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Abstract: We assessed 24-h urinary sodium (Na) and its relationship with urinary calcium 

(Ca) and areal bone mineral density (aBMD) at the whole body, lumbar spine and total hip 

in a cross-sectional study. 102 healthy non-obese women completed timed 24-h urine 

collections which were analyzed for Na and Ca. Dietary intakes were estimated using a 

validated food frequency questionnaire. Participants were grouped as those with lower vs. 

higher calcium intake by median split (506 mg/1000 kcal). Dietary Na intake correlated 

with 24-h urinary loss. Urinary Na correlated positively with urinary Ca for all participants 

(r = 0.29, p < 0.01) and among those with lower (r = 0.37, p < 0.01) but not higher calcium 

intakes (r = 0.19, p = 0.19). Urinary Na was inversely associated with hip aBMD for all 

participants (r = −0.21, p = 0.04) and among women with lower (r = −0.36, p < 0.01) but 

not higher (r = −0.05, p = 0.71) calcium intakes. Urinary Na also entered a regression 

equation for hip aBMD in women with lower Ca intakes, contributing 5.9% to explained 

variance. In conclusion, 24-h urinary Na (a proxy for intake) is associated with higher 

urinary Ca loss in young women and may affect aBMD, particularly in those with lower 

calcium intakes. 
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1. Introduction 

Whether sodium intake has an impact on bone health has been studied since Goulding observed that 

sodium intake affected bone mass in animals [1,2]. Since then, most studies have observed significant 

correlations between 24-h measures of urinary calcium and sodium [3–5]. This is because renal 

calcium reabsorption is influenced by the concurrent degree of sodium reabsorption [6]. Most evidence 

supports an increase in urinary calcium of about 1 mmol per 100 mmol of sodium excretion, which 

equates to an increase of 40 mg of calcium excreted in the urine for every 2300 mg of dietary sodium, 

although variability does exist [3–5].  

Over time, sodium-induced calciuria may have the potential to negatively impact bone mineral 

density (BMD) [3–5,7]. It has been suggested by Heaney [3] that the impact of sodium on bone may 

depend on adequacy of calcium intake: at recommended calcium intakes, typical North American 

sodium intakes would have little effect on calcium balance; however, at low calcium intakes the 

adaptive increase in intestinal calcium absorption may be insufficient to offset the additional urinary 

calcium losses. Data are not consistent with regard to whether the association differs at low versus 

high calcium intakes. Urinary sodium and calcium were associated at high but not low calcium intakes 

among healthy elderly persons [8]. Conversely, in studies of postmenopausal women, urinary sodium 

and calcium were associated at low but not high calcium intakes [9,10]. Few data are available 

regarding whether calcium intake modulates the relationship between urinary calcium and sodium in 

young women.  

We recently conducted a 2-year study of dietary attitudes, ovulatory function, and bone density in 

healthy young women [11]. At the 2-year follow-up, 24-h urine collections were analyzed for sodium 

and calcium. Herein, we report the cross-sectional relationship between 24-h urinary sodium and 

urinary calcium excretion, and examine whether the association differs between those with higher 

versus lower calcium intakes. Associations with BMD and 2-year BMD change were also assessed.  

2. Methods 

2.1. Participant Characteristics  

As described in detail elsewhere [11], interested women were recruited between August and 

December 2006 and were screened for eligibility by telephone interview. Eligibility criteria were:  

19–35 years old, regular menses (self-reported menses every 21–35 days in the previous ≥6 months), 

non-obese (self-reported body mass index (BMI) 18–30 kg/m2), no pregnancy/breastfeeding currently 

or within 12 months, and absence of medical conditions (current or previous diagnosis of eating 

disorder, polycystic ovarian syndrome, Cushing’s syndrome, inflammatory conditions, hypertension, 

hyperthyroidism or hirsutism) or use of medications (oral contraceptives, progesterone or 

glucocorticoids currently or within the past 6 months) that could affect study variables. Of 148 women 

assessed, 142 were eligible, 137 completed baseline data collection and 123 completed the final 

follow-up (n = 4 moved, n = 5 no longer wanted to participate or did not respond, n = 5 became 

ineligible due to pregnancy, androgen excess, thyroid cancer). Among this group, 110 had complete 

data from a food frequency questionnaire (FFQ), 24-h urine collection and dual energy X-ray 

absorptiometry (DXA) scan at the final follow-up, which was the only time point at which urinary 
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sodium and calcium were assessed. The study protocol was approved by the university’s Clinical 

Research Ethics Board (protocol C05-0257) in June 2005 and renewed annually through June 2009. 

