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Abstract: Scientific literature is increasingly reporting on dietary deficiencies in many 

populations of some nutrients critical for foetal and infant brain development and function. 

Purpose: To highlight the potential benefits of maternal supplementation with 

docosahexaenoic acid (DHA) and other important complimentary nutrients, including 

vitamin D, folic acid and iodine during pregnancy and/or breast feeding for foetal and/or 

infant brain development and/or function. Methods: English language systematic reviews, 

meta-analyses, randomised controlled trials, cohort studies, cross-sectional and  

case-control studies were obtained through searches on MEDLINE and the Cochrane 

Register of Controlled Trials from January 2000 through to February 2012 and reference 

lists of retrieved articles. Reports were selected if they included benefits and harms of 

maternal supplementation of DHA, vitamin D, folic acid or iodine supplementation during 

pregnancy and/or lactation. Results: Maternal DHA intake during pregnancy and/or 

lactation can prolong high risk pregnancies, increase birth weight, head circumference and 

birth length, and can enhance visual acuity, hand and eye co-ordination, attention, problem 

solving and information processing. Vitamin D helps maintain pregnancy and promotes 

normal skeletal and brain development. Folic acid is necessary for normal foetal spine, 

brain and skull development. Iodine is essential for thyroid hormone production necessary 

for normal brain and nervous system development during gestation that impacts childhood 

function. Conclusion: Maternal supplementation within recommended safe intakes in 

populations with dietary deficiencies may prevent many brain and central nervous system 

malfunctions and even enhance brain development and function in their offspring.  
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1. Introduction 

The foetus and breastfed infant is totally dependent on maternal nutrient status for growth and 

development. Recent research has shown that maternal dietary deficiencies of docosahexaenoic acid 

(DHA), vitamin D, folic acid and iodine are associated with a variety of poor foetal and/or infant 

health outcomes mostly impacting brain development and/or function in infancy and often throughout 

life. Therefore, adequate maternal nutrient intake is critical when planning to conceive and during 

pregnancy and lactation. 

A review of current literature was undertaken to summarize the potential benefits of maternal 

supplementation with DHA, vitamin D, folic acid and iodine during pregnancy and/or breast feeding 

for foetal and/or infant brain development and/or function. A systematic search was performed in 

MEDLINE for English-language articles published between January 2000 and February 2012 using 

broad search criteria including DHA and pregnancy, DHA and lactation, docosahexaenoic acid and 

pregnancy, docosahexaenoic acid and lactation, vitamin D and pregnancy, vitamin D and lactation, 

folic acid and pregnancy, folic acid and lactation, iodine and pregnancy and iodine and lactation. 

Additional studies including some prior to January 2000 were identified within the Cochrane Central 

Register of Controlled Trials and by reviewing reference lists from included studies and review 

articles. Titles and abstracts were reviewed and reports were selected for inclusion in the review if they 

were systematic reviews, meta-analyses, randomised controlled trials, cohort studies, cross-sectional or 

case-control studies and if they reported benefits and/or harms associated with maternal 

supplementation with DHA, vitamin D, folic acid or iodine during pregnancy and/or lactation. Studies 

that reported neither benefit nor harm were not included. 

Data was reviewed and summarized to discuss the relevance of dietary DHA, vitamin D, folic acid 

and iodine to foetal and infant brain development and function, to present evidence demonstrating 

dietary deficiency of these nutrients in many populations, to highlight the potential benefits of maternal 

supplementation during pregnancy and/or lactation on foetal and/or infant outcomes and to include 

safe intake recommendations.  

1.1. DHA 

Over the past three decades our diets have changed enormously. We have been encouraged to 

reduce fat intake while at the same time detrimental trans fatty acids have been introduced into the 

food chain. In response, many people have reduced intake of all dietary fat without realizing that there 

is a requirement for certain fats especially for women during pregnancy and while breast feeding, in 

particular the omega-3 fatty acid, docosahexanoic acid (DHA).  

Clinically established as a nutrient essential for the development of an infant’s brain and central 

nervous system, DHA occurs naturally in breast milk, and is added to infant formula [1]. In the last 

trimester of pregnancy, the foetal brain increases in size while rapidly accumulating DHA [2]. As 
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reported in this review, foetal and infant DHA deficiencies are associated with poor growth, and brain 

and eye development and function. Numerous observational studies have identified a link between 

maternal DHA intake during pregnancy and while breast feeding, and enhanced foetal and infant 

development and function. In addition, intervention trials have measured significant benefits for both 

the mother and baby.  

1.1.1. Importance of Fatty Acids in Brain Development and Function 

Fatty acids such as DHA are found in dietary fat and are components of every cell membrane in the 

body. The types of fatty acids in the diet influence body composition, and ultimately its function  

and health.  

Fatty acids are grouped into various categories: for example saturated fatty acids tend to be solid at 

room temperature and are abundant in butter. Polyunsaturated fatty acids (PUFAs) are liquid at room 

temperature and are the main components of vegetable oils such as corn, sesame and evening primrose, 

and are also found in fish and fish oils. PUFAs are often called “good fats” because eating a higher 

proportion of them compared to saturated fats can improve health. These are subdivided into two main 

categories, omega-6 and omega-3. Various long chain polyunsaturated fatty acids (LC-PUFAs) within 

these two categories can be synthesized de novo starting with dietary essential fatty acids (EFAs), the 

omega-6 linoleic acid (LA) and the omega-3 alpha-linolenic acid (ALA) respectively, through a multi-step 

process that is very slow and inefficient in humans [3,4]. Typically, only about 0.1% of dietary ALA is 

converted to DHA in normal healthy adults eating a Westernized diet [5], making routine dietary 

intake of DHA a necessity in extraordinary circumstances, such as in pregnancy and during lactation.  

About 60% of the dry weight of brain tissue is fat. The most abundant LC-PUFAs in the brain and 

those which are critical for proper brain, nervous system and eye development and function are DHA 

and the omega-6 arachidonic acid (AA). DHA and AA are highly concentrated in membrane 

phospholipids of the retina and brain, where they accumulate rapidly during foetal and infant growth 

spurts [6,7]. DHA is the main structural fatty acid in nerve cells and its presence helps to ensure nerve 

cell message transmission through its effects on ion channels, response to neurotransmitters [8], and 

formation of secondary messengers [9]. It may also protect against loss of scaffolding proteins [10,11] 

and lipid peroxidation [12,13] thereby maintaining the physical structure of the brain. DHA is also 

extremely important for vision since it is the main membrane constituent in the photoreceptor cells of 

the eye. These cells are responsible for transmitting light messages to nerves that supply the brain and 

their proper function is essential for vision.  

