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Abstract: Vitamin E consists of eight different variants: α-, β-, γ-, and δ-tocopherols 

(saturated phytyl tail) and α-, β-, γ-, and δ-tocotrienols (unsaturated phytyl tail). Cancer 

prevention studies with vitamin E have primarily utilized the variant α-tocopherol. To no 

avail, a majority of these studies focused on variant α-tocopherol with inconsistent results. 

However, γ-tocopherol, and more recently δ-tocopherol, have shown greater ability to 

reduce inflammation, cell proliferation, and tumor burden. Recent results have shown that 

γ-enriched mixed tocopherols inhibit the development of mammary hyperplasia and 

tumorigenesis in animal models. In this review, we discuss the possible differences 

between the variant forms, molecular targets, and cancer-preventive effects of tocopherols. 

We recommend that a γ-enriched mixture, γ- and δ-tocopherol, but not α-tocopherol, are 

promising agents for breast cancer prevention and warrant further investigation.  

Keywords: vitamin E; tocopherols; breast cancer; estrogen receptor (ER); peroxisome 

proliferator activated receptor γ (PPARγ); nuclear factor (erythroid-derived 2)-like 2 

(Nrf2); anti-inflammatory; cell proliferation; apoptosis; case-control studies 
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1. Tocopherols 

Due to its antioxidant properties, dietary intake of vitamin E, a fat-soluble vitamin, has been 

suggested to reduce cancer risk [1]. Vitamin E consists of eight different forms which include four 

tocopherols (with a saturated phytyl tail) and four tocotrienols (with an unsaturated isoprenoid side 

chain), designated as α, β, γ, and δ variants (Figure 1) [2].  

Figure 1. Chemical structures of α-, β-, γ-, and δ-tocopherols.  

 

α-Tocopherol is known as the “classic” vitamin E, because of its superior activity over the other 

tocopherols in the classic fertility restoration assay [3]. α-Tocopherol is most commonly found in 

wheat germ, almond, and sunflower oil [4]. However, γ-tocopherol is more prominent than α-tocopherol 

in the American diet and is found in vegetable oils such as soybean, corn, and cottonseed [5].  

δ-Tocopherol is primarily found in soybean and castor oils, and to a lesser extent, in wheat germ oil [6]. 

A tocopherol mixture containing 58% γ-tocopherol, 24% δ-tocopherol, 13% α-tocopherol, and 0.5%  

β-tocopherol (γ-TmT) can be easily available as a by-product of refining vegetable oil [7,8]. 

Tocotrienols are consumed more readily in East-South Asian diets, and found primarily in palm and 

annatto oils [9,10]. Since tocopherols are the main components of vitamin E in the American diet, this 

review will focus on tocopherols. The first non antioxidant function of vitamin E determined that  

α-tocopherol inhibited the activity of smooth muscle proliferation and protein kinase C [11,12]. Since 

then, three proteins have been identified to specifically bind to tocopherols: α-tocopherol transfer 

protein (α-TTP), tocopherol-associated protein (TAP), and tocopherol-binding protein (TBP). α-TTP is 

a 30–35 kDa protein and found in the liver [13] which preferentially transfers α-tocopherol from the 

liver to the blood [14]. The relative affinities of α-TTP for the variants of vitamin E as determined 

in vitro were 100% for α-tocopherol, 38% for β-tocopherol, 9% for γ-tocopherol, 2% for δ-tocopherol, 
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and 12% for α-tocotrienol [15]. Thus, the major tocopherol found in human blood and tissues is  

α-tocopherol [3]. Similar to α-TTP, TAP is also a cystolic lipid-binding and transfer protein. TAP is a 

46-kDa protein and has the highest levels in the liver > prostate > whole brain > spinal cord > kidney > 

mammary gland > stomach [16]. TBP was initially found in rat liver and heart is an approximately  

15 kDa cystolic protein [17] and later in human placenta [18]. TBP is involved in intracellular 

transport and metabolism for α-tocopherol [19].  

In the liver, vitamin E is metabolized to chromanol metabolites via the hepatic protein, cytochrome 

P450 4F2. CYP4F2 catalyzes the initial step in the vitamin E-ω-hydroxylase pathway followed by  

β-oxidation, which removes 2 carbons from the side chain in each cycle ending in the short chain 

metabolite, carboxyethyl hydroxychromans (CEHC) [14,20]. Since α-tocopherol is preferentially 

transferred to the blood by α-TTP, γ-tocopherol and δ-tocopherol are more readily metabolized in the 

liver [14].  

Interestingly, higher concentrations of α-tocopherol may decrease the level of γ-tocopherol in the 

serum [21,22]. This may be unfavorable since γ-tocopherol has demonstrated significantly greater  

anti-inflammatory and anti-tumor activity than α-tocopherol in several different animal models of 

colon, breast, and prostate cancer [22–27]. More specifically, γ-tocopherol is more effective in 

inhibiting the activity of cyclooxygenase-2 (COX-2) [23,28] and trapping reactive nitrogen species 

than α-tocopherol [23,28–32].  

The stability of tocopherol and nitrogen species derivative depends on the structure of the chromanol 

ring [32]. The tocopherols with a free 5 position on the chromanol ring (γ- and δ-tocopherol) are 

expected to react with nitrogen species forming C-nitroso derivatives at this position [32]. Both  

α-tocopherol and γ-tocopherol react with nitrogen dioxide NO2; α-tocopherol forms an intermediate 

tocopheroxide analogue while γ-tocopherol may form nitric oxide (NO) or a stable nitro derivative  

(5-nitro-γT) [32]. α-Tocopherol is trimethylated, and consequently, the nitrosating agent only has the 

possibility to add to the para-position on the chromanol ring of α-tocopherol, forming a highly 

unstable compound and may form toxic N-nitroso-derivatives from amines [32]. In addition, α-tocopherol 

may react with nitrous acid to yield α-tocopherol quinone and nitrogen monoxide gas [33]. This may 

lead to highly instable derivatives which may act as nitrosation catalysts for secondary amines.  