Written informed consent was obtained from all participants.  

2.2. Urine Collection and Analysis 

Participants met with an investigator to receive materials and oral and written instructions for home 

completion of a 24-h urine collection. Participants were instructed to complete the urine collection 

within several weeks of the meeting, on a “normal day” free of any unusual physical or mental 

stresses, after reviewing written instructions. On the day of collection, participants discarded their first 

urine void, recorded the time this occurred and then collected all subsequent voids for 24 h including a 

void at the recorded time the following morning. Urine collections were delivered by courier to the 

laboratory, where volume was measured and aliquots were frozen and stored prior to analysis of 

urinary sodium, calcium and creatinine using a calibrated Dade Behring Dimension RXL (Siemans 

AG, Munich, Germany) automated clinical chemistry analyzer [12].  

2.3. Physical Measurements 

Measured height and weight were used to calculate BMI. DXA scans of the lumbar spine (L1–4), 

both total hips and whole body were completed at baseline and final follow-up. Total body bone-free 

lean body mass (LBM, kg), fat mass (kg), and areal BMD (aBMD, g/cm2) were measured on a Lunar 

Prodigy machine with enCORE® software (GE Healthcare, Madison, WI). Daily quality assurance 

tests were conducted using a spine phantom scan and densitometric calibration. The in-house 

coefficient of variation (CV) with repositioning for aBMD at L1–4 averaged 0.94% (0.82–1.10%) and 

the CV for total proximal femur averaged 0.70% (0.65–0.76%). The 2-year bone measurements were 

conducted 1.95 ± 0.14 year after baseline. Measurements before or after the 2-year time point were 

corrected to 2-year percent change.  

2.4. Food Frequency Questionnaire 

To determine usual dietary intake, the Diet History Questionnaire [13] was completed. Scannable 

questionnaires were analyzed with a Canadian version of the nutrient database [14]. Participants were 

classified as those with lower (506 mg/1000 kcal or less) and higher (>506 mg/1000 kcal) calcium 

intake (from the combination of food and supplements) by median split. 

2.5. Other Questionnaires 

As physical activity is positively associated with BMD, participants’ usual activity at work, in sport, 

and during leisure was determined using the Baecke Questionnaire of Habitual Physical Activity [15]. 

Sport and total activity scores are reported. The duration of any reproductive hormone use prior to 

study entry was documented at baseline, and duration of reproductive hormone use during the study 

was documented at the final follow-up. 
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2.6. Statistical Analyses 

Data were coded, verified, and entered into SPSS software (v.17, SPSS Inc., 2008), and crosschecked 

for accuracy. Physiologic variables were examined for outliers (mean ± > 4SD) and two individuals 

with extreme values for urine volume were removed. Completeness of 24-h urine collections was 

assessed based on expected creatinine excretion (mg/kg body weight) [16]; six individuals with values 

below or above the expected range were excluded for a final sample size of 102 women. 

Descriptive statistics were used to characterize the sample. Differences by calcium intake per  

1000 kcal (median split) were examined using Chi-square, t-tests and General Linear Model with 

appropriate covariates. Pearson’s correlation analyses were conducted to examine relationships among 

dietary and urinary calcium and sodium, and between urinary sodium and cross-sectional and 

prospective aBMD measures. To examine whether urinary sodium contributed to variance in aBMD 

independently of other BMD correlates, we conducted linear regression analysis. Variables available 

for entry into the models were selected based on significant univariate correlations with aBMD 

measures, and absence of significant collinearity. Analyses were repeated among women with higher 

and lower calcium intake (median split). All cases were examined pairwise. Results were considered 

significant at p < 0.05.  