1.1.2. Maternal Nutrition: During Preconception, Gestation and Lactation 

The parent EFAs and their derived LC-PUFAs are vitally important structural elements of all cell 

membranes, so they are absolutely essential for formation of new tissue as occurs throughout foetal 

development. During pregnancy and while breast feeding, mothers are the sole provider of these 

important nutrients to the growing fetus and baby. Consequently, maternal fatty acid status is critical to 

ensure optimal supply to the offspring, and maternal dietary intake must be sufficient to satisfy her 

requirements as well as those of her growing baby.  
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LC-PUFAs are required during all reproductive stages. Before pregnancy, they ensure that the 

mother’s body is well nourished before she conceives so that the pregnancy begins in a healthy state. 

During pregnancy they are required for growth of the mammary glands, placenta, uterus and fetus. In 

the last three months of pregnancy, there is rapid accumulation of DHA in the eyes and brain of the 

foetus (Figure 1) [2] and its brain weight increases, making it increasing important that the mother has 

an adequate DHA intake at this time.  

Figure 1. Docosahexaenoic acid (DHA) accumulation in foetal brain [2].  

 

After birth, the baby’s nervous system continues to grow very rapidly and DHA supplied primarily 

through breast milk, is required as a structural component. Consequently, maternal body stores can 

become depleted resulting in health risks for her including post natal depression [14–16]. 

During the last trimester, a foetus accrues about 67 mg of DHA per day from the mother, and during 

breast feeding the need increases to 70–80 mg daily [17]. This huge demand for DHA particularly 

during breast feeding depletes maternal stores to below pre-pregnancy levels and this deficit can take 

months to even partially correct. 

In addition, the LC-PUFA content of breast milk can vary widely from mother to mother depending 

on her diet and how efficiently she is able to make these nutrients from the parent EFAs (Figure 2). 

Figure 2. Variation in DHA content of mature breast milk obtained from mothers in 

various countries [18–26].  

 

A number of dietary and environmental factors can affect the fatty acid status of the mother. 

Vegetarians have lower than normal DHA status (Figure 3) [27–29] because a strict vegetarian diet 

does not contain any DHA.  
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formula without LC-PUFAs. These studies [32–35], plus intervention trials [36–43] that included 

formula supplemented with LC-PUFAs, have reported enhanced eye development and function in 

infants, in particular visual acuity [41], and less conclusively enhanced infant brain development and 

function pertaining to problem solving ability [41]. These results furnished a compelling argument that 

LC-PUFAs may also be important for the growing foetus.  

1.2. Vitamin D 

Vitamin D is a fat soluble vitamin found in some foods including fish and eggs, and can also be 

manufactured in skin upon exposure to ultraviolet B rays from sunlight. Vitamin D is required to 

maintain pregnancy, for skeletal development, and to promote normal brain development. There is 

evidence of widespread sub-clinical vitamin D deficiency [44] that is aggravated by long hours of 

work indoors and avoidance of sunshine aimed at reducing skin cancer risk [45].  

Vitamin D exists in several different forms including D1, D2, D3, D4 and D5 that differ primarily 

in their side chains. The two major forms are vitamin D2 or ergocalciferol, and vitamin D3 or 

cholecalciferol. These are known collectively as calciferol. The majority of circulating vitamin D, 

known as serum 25-hydroxyvitamin D [25(OH)D] that is necessary to maintain health and function of 

the immune, reproductive, muscular, skeletal and integumentary system, originates from vitamin D3 

(cholecalciferol) and reflects endogenous synthesis from exposure to sunlight as well as intake from 

the diet [46].  

There are very few dietary sources of vitamin D. Oily fish such as herring, mackerel, pilchards, 

sardines and tuna are rich sources but their consumption in some countries is low. The only other 

useful sources are eggs, fortified margarines (required in some countries by law to contain vitamin D) 

and some fortified yoghurts and breakfast cereals. However, a recent global review of vitamin D status 

has shown that its intake is often too low to sustain healthy circulating 25(OH)D in countries without 

mandatory staple food fortification and is even too low in countries that do fortify due to low milk 

consumption, vegetarianism, non-supplement use and low fish intake [46]. Supplement use contributed 

6%–47% of the average vitamin D intake in some countries. As reported in 2005, the average dietary 

intake of vitamin D was in the range of 3 μg/day in most countries and did not exceed 9 μg/day in any 

of the countries surveyed including the United States, Canada, the United Kingdom, Ireland, Scotland, 

Australia, Europe, Japan and various other countries.  

Vitamin D deficiency is defined as serum 25(OH)D of less than 25–50 nmol/L. Approximately one 

billion people worldwide are estimated to be vitamin D deficient with people living in Europe, the 

Middle East, China and Japan at particular risk [47,48]. Deficiency is more common in women than 

men (9.2% vs. 6.6%) and pregnancy is known to represent a particularly high-risk situation [45]. In 

addition, pregnant women with darker skin pigmentation are at even greater risk of low vitamin D 

status as compared to pregnant women with lighter skin pigmentation [49]. 

Vitamin D is important during pregnancy to: 

1. Build strong bones—vitamin D ensures foetal supply of calcium for strong bones [45] including 

those of the skull. Severe hypocalcaemic is associated with high risk of brain damage [50]. 

vitamin D insufficiency has been associated with reduction in bone mineral content of the 

offspring [51] and perinatal growth restriction [52]. 
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2. Maintain pregnancy—the circulating concentration of maternal active vitamin D rises in the first 

trimester and doubles by the end of the third trimester [53]. The early rise is believed to be 

necessary to enable immunological adaptation by the mother that is required to maintain normal 

pregnancy [53]. These vitamin D induced immunological changes in the mother prevent  

miscarriage [45,53]. 

3. Promote normal brain development—preliminary research suggests that gestational vitamin D 

insufficiency has been linked to altered brain development and adult mental health [49], in 

particular schizophrenia [54]. 

There is also evidence from observational studies suggesting that adequate vitamin D during early 

life may prevent development of immunological diseases in the offspring later in life such as Type 1 

diabetes [55], allergic diseases [53] and lower respiratory tract infections, wheezing and asthma [56]. 

Therefore at its worst, vitamin D deficiency can be life threatening to the newborn, while lesser 

deficiency can weaken skull bones risking brain injury during birth and can contribute to a multitude 

of future health problems. 

1.3. Folic Acid 

Folic acid is a B vitamin that plays an important role in cell division, and synthesis of amino acids 

and nucleic acids and is therefore essential for growth [57]. It is necessary for normal development of 

the foetal spine, brain and skull, in particular during the first four weeks of pregnancy. 

During pregnancy the rate of cell division and erythrocyte formation increases dramatically as the 

uterus enlarges, the placenta develops, maternal blood volume increases and the embryo develops into 

a foetus [58]. In addition, folate is transferred from the mother to the growing foetus [57] increasing 

the demand for folate beyond her sole requirements. Women at risk of low folate status include [59–62]: 

• Those not taking the recommended quantity of folic acid supplement; 

• Those on restricted diets (chronic dieters); 

• Those with lower socio-economic status; 

• Those with limited or uncertain availability of nutritionally adequate and safe food. 