The high hydrogen donation ability by α-tocopherol may cause undesirable side effects, such as  

pro-oxidant and toxic nitro derivatives [34].  

Tocopherols are recognized for their inhibition of lipid oxidation [35]. The antioxidant properties 

are mostly due to the phenolic hydrogens in the chromanol ring that are donated to lipid free  

radicals [36]. α-Tocopherol is trimethylated at the 5-, 7-, and 8-positions on the chromanol ring,  

γ-tocopherol is dimethylated at 7- and 8-positions, and δ-tocopherol is monomethylated at the  

8-postion on the chromanol ring. The structural difference in the chromanol ring may be responsible 

for the difference in activity of each individual tocopherol form. The ortho-positions (positions 5 and 7) 

for the methyl groups on the chromanol ring enhance the antioxidant properties of tocopherols and 

increases the solubility in lipid substrates [33]. Thus, α-tocopherol with two ortho-methyl groups is 

expected to be a more potent hydrogen donor than either γ-tocopherol (one ortho methyl group) and  

δ-tocopherol (zero ortho methyl group) [33]. Although α-tocopherol may be a better antioxidant,  

α-tocopherol consequently has a greater capacity than γ-tocopherol and δ-tocopherol to act as a 
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prooxidant when present in high concentrations in vegetable oils, and with transition metal ions, lipid 

peroxides, and other oxidizing agents [33,34]. 

α-Tocopherol has been the most widely studied form of vitamin E for the prevention and treatment 

of cancer [37–40]. Although the biological effects of α-tocopherol have been investigated over many 

decades, our current understanding of its role in inhibiting breast carcinogenesis remains incomplete [41]. 

The structural difference of the individual tocopherols plays a role in the variance of antioxidant 

properties, lipophilicity, and the ability to trap reactive nitrogen species (RNS). Both γ- and δ-tocopherol, 

but not α-tocopherol, show promise as chemopreventive agents in animal models [7,42,43]. In addition,  

γ-TmT is a mixture of tocopherols enriched with γ-tocopherol and is readily available and inexpensive, 

while individual variants remain expensive to purify. As a result, γ-TmT may be more practical rather 

than individual tocopherols for the prevention of breast cancer.  

2. Subtypes of Breast Cancer 

Breast cancer is one of the most common malignancies affecting women and is the second leading 

cause of cancer death in women [44]. The etiology and pathogenesis of breast cancer remains poorly 

understood. Breast cancer is a heterogeneous disease that can be classified into subtypes based on 

immunohistochemical markers. The subtypes are: estrogen receptor (ER) positive luminal A, ER positive 

luminal B, human epidermal growth factor receptor-2 positive (HER2 positive), and basal-like [45].  

2.1. Estrogen Receptor (ER) Positive  

Estrogen receptor positive tumors are classified as a luminal subtype of breast cancer and are 

reported in 60–70% of cases [45]. Luminal tumors activate ER-responsive genes, other genes that 

encode characteristic proteins of luminal epithelial cells of origin, and express luminal cytokeratin  

8/18 [45]. Luminal A subtype is either ER positive or progesterone receptor (PR) positive but is 

negative for HER2. Luminal B subtype can be classified as ER positive or PR positive and is positive 

for HER2 [46]. The prognosis for luminal A is better than luminal B and typically responds more 

effectively to selective estrogen receptor modulators, such as tamoxifen [45]. 

Estrogens have been implicated in breast cancer; however, the mechanism of action still remains 

unclear. One theory suggests that the mechanism is dependent on the activation of the ER. Estrogen 

induces breast cancer through stimulation of cellular proliferation, resulting in more opportunities for 

accumulation of genetic damages leading to carcinogenesis [47]. Another possible mechanism of 

action may be through the metabolism of estrogen, which may induce oxidative stress and play a key 

role in mammary cancer development [48,49]. 17β-Estradiol and estrone are continuously interconverted 

by 17β-estradiol hydroxysteroid dehydrogenase (or 17β-oxidoreductase) and are the two major 

endogenous estrogens. The carbon position of the estrogen molecules that are hydroxylated differs 

among various tissues in the body and each reaction is probably catalyzed by various CYP enzymes. 

For example, estrogen may be metabolized by CYP 1A1 to form 2-hydroxyestradiol (2-OHE2) or by 

CYP 1B1 to form 4-hydroxyestradiol (4-OHE2). These catechols may be methylated by a phase II 

enzyme, catechol o-methyltransferase (COMT), and excreted out of the body [50]. The 2-OHE2 

metabolite is rapidly methylated by COMT, while the 4-OHE2 metabolite is methylated more slowly 

and thus highly genotoxic [49]. If catechol estrogens are not conjugated (mostly 4-OHE2), it may lead 
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to the formation of semiquinones and subsequently quinones, both of which are electrophiles capable 

of covalently binding to nucleophilic groups on DNA which may form DNA-adducts [47]. The 

protective phase II enzyme, NAD(P)H dehydrogenase, quinone 1 (NQO1), catalyzes the reduction of 

quinones back to catechol estrogens [51].  