3. Results 

3.1. Participants 

Participants’ age, physical activity level, reproductive hormone use, urine analyses, physical 

measurements and dietary intake are described in Table 1. Most participants were single (94%), 

students (66%) and had completed some post-secondary education (95%). Thirty-four women (33%) 

had ever used oral contraceptives, for a mean duration of just over two years. Those who used reproductive 

hormones did not differ in outcome variables (urinary sodium or calcium, or height-and-LBM-adjusted 

aBMD measures) from non-users (data not shown), and all were included. 

Table 1 also describes study variables by the median split of calcium intake. Women with lower 

calcium intake were slightly shorter, had slightly lower LBM, and were less likely to have ever used 

reproductive hormones. They also had non-significantly lower urinary creatinine excretion (p = 0.066), 

although when LBM was included as a covariate, the estimated marginal means were almost identical 

(10.08 ± 1.5 versus 10.10 ± 1.5, p = 0.937). No differences were observed in age, physical activity, 

BMI, urinary sodium and calcium excretion, aBMD, or dietary sodium intake. 

3.2. Urinary and Dietary Sodium and Calcium 

Significant correlations were observed between urinary and dietary sodium (r = 0.21, p = 0.032), 

but the relationship between urinary and dietary calcium was not significant (r = 0.16, p = 0.099). 

Urinary calcium and sodium were significantly correlated (r = 0.29, p = 0.003). The relationship between 

urinary calcium and sodium was also apparent among women with lower calcium intake (r = 0.37,  

p = 0.008) but not those with higher calcium intake (r = 0.19, p = 0.186). For the group as a whole, the 

regression equation generated from the analysis was: Urinary calcium (mg) = 80.5 + (0.019 × urinary 
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sodium (mg)), or alternately: Urinary calcium (mmol) = 2.0 + (0.011 × urinary sodium (mmol)). This 

indicates that for every 100 mmol (2300 mg) increase in sodium excretion, urinary calcium would be 

predicted to increase by 1.1 mmol (44 mg).  

Table 1. Age, physical activity, reproductive hormone use, 24-h urine analyses, physical 

measurements and dietary intake among all participants and differences by calcium intake 

(median split). 

 
All participants 

(n = 102) 
Calcium intake below 

median 1 (n = 51) 
Calcium intake above 

median 2 (n = 51) 
p 

Age (years) 24.0 ± 3.4 23.5 ± 3.0 24.5 ± 3.7 0.119 

Physical activity 3 

Sport activity 2.4 ± 0.8 2.3 ± 0.8 2.4 ± 0.8 0.355 
Total activity 7.7 ± 1.5 7.5 ± 1.5 7.8 ± 1.5 0.328 

Reproductive hormone use 

Ever used (%) 33% 24% 43% 0.036 
Duration (months) in users 27.8 ± 28.1 13.8 ± 5.3 35.1 ± 32.4 0.008 

24-h urine analyses 

Volume (L) 1.66 ± 0.63 1.58 ± 0.60 1.75 ± 0.66 0.179 
Calcium (mg) 135.1 ± 68.5 129.3 ± 66.1 141.0 ± 71.0 0.389 
Sodium (mg) 2942 ± 1062 2933 ± 1177 2950 ± 946 0.937 
Creatinine (mmol) 10.1 ± 2.1 9.7 ± 1.9 10.5 ± 2.2 0.066 

Physical measurements 

Height (cm) 162.4 ± 6.9 160.8 ± 6.0 163.9 ± 7.5 0.021 
Weight (kg) 57.7 ± 8.9 56.8 ± 8.9 58.7 ± 8.9 0.280 
BMI (kg/m2) 21.8 ± 2.6 21.8 ± 2.9 21.7 ± 2.1 0.819 
Lean body mass (kg) 37.6 ± 5.1 36.3 ± 4.4 38.8 ± 5.5 0.014 
Fat mass (kg) 17.1 ± 5.4 17.2 ± 5.8 17.0 ± 5.2 0.880 
TB aBMD (g/cm2) 1.142 ± 0.076 1.133 ± 0.070 1.150 ± 0.082 0.272 
L1–4 aBMD (g/cm2) 1.190 ± 0.119 1.180 ± 0.097 1.200 ± 0.137 0.384 
Hip aBMD (g/cm2) 1.020 ± 0.119 1.004 ± 0.109 1.036 ± 0.127 0.170 