Studies have reported a decreased risk of neural tube defects including malformations of the spinal 

column (spina bifida) and the skull (anencephaly) is associated with both increased maternal folate 

intake and higher maternal red blood cell folate concentration (greater than 906 nmol/L) [58]. Neural 

tube defects occur during the third and fourth week of pregnancy, before the woman knows she is 

pregnant, and involve failure of the neural tube to close properly. This risk is reduced when the mother 

takes a daily multivitamin containing folic acid three months before pregnancy and continuing up to 

the 6th week from the beginning of her last menses [63]. 

Considering this evidence and recognizing that pregnancies are not always planned, the requirement 

for folic acid in women of child bearing age and during pregnancy has become well established and 

internationally recognized (see Section 6.3 under Safe Intake Recommendations). Steps to achieve 

folate sufficiency have included mandatory or voluntary food fortification in some countries such as 

Canada [63] and New Zealand [64], and the promotion of folate supplementation for all women who 

could become pregnant.  
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Even with wide spread recognition of the need for folic acid to prevent neural tube defects, it is still 

not widely used in the general population globally. For example, in 2008 a systematic review of 

relevant research from 1989 to May 2006 in Europe, the USA, Canada, Australia and New Zealand 

was used to make recommendations to improve folic acid supplement use in the UK, particularly 

among low-income and young women. It included 26 systematic reviews and/or meta-analyses 

identified from the wider public health literature, and 18 studies on the effectiveness of preconception 

interventions. The results showed that even high-quality public relations campaigns that increase use 

result in under half of women in the target group taking supplements [65]. 

1.4. Iodine 

Iodine is an essential mineral that humans need to produce thyroid hormones throughout life. These 

hormones are especially needed to ensure normal development of the brain and nervous system during 

gestation and early life [66]. Since the foetus is totally dependent in early pregnancy on maternal 

thyroid hormones for normal brain development, it is very important that pregnant women consume 

enough iodine [67]. During lactation, the mammary glands concentrate iodine within breast milk to 

nourish the newborn [66] whose iodine requirement is approximately 7 μg/kg of body weight [66]. 

The two thyroid hormones that contain iodine are thyroxine (T4) and triiodothyronine (T3), the later 

being the biologically active form. T4 has four iodine molecules while T3 has three. Within the body, 

dietary iodine mixes with circulating iodine originating from iodine molecules removed from thyroid 

hormones to create a pool of inorganic iodide available for metabolic use [68]. This pool is in a 

dynamic equilibrium where the thyroid takes iodide that is required for T3 and T4 synthesis and the 

kidneys filter and excrete excess iodide in the urine [68].  

In a healthy non-pregnant woman with adequate iodine intake, the absorbed dietary iodine balances 

renal iodide clearance and the thyroid maintains a normal iodine store of 15–20 mg [69]. If iodine 

intake is inadequate before pregnancy, maternal deficiency may result in inadequate supply of iodine 

for the unborn baby in later stages of pregnancy [70]. In addition, when a woman becomes pregnant, 

her iodine requirement increases more than 50% [69] to 220–250 μg/day [71] due to: 

1. An increase in maternal T4 concentration to maintain her normal thyroid hormone levels while 

transferring additional thyroid hormone to the foetus early in the first trimester (before the foetal 

thyroid is functioning) [66]; 

2. Iodine transfer to the foetus, particularly towards the end of pregnancy [66]; 

3. An increase in iodine urinary excretion [66]. 

The rate of maternal thyroid hormone production returns to normal following birth. However, 

iodine supplementation is also recommended during breast feeding because infants are completely 

dependent on their food to supply iodine to build their own reserves of thyroid hormone [72]. 

Iodine is stored in the thyroid gland and any excess consumed iodine is excreted in the urine [66]. 

Healthy adults can absorb more than 90% of the iodine they consume if required [66]. When the 

dietary intake of iodine is adequate, no more than 10% of absorbed iodine is taken up by the thyroid, 

but in chronic deficiency thyroid absorption can exceed 80% [66].  



Nutrients 2012, 4  

 

807

The primary dietary sources of iodine are dairy products, bread, seafood, meat and iodised  

salt [66,67,72]. However, within any population, the amount of iodine in its food sources varies greatly 

due to seasonal changes, plant and animal farming practices and processing techniques [66,72] and 

therefore iodine consumption varies considerably [67]. Iodine consumption also varies widely among 

individuals within a given population. For example, vegans are likely to have a diet deficient in iodine 

while those who eat kelp regularly may ingest excessive iodine [67].  

Iodine deficiency was first shown to cause goitre (thyroid enlargement) in 1917 resulting in addition 

of iodine to table salt in Switzerland and the United Sates in the early 1920 to prevent the condition [66]. 

In 1980, the World Health Organization (WHO) estimated that 20%–60% of the world’s population 

was iodine deficient with the greatest prevalence in developing countries [66]. Studies conducted 

through 1970–1990 showed that supplementation in iodine deficient regions not only prevented goitre, 

but also eliminated other iodine deficiency disorders including cretinism, reduced infant mortality and 

improved cognitive function in the population [66]. Up until 1990, only Switzerland, some of the 

Scandinavian countries, Australia, the United States and Canada were routinely adding iodine to their 

table salt [66]. Since then, more than 70% of households globally use iodised salt thanks to the efforts 

of a coalition of international organizations including the International Council for the Control of 

Iodine Deficiency Disorders (ICCIDD), the World Health Organisation (WHO), the Micronutrient 

Initiative, UNICEF, national deficiency disorder committees and the salt industry [65]. However, 

iodine supplementation practices and dietary habits change in populations overtime making regular 

monitoring essential to identify both low and excessive iodine intakes [66]. 

Iodine status is determined by measuring the concentration of urinary iodine. Ninety percent of 

ingested iodine is assumed to be excreted in the urine so an individual’s iodine intake can be calculated 

based on the amount of urinary iodine excreted in a 24 h period. The WHO/UNICEF/ICCIDD 

recommended intake of 220–250 μg of iodine/day during pregnancy [68] and new recommendations 

from WHO suggest that a median urinary iodine concentration 250–500 μg/L indicates adequate iodine 

intake in pregnancy [71]. Based on this range, it appears that many pregnant women in Western 

Europe have inadequate intakes [71]. 

Currently, the WHO estimates that globally approximately 2 billion people have insufficient iodine 

intake [66]. Of the countries included in a 2008 survey by the ICCIDD, 11 had deficiency, 1 has 

moderate deficiency, 10 had mild deficiency, 20 were sufficient [73]. The top ten iodine deficient 

countries based on 2011 national median urine iodine concentration of <100 μg/L in school-aged 

children (i.e., children with insufficient iodine intake) in consecutive order from worst to best were 

Pakistan, Ethopia, Sudan, Russian Federation, Afghanistan, Algeria, Angola, United Kingdom, 

Mozambique and Ghana [74]. Numerous studies in various countries have reported iodine deficiency 

in women of child bearing age, in pregnant women and in pregnant and lactating women even in areas 

where food fortification is undertaken (see Section 5.1 for details).  