Under normal conditions, reactive oxygen species (ROS) or RNS are neutralized by detoxifying and 

antioxidant enzymes [43]. Oxidative stress and/or electrophilic stress during redox cycling of catechol 

estrogens could contribute to nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation. The estrogen 

metabolites, 4-OHE1, 4-OHE2, and 2-OHE2 were capable of activating Nrf2, while estradiol did  

not [52]. This suggests that a catechol structure is required for activation of Nrf2. Estrogen metabolites 

may exert DNA mutations from ROS or DNA mutations which may lead to the accumulation of 

genomic alterations essential for mammary tumorigenesis [47]. In one study, 49 women without breast 

cancer were observed with larger amounts of 2-OHE2 than 4-OHE2 [53]. The 28 women with breast 

carcinoma expressed 4-OHE2 levels that were 3.5 times more abundant than 2-OHE2 [53]. This 

supports the finding that estrogen and its metabolites, mainly 4-OHE2, may be carcinogenic agents in 

breast epithelial cells [53].  

2.2. Human Epidermal Growth Factor Receptor 2 (HER2) 

HER2 amplification and overexpression has been reported in 18–25% of human breast cancers [54]. 

HER2 positive breast cancer can be characterized as HER2 positive, negative for ER, and poor 

differentiation [55]. The prognosis for HER2 positive is worse than luminal breast cancer. HER2 

positive breast cancer may be treated with monoclonal antibodies such as trastuzumab (binds to 

domain IV on the HER2 receptor); however, there are HER2 positive tumors that are resistant to 

trastuzumab treatment [55]. Other treatments include monoclonal antibody pertuzumab (binds to 

domain II of the HER2 receptor) [56], trastuzumab antibody conjugated with mertansine (DM1), 

which is internalized and exerts its cytotoxic effects inside the cell [57], tyrosine kinase inhibitors [58], 

and HSP90 inhibition which leads to proteasomal degradation [59].  

HER2 is a member of the epidermal growth factor (ErbB) family of transmembrane receptors which 

are potent mediators of normal cell growth and development [60]. The ErbB family is classified as a 

tyrosine kinase receptor and consists of EGFR (HER1), ERBB2 (HER2), ERBB3 (HER3), and ERBB4 

(HER4). The structure consists of an extracellular domain at which the ligand binding occurs, the  

α-helical transmembrane segment, and the intracellular protein tyrosine kinase domain [61]. ErbB 

receptors normally exist as inactive monomers until a ligand initiates a conformational change to 

induce dimerization with another receptor. HER2 is unique in the fact that it already possesses an active 

tyrosine kinase domain and has no direct ligand while HER3 lacks an intrinsic tyrosine kinase activity 

and cannot form homodimers with itself [62]. The HER2-HER3 heterodimer is considered the most 

potent and active ErbB dimer [63–65]. HER2 signaling leads to oncogenic cell survival and proliferation 

through the MAPK pathway [66]. HER3 can directly bind to the p85 subunit of PI3K to stimulate the 

PI3K-Akt pathway while EGFR and HER2 have additional activation steps by binding to the adaptor 

proteins GRB2 (growth factor receptor bound 2) and GAB1 (GRB2-associated binding protein 1) [67]. 

Thus, the HER2-HER3 dimer leads to the MAPK pathway to stimulate angiogenesis, proliferation, and 

PI3K-Akt pathway to promote cell survival, suppression of apoptosis, and cell cycle control [66].  
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2.3. Basal-Like 

Basal-like subtype is characterized by ER and HER2 negativity, high expression of basal stratified 

epithelial cytokeratins 5, 6, and 17, and expression of proliferation-related genes [45,68]. The 

prognosis of basal-like tumors is poor, with frequent mutations in TP53 [69]. BRCA1 mutations are 

also generally basal-like breast tumors [68,69]. The incidence of basal-like breast cancer may be 

increased by both race and age, where premenopausal African American women developed basal-like 

tumors (39%) compared to postmenopausal African American women (14%) and non-African American 

women (16%) [70]. In addition, microarray analysis revealed that younger patients of any ethnicity 

tend to form basal-like tumors over other types [69,70].  

3. Cellular Events and Molecular Targets in Breast Cancer  

Each subtype of breast cancer responds differently to current treatments and therapy. To date, there 

is limited in vitro, in vivo, and human data which connect individual tocopherols for prevention or 

treatment for each subtype of breast cancer. Chemoprevention is an approach to prevent cancer before 

a series of genetic and epigenetic events establish which otherwise could lead to malignancies. Thus, 

prevention of breast cancer is essential, and the success of prevention strategies depends on 

understanding the molecular mechanism of breast cancer initiation and progression. The mechanisms 

of anti-cancer activity of tocopherols have been investigated for many years [39,71,72] and can be 

summarized as follows: (a) inhibition of ER (b) increasing peroxisome proliferator activated receptor γ 

(PPARγ) expression and activity, (c) induction of Nrf2, (d) antioxidative and anti-inflammatory 

activities, and (e) induction of apoptosis [28,39,43,72,73].  

3.1. Estrogen Receptor (ER) 

ER is a nuclear receptor that stimulates cell growth and proliferation [48]. The ER is a ligand-activated 

transcription factor that, when bound to estrogen, induces a conformational change that allows 

dimerization and binding to estrogen response element sequences. There are two known ER receptors: 

ERα and ERβ. The DNA binding domain of the two different receptors is highly homologous while the 

ligand binding domain is 60% homologous [74]. ERα and ERβ are both present in breast tissue, but the 

ratio of ERα to ERβ is increased in breast tumors [74]. The role of ERβ in breast tumorigenesis is not 

well understood. Some studies have shown that activation of ERβ in breast cancer cell lines inhibits 

cell growth, and the dimerization of ERβ with ERα silences the growth-promoting effects of ERα [74,75].  

