rich cocoa drink transiently increased NO bioactivity in 

human plasma and significantly reversed endothelial dysfunction in patients with at least a 

cardiovascular risk factor. Further, authors observed a correlation between NO-dependent FMD and 

levels of nitrosylated and nitrosated species. This suggested that flavan-3-ols induce arterial dilation 

via their effects on NO bioavailability [39]. Of interest, a recent study by Davison et al. [40], 

investigated the effects of cocoa flavanols and regular exercise in overweight and obese adults. They 

showed that, compared to low-flavanol, high-flavanol cocoa acutely increased FMD by 2.4%  
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(P < 0.01) and chronically (over 12 weeks; P < 0.01) by 1.6%. Further, flavanol-rich cocoa intake 

reduced insulin resistance by 0.31% (P < 0.05), diastolic blood pressure by 1.6 mmHg and mean 

arterial blood pressure by 1.2 mm Hg (P < 0.05). Expanding on this, we demonstrated that flavanol-

rich dark chocolate administration significantly increased the endothelium-dependent FMD of the 

brachial artery also positively affecting additional cardiovascular risk factors in healthy subjects [41] 

as well as in hypertensive patients with and without glucose intolerance [41,42]. Further, we also 

showed that epigallocatechin-3-gallate and (–)-epicatechin induced a dose-dependent NO-mediated 

vasorelaxation in isolated rat aortic rings precontracted by phenylephrine [5]. In addition, with regard 

to tea flavanols, an early study by Duffy et al. [43] showed that short- as well as long-term black tea 

consumption reversed endothelial vasomotor dysfunction in patients with coronary artery disease. 

Accordingly, our research group [44] reported that black tea (containing increasing doses of flavonoids 

but very similar of caffeine) ingestion dose-dependently improved endothelial function. Black tea 

increased FMD from 7.8% (control) to 9.0, 9.1, 9.6 and 10.3% after the different flavonoid doses, 

respectively (p = 0.0001). Of interest, even 100 mg/day (less than 1 cup of tea) increased FMD 

compared with control (p = 0.0113). Furthermore, FMD after 800 mg/day was significantly higher 

than control (p < 0.0001) but also higher than 100 mg/day (p = 0.0121) and 200 mg/day (p = 0.0275) 

administration [44]. All data support the significant putative role of chocolate and tea flavanols in 

protecting the cardiovascular system, by ameliorating endothelial function and likely by decreasing 

oxidative stress. Indeed, in addition to directly scavenging NO, flavonoids can act to rapidly down-

regulate peroxynitrite generation from NO. The ability of flavonoids and flavonoid-rich foods and 

beverages to reduce NO oxidation and increase NO bioavailability appears to contribute significantly 

to its vascular benefits [1,4-6] and thus, finally, to protect against atherosclerosis [1-4]. Moreover, the 

polyphenol-induced NO formation is due to the redox-sensitive activation of the phosphatidylinositol 

3-kinase/Akt pathway leading to direct eNOS activation subsequent to its phosphorylation on Ser 1177. 

Besides the phosphatidylinositol 3-kinase/Akt pathway, polyphenols have also been shown to activate 

eNOS by increasing the intracellular free calcium concentration and by activating estrogen receptors in 

ECs [45]. In addition to causing a rapid and sustained activation of eNOS by phosphorylation, 

polyphenols can increase the expression level of eNOS in ECs leading to an increased formation of 

NO [45]. Accordingly, genistein, at physiologically achievable concentrations in individuals 

consuming soy products, enhanced the expression of eNOS and subsequently elevated NO synthesis in 

both human aortic ECs (HAECs) and human umbilical vein ECs (HUVECs), with 1-10 μmol/L 

genistein inducing the maximal effects [46]. However, the effects of genistein on eNOS and NO were 

not mediated by activation of estrogen signaling or inhibition of tyrosine kinases, 2 known biological 

actions of genistein. Genistein (1–10 μmol/L) increased eNOS gene expression (1.8- to 2.6-fold of 

control) and significantly increased eNOS promoter activity of the human eNOS gene in HAEC and 

HUVEC, suggesting that genistein activates eNOS transcription [46]. Further, considering the effect of 

cyanidin-3-glucoside (Cy3G), a typical anthocyanin pigment, on eNOS expression, Xu et al. [47] 

observed that the treatment of bovine artery EC (BAECs) with Cy3G for 8 hours enhanced eNOS 

protein expression in a dose- and time-dependent manner. Longer incubation (12, 16, and 24 hours) of 

BAECs with 0.1 μmol/L of Cy3G caused a further increase in eNOS expression, and subsequently 