As a developed country, the UK is an anomaly in the top ten iodine deficient countries mentioned 

above. Historically, iodine deficiency was widespread in Britain with high rates of goitre and even 

cretinism in some areas. Goitre was still present in Sheffield and South Wales until the 1960s. Goitre 

disappeared over the years owing to iodine supplementation in livestock to improve reproductive 

performance and lactation in the 1930s and iodophor disinfectants used for cleaning. Iodine intake 

increased for the next 30 years due to iodine contamination of milk through use of these cleaning 
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agents. Also milk consumption increased due to free school milk and advertising by the Milk 

Marketing Board resulting in a three-fold increase in iodine intake between the 1950s and 1980s. 

Today, milk is the main source of iodine in the UK diet contributing 40% of the iodine intake [75]. 

However, milk consumption has decreased in recent years and iodophors are being replaced by other 

disinfectants [75]. At least one study has reported that low milk intake is linked to increased risk of 

low iodine status [76]. Contributing to the problem is increased consumption of organic milk over 

other sources since organic milk is 42.1% lower in iodine content than conventional milk [77]. 

Although iodised salt is available in the UK, only one brand with 0.6% market share is available, less 

than 20% of supermarket shoppers have iodised salt available for purchase, it is six times more 

expensive than non-iodised versions and 96% of UK pregnant women never or rarely eat iodised salt [78]. 

The UK National Diet and Nutrition Survey of 2000/2001 including adults aged 19 to 64 years 

reported a daily iodine intake of 215 μg/day in men and 159 μg/day in women where 12% of young 

women were consuming less than 70 μg/day [74]. Iodine intake had fallen since 1986/1987 and values 

reported in 2008/2009 showed a further fall [78]. 

The main health concern of mild iodine deficiency during pregnancy and while breastfeeding is its 

negative effect on the brain and nervous system development in the foetus and infant, in particular 

reduced intelligent quotient (IQ) [79–83]. Iodine deficiency during pregnancy leads to inadequate 

thyroid hormone production and hypothyroidism during pregnancy [67]. Thyroid hormone is required 

for normal neuronal migration, myelination, and synaptic transmission and plasticity during foetal and 

early postnatal life [68]. Hypothyroxinemia causes adverse effects on early foetal brain and nervous 

system development, can lead to irreversible foetal brain damage [72], and is the world’s most frequent 

cause of preventable mental retardation in later life [67]. The consequences depend on the timing and 

severity of the hypothyroxinemia [68]. Moderate-to-severe iodine deficiency during pregnancy also 

increases rates of spontaneous abortion, reduces birth weight, and increases infant mortality [84].  

2. Evidence of the Potential Benefits of Maternal DHA Supplementation for Foetal/Infant  

Brain Health 

2.1. Effects of Maternal DHA Supplementation on Maternal DHA Status 

Numerous studies have confirmed that DHA supplementation either during pregnancy and/or while 

breast feeding can increase maternal stores of DHA in both her blood [18,85–93] and her breast  

milk [85,94,95]. A multi-centered, randomised, double-blind, placebo controlled trial including  

311 pregnant women confirmed that daily supplementation with 500 mg DHA + 150 mg of the DHA 

precursor, eicosapentaenoic acid (EPA) from week 22 of gestation until delivery, significantly 

increased maternal plasma DHA (p < 0.001) relative to control [94]. A similarly designed  

single-centered study included 125 mothers of healthy full-term infants who daily consumed a placebo 

that did not contain any DHA or low dose tuna oil providing 300 mg DHA + 70 mg EPA or high dose 

tuna oil providing 600 mg DHA + 140 mg EPA (n = 40) from day 3 postpartum up to the end of  

week 12 postpartum [85]. DHA content increased relative to before treatment in both plasma and milk 

following tuna oil supplementation, but not after taking placebo. These studies [85,94] confirmed that 
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DHA levels can be increased in the mother’s plasma and milk following supplementation with DHA 

from tuna oil.  

2.2. Effects of Maternal DHA Supplementation on Foetal/Infant DHA Status 

Many studies have reported enhanced DHA status in infants following maternal supplementation 

during pregnancy [18,86,89–91,96] or during lactation [92] or during both pregnancy and  

lactation [93,97]. A double-blind, randomised, placebo-controlled study including 83 women who 

received either 4 g of fish oil providing 2.24 g DHA and 1.12 g EPA or placebo per day from 20 weeks 

gestation until delivery reported the fatty acid composition of cord blood collected at the time of 

delivery in both groups [90]. The results showed that DHA was significantly higher (p < 0.001) in the 

cord blood of babies whose mothers were supplemented with fish oil than in those who took placebo. 

In addition, a significant increase (p < 0.001) in DHA in the mother’s blood directly correlated with a 

corresponding increase in the cord blood DHA indicative of infant DHA status. Another double-blind, 

placebo-controlled trial reported the effects of supplementing maternal diet for the first 12 weeks 

postpartum to achieve breast milk DHA concentrations ranging from 0.1% to 1.7% of the total fatty 

acids [92]. Analysis of 52 healthy term infant’s blood confirmed that increasing breast milk DHA 

levels caused a dose dependent increase in infant DHA status up to a maximum level where it then 

remained constant regardless of higher maternal DHA intake. When supplemented during pregnancy 

and lactation, a randomised, double-blind, placebo-controlled trial including 145 pregnant women 

provided 1.6 g EPA and 1.1 g DHA daily from the 25th gestational week through 3.5 months of breast 

feeding reported proportionally higher plasma DHA in infants from supplement mothers [93]. These 

study results confirm that maternal DHA supplementation during pregnancy and/or while breast-feeding 

improves foetal/infant DHA status. 

2.3. Benefits to the Fetus/Infant/Child  

2.3.1. Observational Studies 

A flurry of observational research during the last decade has shown either the benefits that higher 

maternal and/or infant DHA status provide to the growing foetus and/or infant, or the risks associated 

with poor DHA status in either the mother or child to foetal/infant development and function. The 

pivotal study included data derived from the ALSPAC trial (Avon Longitudinal Study of Parents and 

Children) (Figure 5) [98]. It included 11,875 pregnant women living in Bristol, UK who completed a 

food frequency questionnaire to determine their seafood intake during pregnancy while the children 

were tested for development, behavior and mental function from age 6 months to 8 years. The women 

were divided into three categories based on seafood consumption: no seafood (12% of the women), 

some seafood (1–340 g per week, 65%) and greater than 340 g per week (23%). After results were 

adjusted to take into account 28 potential sources of interference, the verbal intelligence quotient (IQ) 

scores for children from mothers with no seafood intake were found to be 50% more likely to be in the 

group with the lowest IQ. Overall, low seafood intake during pregnancy was directly associated with 

suboptimal outcomes in the offspring for prosocial behavior, fine motor co-ordination, communication 

and social development. 
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• Among children who were breast-fed for less than 6 months, maternal fish intake of greater than 

2–3 times/week during pregnancy is associated with better scores on the McCarthy Scales of 

Children’s Abilities for verbal, perceptual-performance, quantitative, general cognitive, memory, 

and motor skills [105]. 