Vitamin E has been shown to inhibit ER-positive cell proliferation and work as antagonists of 

estrogen signaling in MCF-7 and T47D breast cancer cells [73]. MCF-7 cells were treated with γ-TmT, 

and the expression of ERα was down-regulated [7]. In mammary tumors, ERα mRNA and protein 

levels were down-regulated by the treatment of γ-TmT [7]. Administration of γ-TmT reduced ERα 

mRNA and protein levels in hyperplastic mammary tissues in estrogen-treated ACI rats, while mRNA 

levels of ERβ were increased [76]. Furthermore, dietary γ-TmT decreased circulating levels of E2 in 

the serum, suggesting that γ-TmT may modify the response to estrogen [76].  
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3.2. Peroxisome Proliferator Activated Receptor γ (PPARγ) 

Belonging to the nuclear hormone receptor superfamily, PPAR comprises of 3 subtypes (α, γ, and δ) 

which are ligand-regulated transcription factors [77]. PPARγ is known to be involved in fatty acid 

uptake and transport and acts to control inflammation by inducing apoptosis and inhibiting cell 

proliferation cell survival [78,79]. PPARγ signaling is connected to the inhibition of inflammatory 

markers (COX-2, cytokines, and inducible nitric oxide synthase), PI3K/Akt pathway, and angiogenesis 

while inducing CDK inhibitors, differentiation and apoptosis markers in cancers [79]. Particularly in 

breast cancer, stimulation of PPARγ increases the degradation of cell cycle genes (Cyclin D1), 

interferes with estrogen receptor signaling, and NF-κB signaling cascades [80,81].  

When ligand-activated, PPARγ forms a heterodimer with the retinoid X receptor [78]. A known 

PPARγ ligand is troglitazone [27], and the chromanol ring of tocopherol is structurally similar. 

Recently it was thought that tocopherols might function as a PPARγ ligand because of this structural 

resemblance, but it was shown that γ-tocopherol does not directly bind to PPARγ [81]. Instead,  

γ-tocopherol induces the formation of 15-S-hydroxyeicosatetraenoic acid, an endogenous PPARγ 

ligand [81].  

Tocopherols, with γ-tocopherol displaying the strongest activity, increased mRNA and protein 

levels of PPARγ in colon cancer cells [27] and transcriptional activity in keratinocytes cell line [82] 

(Table 1). In MCF-7 and T47D breast cancer cells, γ-TmT, γ-tocopherol, and more strongly δ-tocopherol 

enhance the transactivation of PPARγ [7]. Comparable to the finding in the N-methyl-N-nitrosourea 

(NMU)-induced breast cancer model in Sprague-Dawley rats [7], PPARγ was increased at both the 

protein and mRNA level in the mammary gland of ACI rats when treated with γ-TmT while ERα 

expression was decreased [76]. Since PPARγ transactivation can be suppressed by ERα binding to the 

PPAR response element [83], the inhibition of ERα expression by tocopherols may result in the 

activation of PPARγ. Thus, tocopherols may indirectly activate PPARγ, and possibly through this 

pathway may interfere with ERα expression, inhibit cell cycle progression and induce apoptosis to 

prevent breast cancer.  

Table 1. Tocopherols induce PPARγ levels. 

Tocopherol Cell type/Cancer model Result References

γ-Tocopherol Colon cancer cells (SW 480) ↑ PPARγ mRNA and protein level [27] 
γ-Tocopherol Keratinocytes cells (NCTC 2544) ↑ PPARγ mRNA levels [82] 

γ-TmT,  
γ-Tocopherol, 
δ-Tocopherol 

Breast cancer cells (MCF-7 and T47D) ↑ PPARγ transactivation [7] 

γ-TmT 
NMU-induced mammary tumors in 

female Sprague-Dawley rats 
↑ PPARγ mRNA and protein level [7] 

γ-TmT 
Estrogen-induced mammary 

hyperplasia in female ACI rats 
↑ PPARγ mRNA and protein level [76] 

3.3. Nuclear Factor (Erythroid-Derived 2)-Like 2 (Nrf2) 

Nrf2 is a transcription factor that is a key regulator of cellular antioxidant and detoxification 

enzymes [84]. Initially, Nrf2 activity is inhibited when bound to kelch-like-ECH-associated protein 1 
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(KEAP1) in the cytoplasm and is marked for degradation through the proteasomal pathway [84]. 

Under oxidative stress or chemopreventive agents, KEAP1 undergoes covalent modification which 

allows the release and the consequential activation of Nrf2 [84–86]. As a result, Nrf2 translocates into 

the nucleus, dimerizes with small Maf proteins, and binds to the antioxidant-responsive element (ARE) 

to stimulate gene expression of antioxidant enzymes (thioredoxin, superoxide dismutase[SOD], catalase, 

glutathione peroxidase, and heme oxygenase-1[HO-1]), and phase II detoxification enzymes (glutathione 

s-transferases[GST], UDP-glucuronosyltransferases, sulfotransferases, and NQO1) [43,84–87]. As a 

result, these detoxifying and antioxidant enzymes protect cells from neoplastic transformation by 

maintaining oxidative stress homeostasis [43,88]. A loss of Nrf2 may lead to a decrease in cellular 

defense against oxidative stress which may result in tumorigenesis [89].  