Cy3G also significantly increased NO output 2-fold (24 hours). Furthermore, Cy3G stimulated the 

phosphorylation of Src and extracellular signal-regulated kinase 1/2 (ERK1/2) in a time-dependent 
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manner. Of interest, an Src kinase inhibitor, pp2, and MEK inhibitor, PD98059, blocked the ERK1/2 

phosphorylation and eNOS expression. However, a recent meta-analysis by Hooper et al. [48] , aiming 

to systematically review the effectiveness of different flavonoid subclasses and flavonoid-rich food 

sources on cardiovascular disease and endothelial function, reported that soy protein isolate, isoflavone 

extracts, as well as red wine or grape and other flavanols do not present with significant effects on 

endothelial function. On the contrary, the data suggested a beneficial effect of black tea and chocolate 

or cocoa. Black tea increased FMD by 3.40% (95% confidential interval: 1.85%, 4.95%; one study), 

and chocolate or cocoa increased FMD by 1.45% (95% confidential interval: 0.62%, 2.28%; two 

studies), while flavonols caused a reduction in FMD (−1.4%; 95% confidential interval: −2.66, −0.14; 

one study). When data were available from ≥ 3 acute studies, only chocolate or cocoa significantly 

improved FMD (3.99%; 95% confidential interval: 2.86, 5.12; six studies). In addition, studies of red 

wine or grape and black tea suggested a modest benefit, although neither was statistically significant 

and both were significantly heterogeneous. For many of the subclasses, including anthocyanins, 

flavanones, green tea, and soyfoods, no published data on potential FMD effects were available. Only 

the group represented by chocolate or cocoa was able to show significant effects, both acutely and 

chronically, on FMD. Considering differences in chemical structures and range of doses, was observed 

significant heterogeneity between different flavonoid subgroups (P for heterogeneity < 0.01, I2= ≈ 80% 

in both acute and chronic studies). This confirmed that different flavonoid groups have different 

effects on FMD. Though not all the involved mechanisms have been exhaustively clarified, data from 

literature seem to suggest that flavonoids present with all the biological potential to positively affect 

vascular function via direct and indirect actions [49] (Figure 2). They potentially could be considered 

as healthy compounds for diet supplementation. 

Figure 2. Potential effects of flavonoids on cardiovascular protection. 
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6. Conclusions 

Cardiovascular risk factors contribute to oxidative stress, which causes an imbalance between NO 

and reactive oxygen species. This results in a relative decrease in NO bioavailability and/or in NO-

soluble guanylate cyclase cascade in blood vessels. The disparity in protecting factors leads to 

endothelial and vascular smooth muscle cell dysfunction, resulting in increased tone and alterations in 

cell growth and gene expression that create a pro-thrombotic, pro-inflammatory environment [1-4]. 

This firstly triggers atherogenesis and then leads to formation, progression, and even destabilization of 

atherosclerotic plaques which, in turn, results in cardiovascular events and death [1-4]. Thus, NO 

clearly plays a pivotal role in the maintenance and repair of the vasculature, and a decrease in 

bioavailable NO is linked to adverse outcomes. This pathophysiological setting provides the rationale 

for exploring the potential therapeutic role for antioxidants and/or NO-donating agents in the 

prevention of cardiovascular disease. Nutrition plays an important role in the treatment of many 

diseases, and the right choice of nutrients can help to prevent disorders and improve the quality of life. 

Even in a `balanced' diet that meets macronutrient recommendations and micronutrient requirements, 

there is a growing body of evidence that bioactive compounds play an important role in optimizing 

health. Flavonoids, such as those occurring in tea and cocoa, are an example of a class of bioactive and 

antioxidant compounds that may confer beneficial effects on a number of important risk factors for 

cardiovascular disease. Nevertheless, protective antioxidant mechanisms are complex and 

multifactorial. Since the evidence of therapeutic effects of dietary polyphenols continues to 

accumulate, it is becoming of pivotal importance to understand the nature, the bioavailability and the 

putative pathophysiological mechanisms of action of this specific group of antioxidants. A better 

understanding of the mechanisms that underlie the biological effects of flavonoids could open the way 

for considering flavonoid supplementation and/or flavonoid-rich food ingestion as fundamental tools 

for human health deriving from daily diet.  

Currently, there is a scarcity of information concerning the amount of flavonoids that are needed on 

an acute or chronic basis to trigger the positive health effects discussed. Further, we should also clarify 

the potential bioactivity following synergistic and additive effects decreasing oxidative stress, 

improving endothelial dysfunction and thus protecting from atherosclerotic process. In addition, better 

understanding of the oxidative stress-dependent signal transduction mechanisms, their localization, and 

the integration of both reactive oxygen species-dependent transcriptional and signaling pathways in 

vascular pathophysiology is a prerequisite for effective pharmacological and non pharmacological 

interventions for cardiovascular protection from oxidative stress. However, additional studies should 

also clarify the role of flavonoids and polyphenol metabolites as bioactives, particularly focusing on 

specific target enzymes such as NADPH oxidases or lipoxygenases. This might be considered a new 

basis for molecular action of polyphenols [49]. 

Since their intake may reach 1 g/day, flavonoids represent an important source of antioxidants in 

daily diet. At the moment we could consider these antioxidant nutrients available in everyday life as a 

protective tool for prevention of atherosclerosis and cardiovascular disease.  
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