• Higher maternal plasma DHA during pregnancy is associated with more mature neonatal  

sleep-state, suggesting greater central nervous system maturity [106]. 

• Higher maternal DHA status at birth is associated with enhanced attention functioning during the 

second year of life [107]. 

All of these studies confirm that a higher prenatal and postnatal DHA concentration is more 

beneficial for infant visual, cognitive and motor development than a lower amount.  

2.3.2. Intervention Trials 

2.3.2.1. During Pregnancy 

The effects of DHA supplementation in pregnant women on foetal/infant outcomes has  

been evaluated in a number of randomized, double-blind, placebo-controlled trials providing  

150–1200 mg/day DHA or up to 2.7 g total omega-3 LC-PUFAs/day. These have been systematically 

evaluated in two separate meta-analyses [108,109] and reported that omega-3 LC-PUFAs prolong 

gestation by 1.6 [108] and 2.6 [109] days, slightly increase birth weight by 47 g [108] and 54 g [109], 

and reduce the risk of preterm birth before 34 weeks gestation by 31% [108] in all pregnancies and  

by 61% [109] in high-risk pregnancies. In addition, excluding some minor discomfort including 

belching and unpleasant taste, no adverse effects were detected up to the highest dose of 2.7 g total 

omega-3 LC-PUFAs/day. Other studies have reported that: 

• DHA reduces the incidence of premature delivery, increases birth weight, and gestation and may 

be useful to prolong gestational duration in some high-risk pregnancies [110]. 

• DHA increases infant birth weight and head circumference [111] and enhances growth  

(body length) through to 18 months in children from singleton pregnancies [112]. 

• Fish oil supplementation increases breast milk EPA and DHA content up to 6 weeks postpartum 

and these higher amounts are directly correlated with better Griffith’s developmental scores 

including hand and eye co-ordination in the infant at 1 year of age [94]. 

• DHA enhances visual acuity maturation in term infants, in particular in girls [2], attention and 

processing efficiency in infants [113], problem solving ability at 9 months of age [114] and 

hand/eye co-ordination at age 2.5 years [96]. 

• Higher foetal DHA exposure due to maternal supplementation results in better neurological 

outcome at 5.5 years of age [115]. The odds of children with maximal neurological optimality 

scores increases with every unit increment in cord blood DHA at delivery. 

• The largest clinical study ever providing DHA to pregnant women was aptly named the 

DOMInO trial (DHA to Optimize Mother Infant Outcome) (Figure 6) [116]. The multicentered, 

randomised, double-blind, placebo-controlled clinical trial, conducted in 5 Australian maternity 

hospitals and supported by a grant from the Australian National Health and Medical Research 

Council included 2399 women with gestation of less than 21 weeks during singleton pregnancies 
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difference corresponded to a higher DHA, EPA and total omega-3 fatty acid content in the cord blood 

of the DHA group versus the control group. 

2.3.2.2. During Lactation 

To date, only a few studies have assessed the impact of maternal DHA supplementation solely 

during breast-feeding on infant development and function. Two hundred milligrams of DHA, for the 

first 4 months of breastfeeding, results in higher infant Bayley Psychomotor Development Index at  

30 months of age [118] and better performance on tests of sustained attention. This suggests that DHA 

intake during early infancy confers long-term benefits on specific aspects of neurodevelopment [119]. 

2.3.2.3. During Pregnancy and Lactation 

A number of studies have reported benefits to the offspring following maternal DHA 

supplementation during both pregnancy and while breast feeding. One of the earliest randomized, 

double-blind, placebo-controlled trials included 84 children whose mothers took either 1183 mg/day 

DHA from cod liver oil or a corn oil placebo from week 18 of pregnancy until 3 months after  

delivery [120]. At age four years, the children were tested to measure IQ including problem solving 

and information processing abilities using the Kaufman Assessment Battery for Children designed for 

children from 2.5 to 12.5 years. The test is comprised of 4 scales: sequential processing, simultaneous 

processing, achievement (not included in this study), and nonverbal abilities. The sequential processing 

and simultaneous processing scales reflect the child’s style of problem solving and information 

processing and are combined to form a mental processing composite, which serves as the IQ. Those 

children who were born to DHA supplemented mothers scored higher on the IQ tests at 4 years of age 

as compared with children whose mothers had taken placebo. When retested at age 7 years, higher 

maternal DHA during pregnancy was associated with better sequential processing at 7 years of age [121].  

3. Evidence of the Potential Benefits of Maternal Vitamin D Supplementation for Foetal/Infant 

Brain Health 

Published placebo-controlled intervention trials studying the impact of vitamin D supplementation 

in mothers with low serum 25(OH)D are rare [45] because such trials are deemed unacceptable by 

ethics committees. Therefore, results of epidemiological studies provide most of the evidence 

suggesting the importance of vitamin D for foetal/infant brain health.  

3.1. Epidemiological Evidence  

Vitamin D deficiency is common in pregnancy. A study in black and white pregnant women 

residing in the northern United States found that approximately 29% of black pregnant women and 5% 

of white pregnant women had vitamin D deficiency (serum 25(OH)D less than 37.5 nmol/L); whereas 

54% of black women and 47% of white women had vitamin D insufficiency (defined as serum 

25(OH)D levels 37.5 to 80 nmol/L) [122]. Recent studies in white pregnant women also show high 

prevalence of vitamin D deficiency in the UK [123] and Ireland [124]. Vitamin D deficiency has also 

been found in pregnant women residing in the southern United States [125] including a diverse group 
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of African-American, Hispanic, and Caucasian pregnant women [126], in pregnant African-American 

adolescents [127], in pregnant Asian women [128], in veiled or dark-skinned pregnant women [129], 

in non-Western pregnant women in the Netherlands [130], and in pregnant women living in  

Belgium [131], Iran [132,133], India [134], Australia [135], Pakistan [136,137], Turkey [136],  

Somalia [136] and Oman [138]. Seasonal variation increases the risk of vitamin D deficiency in 

pregnancy, with greater prevalence of vitamin D deficiency during the winter months compared to the 

summer months [139]. Differences in latitude have also been shown to influence the concentration of 

vitamin D in a majority of pregnant women [140]. 

A recent review of studies linking maternal vitamin D status during pregnancy with maternal, foetal 

and postnatal outcomes supports a role of maternal vitamin D status, particularly early in pregnancy, in 

modulating the risk of pregnancy complications and in sustaining foetal growth, body composition, 

skeletal development, immune maturation and respiratory health [141]. Several studies have 

demonstrated an association between poor maternal vitamin D status and severe preeclampsia that can 

result in miscarriage [141]. Miscarriages can also result from an increased rate of bacterial vaginosis in 

the 1st trimester of pregnancy that is associated with low vitamin D status [49]. Maternal vitamin D 

status early in pregnancy was associated with risk of low birth weight and small-for-gestational age 

infants in one study, whereas another study found this relation only among white women [141]. 