In human retinal pigment epithelial cells, pretreatment with α-tocopherol inhibited ROS generation, 

increased Nrf2 expression, and, induced phase II enzymes (glutamate cysteine ligase, NQO1, HO-1, 

GST, and SOD) [90] (Table 2). The expression of Nrf2 was suppressed in prostate tumors [91], and 

treatment with γ-TmT upregulated the expression of Nrf2 and detoxifying enzymes, and inhibited 

tumor development in TRAMP mice [43,91]. We recently demonstrated that when estrogen-treated 

ACI rats were administered γ-TmT diet, the protein expression level of Nrf2 was increased in the 

mammary gland and liver, and phase II enzymes were increased in the liver [92]. The mRNA 

expressions of phase II detoxifying enzymes were induced in the mammary gland and liver by γ-TmT 

treatment. This may indicate that γ-TmT induces the transcription of Nrf2-ARE-target genes and 

exhibits protective defense against estrogen induced oxidative stress.  

Table 2. Tocopherols induce Nrf2 and related antioxidant enzymes. 

Tocopherol Cell type/Cancer model Result References 

α-Tocopherol 
Human retinal pigment 

epithelial cells (ARPE-19) 
↑ Nrf2 protein levels, ↑ glutamate 

cysteine ligase, NQO1, HO-1, GST, SOD 
[90] 

γ-TmT 
Prostate carcinogenesis in 

TRAMP male mice 

↑ Nrf2 protein levels, ↑ GSTm1, 
UGT1A1, HO-1, catalase, SOD, 

glutathione peroxidase, 
[43] 

γ-TmT 
Estrogen-induced mammary 

hyperplasia in female ACI rats 
↑ Nrf2 protein levels [92] 

3.4. Cell Proliferation and Apoptosis 

Apoptosis is defined as programmed cell death with distinct morphological and biochemical 

changes [93,94]. During the earlier stages, the apoptotic cell shrinks in volume and the nuclear DNA 

condenses, while the cellular membrane remains intact [94,95]. Apoptotic bodies are formed and the 

tightly packed organelles leave the cell through “budding” [96]. There are two distinct apoptotic 

pathways: extrinsic and intrinsic [97]. Caspases have proteolytic activity and are able to cleave 

proteins. There are ten major caspases with three main sub groups: initiators (−2, −8, −9, and −10), 

effectors (−3, −6, and −7), and inflammatory (−1, −4, and −5) [98,99].  

In breast, colon, lung, and prostate cancer cell lines, γ-tocopherol was shown to be more effective at 

inhibiting cell growth than α-tocopherol [7,25,26,100]. Our in vitro data showed that treatment with  

γ-TmT, γ-, and δ-tocopherol inhibited cell proliferation in MCF-7 breast cancer cells in a  
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dose-dependent manner, while α-tocopherol did not [7]. In addition, a colony growth inhibition assay 

utilizing MDA-MB-435 breast cancer cells showed that γ- and δ-tocopherol showed potential to inhibit 

colony formation, whereas α-tocopherol was not active [39].  

γ-Tocopherol has been shown to induce apoptosis in breast, colon, and prostate cancer 

cells [26,100–103] (Table 3). Yu et al. showed that apoptosis was induced by δ-tocopherol in MCF-7 

and MDA-MB-435 breast cancer cells [102]. Furthermore, γ-tocopherol, but not α-tocopherol, induced 

cleaved-caspase 8 and 9 in MDA-MB-435 human breast cancer cells [103]. In one xenograft model, 

when treated with γ-tocopherol, tumor growth was inhibited, and TUNEL assay determined that there 

was an increase in apoptotic cells [22]. γ-Tocopherol and to a greater extent, δ-tocopherol, were shown 

to inhibit tumor growth more strongly than α-tocopherol in a lung xenograft model, while α-tocopherol 

did not [42]. 

Table 3. Tocopherols inhibit cell proliferation and induce apoptosis. 

Tocopherol Cell type/Cancer model Result References 

γ-Tocopherol 
Prostate cancer cells (LNCaP and 

PC-3) and lung cancer cells (A549) 
↓ Proliferation [101] 

γ-Tocopherol and 
combination of  
γ-Tocopherol and  
δ-Tocopherol 

Prostate cancer cells (LNCaP) ↑ Apoptosis [101] 

γ-Tocopherol 
Colon cancer cells (SW480,  
HCT-15, HCT-116, HT-29) 

↓ Proliferation, ↑ Apoptosis [100] 

γ-Tocopherol Prostate cancer cells (LNCaP) ↓ Proliferation, ↑ Apoptosis [101] 

δ-Tocopherol 
Breast cancer cells (MCF-7  

and MDA-MB-435) 
↑ Apoptosis [102] 

γ-Tocopherol 
Breast cancer cells (MCF-7 and 

MDA-MB-435) and murine 66cl-4 
↓ Proliferation, ↑ Apoptosis [103] 

γ-Tocopherol 
Bresat cancer MDA-MB-231 

xenograft in nu/nu mice 
↑ Apoptosis [22] 

γ-Tocopherol,  
δ-Tocopherol 

Lung cancer H1299 xenograft in 
nu/nu mice 

↑ Apoptosis [42] 

γ-TmT 
NMU-induced mammary tumors in 

female Sprague-Dawley rats 
↓ Proliferation [104] 

γ-TmT 
NMU-induced mammary tumors in 

female Sprague-Dawley rats 
↑ Apoptosis [7] 

γ-Tocopherol,  
δ-Tocopherol,  

γ-TmT 

NMU-induced mammary tumors in 
female Sprague-Dawley rats 

↑ Apoptosis [105] 

γ-TmT 
Estrogen-induced mammary 

hyperplasia in female ACI rats 
↓ Proliferation, ↑ Apoptosis [76] 

In vivo models showed that mammary tumor growth and burden was decreased by γ-TmT diet [7,104]. 