Dietary intake 4 

Energy (kcal) 1610 ± 552 1600 ± 587 1620 ± 521 0.858 
Protein (g) 65.6 ± 27.9 62.9 ± 28.6 68.2 ± 27.1 0.339 
Calcium (mg) 828 ± 390 609 ± 294 1047 ± 351 ---- 
Sodium (mg) 2648 ± 1089 2618 ± 1208 2678 ± 966 0.784 

Data are presented as mean ± standard deviation. Differences by calcium intake were examined by 

independent sample t-tests. aBMD, areal bone mineral density; BMI, body mass index; TB, total body;  

L1–4, lumbar spine vertebrae 1 to 4. 1 Calcium intake less than the median (≤506 mg calcium per 1000 kcal). 
2 Calcium intake greater than the median (>506 mg calcium per 1000 kcal). 3 Baecke Habitual Physical 

Activity Questionnaire [15], possible scores for sport 1–5 and total 3–15. 4 Dietary intake assessed by food 

frequency questionnaire. 

3.3. Relationships Between Urinary Sodium and aBMD Measures 

Table 2 shows cross-sectional associations between urinary sodium and aBMD. Urinary sodium 

was inversely associated with aBMD at the total hip for the group as a whole. When analyses were 
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conducted separately among those with lower and higher calcium intakes, urinary sodium correlated 

negatively with aBMD at the total hip among those with lower calcium intakes, and the negative 

association with whole body aBMD approached significance. No significant associations were seen in 

those with higher calcium intakes. Urinary sodium was not associated with 2-year aBMD change at 

any site for all participants or those with higher or lower calcium intakes (data not shown). 

Table 2. Correlations among urinary sodium and areal bone mineral density in all participants 

and women with calcium intakes below and above the median. 

Site of aBMD 
R 

Urinary sodium p 
Total body 

All participants −0.14 0.185 
Calcium below median 1 −0.26 0.069 
Calcium above median 2 −0.02 0.869 

Lumbar spine 
All participants −0.13 0.185 

Calcium below median 1 −0.19 0.192 
Calcium above median 2 −0.10 0.495 

Total hip 
All participants −0.21 0.039 

Calcium below median 1 −0.36 0.009 
Calcium above median 2 −0.05 0.712 

Data are presented as Pearson correlation coefficients (R). aBMD, areal bone mineral density (g/cm2). 
1 Calcium intake less than the median (≤506 mg calcium per 1000 kcal). 2 Calcium intake greater 
than the median (>506 mg calcium per 1000 kcal). 

In univariate analyses, aBMD measures were associated with height (r = 0.33–0.45, p < 0.001), 

weight (r = 0.37–0.52, p < 0.001), LBM (r = 0.52–0.62, p < 0.001), sport activity (r = 0.31–0.35,  

p < 0.001) and duration of reproductive hormone use (r = 0.13–0.25, p = 0.009–0.19). Associations 

with age and dietary calcium intake were not significant. Because associations with LBM were 

stronger than those with height or weight, and because these three variables were highly 

intercorrelated, LBM was chosen for availability for the regression models, along with sport activity, 

duration of reproductive hormone use, and urinary sodium. For the entire group of women, LBM 

entered regression models for all three aBMD sites (total body, L1–4, and total hip), explaining 39%, 

27%, and 32% of the variance, respectively. The hip site was the only aBMD site for which additional 

variables entered the regression: sport activity score explained an additional 3.3% of the variance, and 

urinary sodium was narrowly excluded from the model (2.4% of explained variance, p = 0.055). 