Polymorphisms in the vitamin D receptor gene may contribute to vitamin D-related disparities in foetal 

growth [141]. Evidence from recent studies suggests an early prenatal influence of maternal vitamin D 

status on foetal skeletal development, with lasting postnatal effects [141]. In addition, one study has 

suggested that supplementation during pregnancy may be necessary to assure adequate concentration 

of vitamin D in breast milk during lactation [142]. Specifics of some studies are as follows: 

3.1.1. Studies Reporting Maternal Vitamin D Deficiency 

A study measuring habitual micronutrient intakes at weeks 13, 25, 35 of pregnancy and 6 weeks 

postpartum using a prospective background information questionnaire, 4–7 days weighed food diary 

and postnatal questionnaire included 72 primiparous, Caucasian Londoners recruited at the study start 

with 42 completing the first, second, third trimester and postpartum study stages. Intakes of folate, 

iron, vitamin D, potassium, iodine and selenium were lower than UK recommendations during and 

after pregnancy (p < 0.05) [143].  

• In a study completed by a coalition of scientists formed to optimize vitamin D fortification in  

the northern European countries, the average dietary intake of vitamin D in young women  

was only around 80 IU (2 μg) per day [144]. This falls short of even the most modest  

dietary recommendations.  

• A cross-sectional study in Iran included 147 pregnant women whose serum status of vitamin D, 

A, and E were assessed at 5–9 months of pregnancy. The prevalence of vitamin D deficiency 

was 95.8% [133].  

• The prevalence of vitamin D deficiency was determined in a diverse group of 559 women in 

South Carolina, USA at latitude 32°N. Mean age was 25.0 ± 5.4 (range 14–43) years; African 

American (48%), Hispanic (38%), Caucasian/Other (14%). Mean gestational age was 18.5 ± 8.4 

(median 14.6, range 6.4–39.6) weeks. Vitamin D status was defined as 25(OH)D < 50 nmol/L 
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deficiency; <80 nmol/L insufficiency. Forty-eight percent were vitamin D deficient,  

an additional 37% insufficient. The greatest degree was in the African American women  

(68% deficient; 94% insufficient) [125].  

• Despite abundant sunshine and latitude consistent with year-long vitamin D synthesis, 65.5% of 

a largely low-risk antenatal population in rural Victoria, Australia had insufficient vitamin D. 

Over 5.0% of women had vitamin D levels that pose a significant neonatal and adult health  

risk [135].  

• A cross-sectional study including 50 women in labour with a singleton term pregnancy in 

Pakistan measured vitamin D status in maternal blood before delivery and cord blood at delivery. 

Vitamin D sufficiency was noted in 11 (22%), insufficiency in 16 (32%), and deficiency in 

23 (46%) of the 50 participants whereas sufficiency and deficiency, respectively, were noted in 

6 (12%) and 44 (88%) of the newborns. There was a positive correlation between the vitamin D 

levels in maternal and cord blood (r = 0.03; p < 0.003). Maternal vitamin D levels were 

significantly affected by sunlight exposure (p < 0.007) and quality of diet (p < 0.01). The authors 

concluded that vitamin D deficiency is high among pregnant urban Pakistani women and their 

newborns and is a public health problem that needs urgent attention [137]. 

3.1.2. Bone Health 

• Doctors in Leicester City, UK reported that a significant number of south Asian mothers visiting 

their clinic had vitamin D deficiency at the end of pregnancy. A substantial number of their 

offspring had infantile and adolescent rickets including some with extremely severe bony 

deformities. In addition, there was an increase in late (5–10 days of age) and late-late  

(2–12 weeks of age) neonatal hypocalcaemia presenting predominantly with seizures, 

demonstrating the involvement of vitamin D in brain function [50]. 

3.1.3. Pregnancy Maintenance 

• A cohort study of 23,423 nulliparous pregnant women taking part in the Norwegian Mother and 

Child Cohort Study found a 27% reduction in risk of preeclampsia in women taking vitamin D 

supplements relative to those who did not take supplements [145]. However, because vitamin D 

intake is highly correlated with the intake of long chain n-3 fatty acids in the Norwegian diet, the 

authors cautioned that further research is needed to disentangle the separate effects of  

these nutrients. 

3.1.4. Brain Development 

• Vitamin D’s nuclear hormone receptor regulates gene expression and nervous system 

development [54]. There is evidence that vitamin D during pregnancy is involved in foetal brain 

development and that maternal vitamin D deficiency during pregnancy can alter the structure and 

function of the brain resulting in life long behavioural changes in the offspring [146–148]. 

o A pilot case-control study assessing the association between third trimester maternal serum 

25(OH)D and the risk of schizophrenia included 26 cases and 51 controls. The results showed 
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that 25(OH)D concentration varied by season and were lower in African American women as 

predicted. Within the African American mothers, a subgroup with markedly lower levels of 

25(OH)D had a non-significant increase in schizophrenia [149].  

o A larger case-control study included 424 cases and matched control (sex and age) from the 

Danish Psychiatric Central Register. There was a significant seasonal variation in 25(OH)D 

and significantly lower 25(OH)D in the offspring of migrants. The risk of schizophrenia was 

significantly associated with neonatal 25(OH)D. Those with the lowest concentration had an 

increased risk of schizophrenia although the exposure risk was nonlinear (i.e., higher than 

normal 25(OH)D was also associated with schizophrenia). Shifting all subjects to the optimal 

concentration of 25(OH)D could potentially avert 43.6% of schizophrenic cases in this group 

of patients. The authors concluded that prenatal vitamin D supplements in women at risk of 

deficiency could reduce the risk of schizophrenia in their offspring [149]. However, one 

should consider the complex nature of vitamin D effects since either deficiency or excess may 

be harmful [53].  

3.2. Intervention Trials 

3.2.1. Studies Showing Correlation between Maternal and Foetal Vitamin D Status 

• Five hundred and six pregnant women were given 400 IU (10μg) of vitamin D per day from 

about the 12th week of pregnancy until delivery [150]. A control group of 633 pregnant women 

was given a placebo. Maternal vitamin D was measured at the 24th and 34th weeks of pregnancy 

and at delivery and infant vitamin D was measured in umbilical blood at birth and on the sixth 

day following birth. Plasma concentrations of 25(OH)D, which showed a seasonal variation, was 

higher in mothers and infants in the treated group. Cord-blood 25(OH)D correlated with 

maternal values at delivery. A defect of dental enamel was found in a high proportion of infants 

(many of whom had suffered from hypocalcaemia) born to the control women. These results 

suggest that vitamin D supplementation during pregnancy would be beneficial for mothers, 

whose intake from diet and skin synthesis is appreciably less than 500 IU of vitamin D daily. 