Proliferating cell nuclear antigen (PCNA) was decreased in mammary hyperplasia [76] and in 

mammary tumors when administered γ-TmT [104]. Administration of γ-TmT increased the levels of 

cleaved-caspase 3 increased in mammary hyperplasia [76] and in mammary tumors [7]. Furthermore, 
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γ-TmT and individual tocopherols were administered to Sprague-Dawley rats which were induced with 

NMU carcinogen; treatment with γ-TmT, γ-, and δ-tocopherol decreased PCNA levels while increased 

the levels of cleaved-caspase 3 in mammary tumors, whereas α-tocopherol was not active [105]. At 

high doses, tocopherols may induce DNA damage leading to apoptosis. There is the possibility of 

tocopherols, especially α-tocopherol, to act as a pro-oxidant to create ROS or RNS. 

3.5. Cyclooxygenase-2 (COX-2) and Anti-Inflammatory Activities  

COX-2 is an inducible prostaglandin synthase which is upregulated by growth factors, tumor 

promoters, and cytokines [106], and responsive to several oncogenes, such as HER2 [107,108].  

In inflamed and neoplastic tissues, an increase in prostaglandin synthesis is detected [107]. Around 

40% of aggressive human breast cancers are associated with high levels of COX-2 which correlates 

with large tumor sizes, high proliferation rates, and metastases [108]. Celecoxib, a COX-2 inhibitor, 

was fed to HER2/neu transgenic mice and found that there was a 50% reduction in mammary 

prostaglandin E2 (PGE2) levels and delayed tumor onset [109].  

Tocopherols are known antioxidants and anti-inflammatory agents, and γ-tocopherol is more 

effective in inhibiting the activity of COX-2 and trapping reactive nitrogen species than α-tocopherol 

(Table 4) [23,28–31,110]. In addition, γ-tocopherol was shown to reduce PGE2 synthesis in 

macrophages and human epithelial cells [28], and the inhibitory effect was due to the decrease of 

COX-2 activity [28,111]. In our study, serum levels of PGE2 and 8-isoprostane, a marker of oxidative 

stress, were reduced when estrogen-induced ACI rats were treated with γ-TmT, and COX-2 levels 

decreased in the mammary gland when treated with dietary γ-TmT [76]. γ-TmT treatment may reduce 

inflammation in an estrogen-induced model of mammary hyperplasia and tumorigenesis.  

Table 4. Tocopherols decrease COX-2 and RNS. 

Tocopherol Cell type/Cancer model Result References

γ-Tocopherol 
Carrageenan-induced inflammation 

in Wistar male rats 
↓ RNS, ↓ PGE2, ↓ LTB4, ↓ TNF-α [29] 

γ-Tocopherol 
Macrophages (RAW264.7) and 
human epithelial cells (A549) 

↓ COX-2, ↓ PGE2 [28] 

γ-Tocopherol 
Zymosan-induced acute peritonitis 

in male Fischer 344 rats 
↓ RNS [30] 

γ-Tocopherol Human plasma ↓ RNS, ↓ peroxynitrite [31] 

γ-Tocopherol,  
δ-Tocopherol 

Human epithelial cells (A549) ↓ COX-2 [111] 

γ-TmT 
Estrogen-induced mammary 

hyperplasia in female ACI rats 
↓ COX-2, ↓ PGE2, ↓ 8-isoprostane [76] 

4. Studies on Tocopherols and Human Cancers 

4.1. Case-Control and Cohort Studies 

There are several case-control, cohort, and intervention studies on vitamin E and human cancers, 

but our main focus will address breast cancer. Numerous case-control studies utilized vitamin E and 
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11 studies found a risk reduction [112–122], however, 13 studies did not find an association with 

breast cancer incidence (Table 5) [123–135]. In the Shanghai Breast Cancer Study, they suggest that 

vitamin E supplement may reduce the risk of breast cancer among women who have low dietary 

intake [122]. To date, 12 cohort studies did not find any relation between vitamin E and prevention of 

breast cancer risk (Table 6) [136–147]. In one cohort study, the European Prospective Investigation 

into Cancer and Nutrition (EPIC) trial observed that vitamin E did not reduce breast cancer risk, but 

there was a weak risk reduction in post-menopausal women [145]. While investigating vitamin 

supplement during breast cancer treatment and survival, Nechuta et al. determined that vitamin E 

supplementation in the first 6 months after diagnosis may reduce risk of mortality and recurrence [148].  

Table 5. Case-control studies of vitamin E and breast cancer risk. 

Study Population Year Case/Control a Intake or blood levels 
Relative risk (95% CI) 

for highest vs. lowest level 
Conclusion

[124] Canada 1989–1993 223/85 

Serum or adipose tissue 

levels of α-T: levels were 

not specified 

Serum α-T:  

0.85 (0.45–1.59) 

Adipose tissue α-T: 

1.34 (0.73–2.47) 

No 

association

[125] US 1976–1998
969/969 

 

Serum α-T or γ-T:  

levels were not specified 

Serum α-T: 0.79  

(0.57–1.08) 

Serum γ-T: 0.96  

(0.71–1.30) 

No 

association

[126] US 1975–1994

244/244  

(1974 Study) 

115/115  

(1989 Study) 

Serum α-T:  

0.91–1.40 mg/dL;  

0.99–1.65 mg/dL 

Serum γ-T:  

0.15–0.32 mg/dL;  