Models were also examined for women with lower and higher calcium intakes: urinary sodium entered 

the equation for total hip aBMD in women with lower calcium intakes (Table 3), but not for those with 

higher calcium intakes (data not shown).  
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Table 3. Regression model for hip aBMD in women with calcium intake below the  

median (n = 51). 

 R2 change B ± S.E. β t p 
(Constant)  0.698 ± 0.117  5.95 <0.001 

Lean body mass (kg) 0.241 0.008 ± 0.003 0.305 2.44 0.018 
Sport activity score 1 0.099 0.043 ± 0.016 0.334 2.73 0.009 
Urine sodium (mg) 0.059 −0.001 ± 0.000 −0.251 −2.16 0.036 

For the final model, F = 10.42, p < 0.001. Variable excluded from the model: duration of 
reproductive hormone use. aBMD, areal bone mineral density. 1 Baecke Habitual Physical Activity 
Questionnaire sport subscale [15]. 

4. Discussion 

Numerous studies indicate that higher dietary sodium intake (assessed by 24-h urinary sodium) may 

increase the excretion of calcium [3–5]. Over time, higher urinary calcium losses could negatively 

impact bone density [7] although few studies have directly examined associations between sodium and 

bone, and even fewer of these have been conducted in premenopausal women. As it has been suggested 

that the attainment of peak bone mass may be more relevant to future osteoporosis risk than bone loss 

in later life [17–19], the relationship between sodium and calcium may be particularly relevant in this 

group. Thus, we assessed potential relationships between 24-h urinary sodium, urinary calcium, aBMD 

and 2-year aBMD change among 102 non-obese, healthy young women.  

We found significant correlations between urinary sodium and urinary calcium. The magnitude of 

the association was similar to that previously reported [3–5]: for every 100 mmol (2300 mg) increase 

in sodium excretion, calcium excretion increased by 1.1 mmol (44 mg). In our participants, the 

relationship was stronger among those with lower calcium intakes and became nonsignificant in 

women with higher calcium intakes. Our findings are thus consistent with those of Nordin and  

Polley [9] and Carbone et al. [10], who also observed that sodium and calcium excretion were 

associated at lower but not higher calcium intakes. Carbone et al. suggest that sodium-coupled calcium 

transport in the kidney may predominate at low calcium intakes, but that at higher intakes,  

sodium-independent mechanisms may become more important, thus decreasing the link between 

urinary sodium and calcium excretion [10]. However, the mechanism that could underlie this 

explanation remains to be clarified. In contrast, Dawson-Hughes et al. reported that calcium and 

sodium excretion were correlated at intermediate and high intakes, but not at low intakes [8]. That 

observation was most consistent among men; in women, the association was significant across all four 

quartiles of calcium intake, and disappeared only at calcium intakes below 300 mg/day [8]. Virtually 

all of the participants in the present study had intakes above that level.  

The potential implications of sodium-induced calciuria for bone are likely to be more serious in 

those with low calcium intakes, who may be unable to increase calcium absorption to fully compensate 

for increased urinary losses. For example, Heaney [3] noted that to offset the average urinary calcium 

loss of 1 mmol (40 mg) associated with an increased sodium intake of 100 mmol (2300 mg), gross 

calcium absorption efficiency would need to increase to 34% (from 25%) in those with intakes of  

600 mg/day, and to about 50% (from 37%) in those with intakes of 300 mg/day—and that this may not 

be possible. However, at intakes of 1200 mg/day, absorption efficiency would only need to increase 



Nutrients 2011, 3  

 

 

958

from to 23% (from 20%) [3]. Empirical support for the idea that high calcium intakes may protect 

against high sodium intakes is provided by the study of Ilich et al. [20]. In a 3-year prospective  

study, postmenopausal women were randomly assigned to maintain usual sodium intake of about  

3000 mg/day or to reduce intake to 1500 mg/day. All women also received calcium supplements, and 

total calcium intake averaged over 1300 mg/day. Because compliance with the sodium intervention 

was not high, results were reported by tertile of observed urinary sodium excretion rather than by 

initial group assignment. No negative associations between urinary sodium and bone density were 

observed [20]. This suggests that, at least in postmenopausal women with high calcium intakes, 

sodium intake does not adversely affect bone.  