3.2.2. Bone Health 

• A prospective partially randomised study of vitamin D supplementation during pregnancy 

included Indian subjects (known to be vitamin D deficient) randomised in the second trimester to 

receive either one oral dose of 1500 μg vitamin D (group 1, n = 48) or two doses of 3000 μg 

vitamin D each in the second and third trimesters (group 2, n = 49) [151]. A control group 

included 43 non-supplemented mother-infant pairs under “usual care”. Median maternal 

25(OH)D at term was higher in group 2 (58.7, interquartile range (IQR) 38.4–89.4 nmol/L) vs. 

group 1 (26.2, IQR 17.7–57.7 nmol/L) and Control group (39.2, IQR 21.2–73.4 nmol/L)  

(p = 0.000). Birth weight, length and head circumference were greater and the anterior fontanelle 

(soft spot on the head) was smaller in groups 1 and 2 (3.08 and 3.03 kg, 50.0 and 50.1 cm,  

34.5 and 34.4 cm, 2.6 and 2.5 cm, respectively) vs. Control (2.77 kg, 49.4, 33.6, 3.3 cm; p = 0.000 
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for length, head circumference and fontanelle and p = 0.003 for weight). These differences were 

still evident at 9 months.  

4. Evidence of the Potential Benefits of Maternal Folic Acid Supplementation for Foetal/Infant 

Brain Health 

There are hundreds of published studies originating from various countries showing the benefit of 

folic acid supplementation before and during pregnancy to prevent neural tube defects. A 2010 

Cochrane Review of evidence assessing folic acid supplements before conception and in early 

pregnancy (up to 12 weeks) for the prevention of birth defects confirmed that folic acid 

supplementation prevents the first and second time occurrence of neural tube defects and showed there 

is not enough evidence to determine if folic acid prevents other birth defects [152]. The review of five 

trials, involving 6105 women (1949 with a history of a pregnancy affected by a neural tube defect and 

4156 with no history of neural tube defects), showed the protective effect of daily folic acid 

supplementation in doses ranging from 0.36 mg (360 µg) to 4 mg (4000 µg) a day, with and without 

other vitamins and minerals, before conception and up to 12 weeks of pregnancy, for preventing the 

recurrence of these diseases [152]. There were insufficient data to evaluate the effects on other 

outcomes such as cleft lip and palate.  

The impact of folic acid supplementation on prevention of neural tube defects has been extensively 

studied for decades resulting in individual reports too numerous to mention. Based on the early 

research, the US Preventive Services Task Force recommended in 1996 that all women planning a 

pregnancy or capable of conceiving take a supplement containing folic acid to reduce the risk of neural 

tube defects. A review of evidence accumulated since then and up to 2009 confirmed the previous 

scientific evidence supporting those recommendations [153]. The meta-analysis [153] included  

1083 published articles of randomized, controlled trials, case-control studies and systematic reviews 

that reported an overall effect on reduction of neural tube defects or an effect on harms associated with 

folic acid containing supplements. Even though knowledge pertaining to the benefits of folic acid 

supplementation to prevent neural tube defects has been known for decades, a 2009 study reported that 

only 23%–38% of women met UK recommendations for folate through dietary sources [143]. The 

study measuring habitual micronutrient intakes at weeks 13, 25, 35 of pregnancy and 6 weeks 

postpartum using a prospective background information questionnaire, 4–7 days weighed food diary 

and postnatal questionnaire included 72 primiparous, Caucasian Londoners recruited at the study start 

with 42 completing the first, second, third trimester and postpartum study stages. Intakes of folate, 

iron, vitamin D, potassium, iodine and selenium were lower than UK recommendations during and 

after pregnancy (p < 0.05) [143].  

5. Evidence of the Potential Benefits of Maternal Iodine Supplementation for Foetal/Infant  

Brain Health 

5.1. Epidemiological Evidence  

Numerous population studies from a variety of countries including China, Hong Kong, Iran, India, 

Kyrgyzstan and England have reported iodine deficiency in girls of child bearing age [76],  



Nutrients 2012, 4  

 

818

in pregnant [154–157], and in pregnant and lactation women [158,159]. Some of these studies included 

regions where salt iodization is practiced, yet a significant proportion of pregnant and lactating women 

were still deficient [155–161]. A few examples of recent studies follow: 

5.1.1. Iodine Deficiency—Girls of Child Bearing Age 

• A cross-sectional survey of iodine status systematically assessed in schoolgirls aged 14–15 years 

attending secondary school in nine UK centres included 810 participants provided 737 urine 

samples [162]. Data for dietary habits and iodine status were available for 664 participants. 

Urinary iodine measurements indicative of mild iodine deficiency were present in 51% (n = 379) 

of participants, moderate deficiency in 16% (n = 120), and severe deficiency in 1% (n = 8). 

Prevalence of iodine deficiency was highest in Belfast (85%, n = 135). Tap water iodine 

concentrations were low or undetectable and were not positively associated with urinary iodine 

concentrations. There were independent associations between low urinary iodine excretion and 

sampling in summer (p < 0·0001), UK geographical location (p < 0·0001), low intake of milk  

(p = 0·03), and high intake of eggs (p = 0·02). These results suggest that the UK population is 

iodine deficient. Since developing foetuses are the most susceptible to adverse effects of iodine 

deficiency and even mild perturbations of maternal and foetal thyroid function have an effect on 

neurodevelopment, these findings are of potential major public health importance. This study 

draws attention to an urgent need for a comprehensive investigation of UK iodine status and 

implementation of evidence-based recommendations for iodine supplementation [154]. 

5.1.2. Iodine Deficiency—Pregnant Women  

• A 2005 study including urban and rural sites from each of the 11 Chinese provinces concluded 

that effective iodised salt program has brought iodine sufficiency to most of China, but pregnant 

women in some areas may still risk deficiency and need further supplements [155]. 

• A 2008 State-wide survey in Rajasthan, an Indian State where the sale of non-iodised salt for 

human consumption was banned in 1992 reported that 41.9% of the households used salt 

containing insufficient levels of iodine, 23.0% used non-iodised salt and the median urine iodine 

concentration was 127 μg/L in pregnant women indicating iodine deficiency. These results 

indicate that household salt iodine content at its current mandated concentration does not supply 

sufficient iodine for pregnancy requirements [156].  

• A national, Kyrgyzstan population-representative survey during autumn 2007 collected 

household salt and urine samples of school-age children and pregnant women for quantitative 

iodine measurements and measured maternal thyroid volume. Even though universal salt 

iodization was re-mandated in 2001 and 97.9% of salt samples were iodised, 39.5% had  

> or = 15 mg iodine/kg. The median urinary iodine concentration of pregnant women was only 

111 μg/L and their thyroid volume increased with the duration of pregnancy. The iodine 

consumption among pregnant women from iodised salt did not assure their dietary  

requirements [157].  

• A 2004 study to determine the prevalence of reduced iodine intake by measuring urinary iodide 

concentrations in pregnant and non-pregnant women from the north east of England included 
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227 women at 15 weeks gestation and 227 non-pregnant age matched controls. 3.5% of pregnant 

women had evidence of iodine deficiency, and 40% were borderline deficient [154].  