0.13–0.34 mg/dL 

Serum α-T: 0.94  

(0.52–1.73);  

0.67 (0.28–1.62) 

Serum γ-T: 0.70  

(0.40–1.23);  

0.80 (0.33–1.93) 

No 

association

[127] US 1975–1993 64/64 
Serum α-T: 1.31 mg/dL 

Serum γ-T: 0.25 mg/dL 

α-T: 0.46 (0.23–0.64) 

γ-T: 0.53 (0.32–0.69) 

No 

association

[113] India  
Pre-M: 28/23 

Post-M: 29/19 

Serum α-T:  

38 vs. 25 μmol/L 

Serum γ-T:  

30 vs. 25 μmol/L 

Serum α-T: P < 0.05 

Serum γ-T: p < 0.02 

Risk 

reduction 

[129] US  27/28 

Serum α-T:  

≤20.5 ~ ≥35 μmol/L 

Serum γ-T:  

≤2.12~ ≥7.573 μmol/L 

Serum α-T:  

0.76 (0.10–5.75) 

Serum γ-T: 

0.31 (0.04–1.93) 

No 

association

[130] Greek  
Pre-M: 270/505 

Post-M: 550/1041
Vit E: <5.2 ~ ≥8.6 IU/day

Pre-M: 0.50 (0.25–1.02) 

Post-M: 0.85 (0.53–1.36) 

No 

association

[114] Finish  Pre-M: 119/324 Vit E: ≤7 ~ >13 mg/day 0.5 (0.2–1.0) 
Risk 

reduction 

[115] Uruguay  400/405 Vit E: 4.7 ~ 9.7 mg/day 0.4 (0.26–0.62) 
Risk 

reduction 

[131] Italian  
Pre-M: 989/841 

Post-M: 1577/1745
Vit E: <8.5 ~ 11.7 mg/day

Pre-M: 1.27 (0.9–1.78) 

Post-M: 1.16 (0.92–1.46) 

No 

association
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Table 5. Cont. 

[132] US 1977–1989 105/203 
Serum α-T:  

≤21.6 ~ ≥31.3 μmol/L 
1.2 (0.5–2.8) 

No 

association

[116] Italy  
Pre-M: 988/843 

Post-M: 1572/1742

Vit E: levels were not 

specified 

Pre-M: 0.8 (0.7–1.0) 

Post-M: 0.75 (0.6–0.9) 

Risk 

reduction

[117] US  297/311 α-T: <6 ~ ≥11 mg/day 0.55 (0.34–0.88) 
Risk 

reduction

[112] US  

Pre-M without 

family history: 

224/251 

α-T: ≤6.3 ~ >10.4 IU/day 0.5 (0.2–1.0) 
Risk 

reduction

[118] US  Post-M: 313/349 
Vit E: 11 vs. 5.4 mg/day 

(median) 
0.4 (0.2–0.9) 

Risk 

reduction

[119] Malaysia  57/139 
Vit E: 6.1 vs. 6.9 mg/day 

(mean) 
2.12 (1.00–4.21) 

Risk 

reduction

[128] South Korea 2004–2006 362/362 Vit E: 10.6 vs. 11.2 mg/day 0.66 (0.41–1.08) 
No 

association

[120] Switzerland 1993–1999 289/442 Vit E: 9.4–18.1 mg/day 0.49 (0.35–0.71) 
Risk 

reduction

[121] Italy 1991–1994 2569/2588 Vit E: 7.21–13.43 mg/day 0.75 (0.6–0.9) 
Risk 

reduction

[123] Germany 1998–1999 310/353 Vit E: 7.1–12.7 mg/day 1.08 (0.58–2.03) 
No 

association

[122] China 

1996–1998 

and  

2002–2004

3454/3474 Vit E: levels not specified 

Low supplemental Vit E: 

0.7 (0.5–1.0) 

High supplemental Vit E: 

1.2 (0.9–1.6) 

Risk 

reduction

[133] US 1999–2004

1498/1559  

(Non-Hispanic 

white) 763/877 

(Hispanic) 

α-T: 108–224 mg/day 

β-T: 0.3–0.4 mg/day 

γ-T: 15.9–19.4 mg/day 

δ-T: 2.94–3.59 mg/day 

α-T: 0.87 (0.73–1.03) 

β-T: 1.10 (0.89–1.36) 

γ-T: 1.13 (0.89–1.44) 

δ-T: 1.10 (0.89–1.35) 

No 

association

[134] Denmark 1993–1997 418/394 

Dietary Vit E:  

4.30–14.8 mg/day 

Supplemental Vit E:  

0.94–78.23 mg/day 

Dietary Vit E:  

1.13 (0.61–2.10) 

Supplemental Vit E:  

1.00 (0.96–1.03) 

No 

association

[135] South Korea 1999–2000 224/250 
Dietary Vit E:  

6.26–12.71 mg/day 

Dietary Vit E:  

0.71 (0.39–1.27) 

No 

association
a Pre-menopausal (Pre-M) or postmenopausal (Post-M) women. 

Previously, detailed assessments revealed that vitamin E (α-tocopherol) supplements did not protect 

against breast cancer [149,150]. Recently, Fulan et al. performed a meta-analysis on 38 studies 

between vitamin E and breast cancer [151]. For case-control studies, dietary vitamin E and total 

vitamin E reduced breast cancer risk by 18% and 11%, respectively [151]. When the cohort studies 

were pooled with the case-control studies, dietary vitamin E and total vitamin E both became 

nonsignificant [151]. Thus, a conclusion remains elusive between breast cancer and vitamin E. The 

term “vitamin E” is used loosely, and a distinction in these case-control and cohort studies need to 

clarify which variant of vitamin E is utilized.  
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Table 6. Cohort studies of vitamin E and breast cancer risk. 