Most women, however, have calcium intakes well below 1300 mg/day, and the estimated 

prevalence of inadequacy (intakes below requirements) is high. In both the United States and Canada, 

about 50% of premenopausal women had calcium intakes from food alone below the Estimated 

Average Requirement of 800 mg/day [21], as estimated in NHANES 2001–2002 and the 2004 

Canadian Community Health Survey Cycle 2.2 [22,23]. To provide context for the potential impact of 

our findings for women with low calcium intakes, we used our data to predict the effect of reducing 

sodium intake from our participants’ average intake of 2942 mg/day (based on 24-h urinary excretion) 

to the Institute of Medicine’s Tolerable Upper Intake Level of 2300 mg/day [24]. Using the regression 

equation derived from our data (Urine Ca (mg) = 80.5 + 0.019 × urine sodium (mg)), urinary calcium 

excretion would be predicted to decrease by 12 mg/day. Assuming no compensatory changes in 

absorption, that would translate to preventing a loss of about 4 g of calcium on an annual basis  

(12 mg/day × 365 day/year), or 10 g of bone mineral content, given that bone mineral is about  

40% calcium by weight. Whole body bone mineral content of our participants averaged 2300 g; thus, 

preventing a loss of 10 g equates to a 0.4% bone sparing effect over one year. Clearly, this estimate is 

fraught with assumptions, but if sustained over decades, suggests that the impact on fracture risk could 

be meaningful.  

Strong experimental or prospective evidence is not available regarding whether sodium intake 

impacts on bone health in younger women, and the available data are mixed. We found an association 

between urinary sodium excretion and bone density at the hip in women with calcium intakes below 

the median of 506 mg/1000 kcal. Supportive data were also obtained by Jones et al. [25]: In a combined 

group of pre-and post-menopausal women, they reported that urinary sodium correlated positively with 

urinary deoxypyridinoline, a bone resorption marker, and was negatively correlated with BMD in 

unadjusted but not adjusted analyses. Conversely, in a crossover trial of high versus low sodium intake 

for one week, no changes in bone resorption or calcium absorption were observed in 11 premenopausal 

women, although urinary calcium excretion increased [26]. Similarly, in a randomized seven-week trial 

of reduced sodium intake that included 15 young women (as well as 14 men), urinary sodium decreased 

but no group differences were seen in serum bone turnover markers [27]. The small sample sizes and 

short duration of these studies, however, may have limited their power.  

Although our sample size was reasonably large, our study also has limitations. Most notably, we 

had only a single measure of 24-h sodium excretion, and multiple collections are necessary to 

determine an individual’s “usual” excretion (and thus intake) with desirable accuracy. Although food 

frequency questionnaires estimate usual nutrient intakes, and sodium excretion was correlated with 

sodium intake as estimated from the food frequency questionnaire, the association was weak. The Diet 



Nutrients 2011, 3  

 

 

959

History Questionnaire (the FFQ we used) has been validated [28,29], but dietary assessment of sodium 

intake is notoriously challenging. This is largely due to the varying levels of sodium in different 

varieties of similar products: for example, while different brands or varieties of a particular food (such 

as tomato sauce for spaghetti) have generally similar energy, macronutrient, and vitamin contents, the 

sodium content can vary dramatically, by well over 100% [30]. This is true for almost all foods that 

have been “processed” to any degree (e.g., foods other than raw fruits and vegetables, unprocessed 

grains). Furthermore, the FFQ does not assess addition of salt at the table, or in the preparation or 

cooking of foods. For these reasons, 24-h urine collections are still recommended for assessment of 

sodium intake, but multiple collections are desirable to capture day-to-day variability in intake. 

While our results add to the suggestive evidence that the combination of high sodium intakes  

and low calcium intakes has adverse effects on bone, controlled trials are needed to provide more 

definitive conclusions. 
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