Study Population Year Case/Control a Intake or blood levels 
Relative risk (95% CI) for 

highest vs. lowest level 
Conclusion

[136] Canada 1982–1987 519/1182 α-T: <3 vs. >7 mg/day α-T: 1.05 (0.65–1.70) 
No 

association 

[137] Sweden 1987–1990 1271/59036 
Vit E: 9.3 vs. 3.8 mg/day 

(median) 
0.83 (0.6–1.14) 

No 

association 

[138]   
Pre-M: 

784/53938 

Vit E: 10 vs. 5 IU/day 

(median) 
0.81 (0.64–1.02) 

No 

association 

[139] Netherlands  
Post-M: 

650/62573 

Vit E: 19.8 vs. 6.9 mg/day 

(median) 
1.25 (0.85–1.85) 

No 

association 

[140] Finland  88/4697 
Vit E: levels were not 

specified 
1.08 

No 

association 

[141] US 1986 570/21782 Vit E: 10 vs. 5 mg/day 0.81 (0.64–1.02) 
No 

association 

[142] US 1976–1982 1439/89494 

Dietary Vit E:  

<3.9 ~ ≥24.1 IU/day 

Supplemental Vit E:  

600 vs. 0 IU/day 

Dietary Vit E:  

0.90 (0.77–1.06) 

Supplemental Vit E:  

1.01 (0.69–0.49) 

No 

association 

[143] Canada  325/628 
Vit E: ~18 IU/day 

(median) 
1.32 (0.85–2.05) 

No 

association 

[144] US 1980–1987 
Post-M: 

344/18586 
Vit E: <4.3 ~ ≥9.3 mg/day 0.86 (0.61–1.21) 

No 

association 

[145] Europe 1992–2000 7502/334493 Vit E: 5.4–19.5 mg/day 0.92 (0.77–1.11) 
No 

association 

[146] US 1993–1998 2879/81926 

Dietary Vit E:  

6.2–9.4 mg/day 

Supplemental Vit E:  

0–424 mg/day 

Dietary Vit E:  

1.03 (0.91–1.17) 

Supplemental Vit E:  

1.01 (0.90–1.14) 

No 

association 

[147] US 1991–1999 
Pre-M: 

714/90655 

Vit E: 7–59 mg/day 

Dietary Vit E:  

6–10 mg/day 

Vit E: 1.13 (0.89–1.43) 

Dietary Vit E:  

1.17 (0.92–1.50) 

No 

association 

a Pre-menopausal (Pre-M) or postmenopausal (Post-M) women. 

4.2. Intervention Studies 

The Alpha-Tocopherol, Beta-Carotene (ATBC) Cancer Prevention Study examined the prevention 

of lung and other cancers with supplementation of all-racemic-α-tocopherol acetate (50 mg/day) and  

β-carotene (20 mg/day) daily, which did not have an effect on lung or colorectal cancer [152,153]. 

However, the ATBC study found that males supplemented with α-tocopherol acetate (50 mg daily) had 

32% lower prostate cancer incidence and 41% reduction in prostate cancer deaths [154]. The Physicians’ 

Health Study II gave supplements of 400 IU of α-tocopherol every other day or 500 mg of vitamin C 

daily and concluded that neither vitamin E nor C reduced the risk of prostate cancer [155]. The 

Selenium and Vitamin E Cancer Prevention Trial (SELECT) administered selenium (200 μg/day) and 

all rac-α-tocopheryl acetate (400 IU/day) and revealed that selenium or vitamin E, alone or in 
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combination, did not prevent prostate cancer [156]. These previous clinical and epidemiological 

studies have been primarilyutilized α-tocopherol, and not a mixture of tocopherols or other variants of 

tocopherols for chemoprevention [37–40].  

There have been 3 breast cancer randomized controlled trials (RCT), which administered 

supplemental natural-source vitamin E (either 400 IU or 600 IU), and concluded that there was no 

overall benefit of vitamin E supplementation [37,157,158]. Only one RCT specified using the variant 

α-tocopherol [158], but in most cases, the studies do not identify which variant of vitamin E  

was utilized. Thus, epidemiological evidence between vitamin E and breast cancer is limited and 

inconsistent [41]. There are four tocopherols and four tocotrienols that comprise vitamin E, each which 

differ in chemical structure, bioavailability, and activity. Results will remain inconclusive unless the 

specific variant is identified for each study.  

5. Conclusion 

α-Tocopherol has been investigated over many years, while data are lacking for γ- and  

δ-tocopherols. A γ-enriched mixture of tocopherol is commonly found as a by-product of corn oil and 

should also be explored. The status of tocopherol as a chemopreventive agent remains unclear due to 

inconsistent results. In previous case-control and cohort studies, the term vitamin E may be vague, 

with few studies specifying which variant is utilized. A distinction needs to be addressed to determine 

the efficacy of each tocopherol variant and its chemopreventive activity. It has been suggested that  

γ-TmT, γ-tocopherol, and more recently δ-tocopherol may contribute to inhibiting tumor formation. 

Possible mechanism of actions in inhibiting breast cancer could be: inducing PPARγ expression and as 

a result reducing the expression of ERα, inducing Nrf2 which consequently reduces inflammation and 

oxidative stress, and inhibiting cell proliferation while inducing apoptosis. Further investigation is 

warranted with γ-TmT, γ- and δ-tocopherol in human prevention trials.  
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