• A case-control study completed in Surrey, UK included 100 women at 12 weeks gestation and  

57 women of childbearing age as a control. Based on urine analysis, the pregnant women were 

mild to moderately iodine deficient. Seventy-five percent of participants took a nutritional 

supplement but only 42% took a supplement containing iodine. Significantly lower iodine levels 

were found in those who did not consume milk daily [163]. 

5.1.3. Iodine Deficiency—Pregnant or Lactating Women  

• A 2007 review of cross-sectional and prospective studies to describe the iodine nutrition of 

pregnant and lactating women in Hong Kong, where intake is of borderline sufficiency revealed 

an increase in the urinary iodine concentration as pregnancy advances. A significant percentage 

of women had a sub-normal serum thyroid hormone concentration at full term. Although iodine 

is concentrated by the mammary gland, 19% of all mothers had low iodine concentrations in 

their breast milk. The moderate correlation between the concentrations of iodine in breast milk 

and urine suggests that an adequate maternal urinary iodine concentration cannot reliably 

indicate that an infant is getting enough iodine in breast milk. Therefore, some breast-fed infants 

may still be at risk of low iodine intake, and additional iodine supplements, other than salt 

iodisation, would be warranted in this population [158]. 

• A cross-sectional study conducted in Iran between 1996 and 1998 in 403 pregnant women and  

a study of 100 lactating women conducted in 2003 included evaluated thyroid size, and both 

urinary and breast milk iodine concentrations. When data were combined for the cities of Ilam, 

Isfahan and Tehran, where women have an adequate or more than adequate median urinary 

iodine concentration, 51% of pregnant women had a urinary iodine concentration less than that 

recommended during pregnancy. The mean urinary iodine concentration in lactating women was 

250 μg/L, and 16% of women had a urinary iodine concentration <100 μg/L. Grade 1 goitre was 

present in 8% of lactating women, and another 8% had grade 2 goitre [159]. 

• A study including 433 pregnant and 95 non-pregnant women in Tayside, Scotland, mean 

gestational age at recruitment of 11.5 weeks measured urinary iodine and a range of thyroid 

hormones. Even though iodised salt was available in the area, only 30% of women consumed it 

and the iodine intake of these women had not increased to meet the higher requirements of 

pregnancy (~250 µg/day). Indeed, the urinary iodine was the same in pregnant and non-pregnant 

women. Approximately 40% of the pregnant women from this area of the UK had urinary iodine 

excretion below those corresponding to half the recommended intake [160]. The ensuing failure 

to increase their T4 during the 1st trimester of pregnancy may well have adverse effects on the 

progeny’s neurodevelopment [77].  

5.1.4. Studies Showing Maternal Thyroid Deficiency Impacts Brain Development of Her Child  

• Serum samples collected from 25,216 pregnant women between January 1987 and March 1990 

were tested for thyrotropin to recruit 47 women with serum thyrotropin concentration at or above 

the 99.7th percentile of the values for all the pregnant women, 15 women with values between 
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the 98th and 99.6th percentiles, inclusive, in combination with low thyroxine levels, and  

124 matched women with normal values. Their seven-to-nine-year-old children, none of whom 

had hypothyroidism as newborns, underwent 15 tests relating to intelligence, attention, language, 

reading ability, school performance, and visual-motor performance. The children of the 62 women 

with high serum thyrotropin concentrations performed slightly less well on all 15 tests. Their 

full-scale IQ scores on the Wechsler Intelligence Scale for Children, third edition, averaged 

4 points lower than those of the children of the 124 matched control women (p = 0.06); 15% had 

scores of 85 or less, as compared with 5% of the matched control children. Of the  

62 women with thyroid deficiency, 48 were not treated for the condition during the pregnancy 

under study. The full-scale IQ scores of their children averaged 7 points lower than those of the 

124 matched control children (p = 0.005); 19% had scores of 85 or less. Eleven years after the 

pregnancy under study, 64% of the untreated women and 4% of the matched control women had 

confirmed hypothyroidism. Although this study did not include testing for iodine status during 

pregnancy, it does show that undiagnosed hypothyroidism in pregnant women may adversely 

affect their offspring [161].  

5.1.5. Studies Showing Maternal Iodine Status Impacts Brain Development of Her Child 

Many studies have reported an association between severe iodine deficiency and poor mental 

development as illustrated in a meta-analysis of studies conducted on children born and raised in areas 

before and after iodine food fortification [164]. However, recently studies have emerged confirming 

the link between moderate or mild iodine deficiency during pregnancy and offspring intellectual 

capacity. Some of these studies are summarized below: 

5.1.5.1. Severe Deficiency 

• A meta-analysis of 37 studies including 12,291 sixteen year olds born and raised in China before 

and after iodine food fortification compared to those living in naturally iodine sufficient 

locations (IS) with those in severely iodine deficient (ID) areas, or children in ID areas born 

before and after the introduction of iodine supplementation. IQ was measured using Binet or 

Raven Scales. There was a 12.45, 12.3 and 4.8 increase in IQ points respectively, for the children 

living in IS communities compared with: 

○ Those living in ID areas with no iodine supplementation; 

○ With inadequate iodine supplementation; 

○ Or children who had received iodine during their mothers’ pregnancy and after birth.  

Compared with that of children whose mothers were persistently exposed to ID, the combined total 

effect of iodine supplementation during pregnancy was an increase of 8.7 IQ points. Furthermore, there 

was an increase of 12 IQ points for children born more than 3.5 years after iodine supplementation 

program was introduced. The level of iodine nutrition plays a crucial role in the intellectual 

development of children. The intelligence damage of children exposed to severe ID was profound, 

demonstrated by 12.45 IQ points loss that recovered 8.7 IQ points with iodine supplementation or IS 

before and during pregnancy. Results of this study showed that iodine supplementation before and 
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during pregnancy to women living in severe ID areas could prevent their children from intelligence 

deficit. This effect becomes evident in children born 3.5 years after the iodine supplementation 

program was introduced [164]. 

5.1.5.2. Mild to Moderate Deficiency 

• Iodine status was investigated in 1,000 women of the Avon Longitudinal Study of Parents and 

Children (ALSPAC) cohort who were recruited in the 1990s. Iodine concentration (and 

creatinine to adjust for urine volume) was measured in urine samples from pregnant women of 

median gestational age 13 weeks [83]. Women were grouped as iodine-deficient or sufficient 

according to WHO criteria. The relationships between maternal iodine status and child’s IQ at 

age 8 (Wechsler Intelligence Scale for Children), reading ability at age 9 (Neale Analysis of 

Reading Ability), and Key Stage 2 scores at age 11 were analysed using logistic regression. The 

group was mildly-to-moderately iodine deficient and 61% of women were classed as iodine 

deficient when using the creatinine-adjusted data. The children of women deficient in iodine 

were more likely to have a total IQ score below the 25th percentile (unadjusted OR = 1.42,  

95% CI 1.05–1.94) after adjusting for mother’s parenting score, home score, family adversity 

during pregnancy, life-event score, dietary intake of n-3 fatty acids and iron, gender, ethnicity, 

maternal age, smoking, alcohol intake, parity, breastfeeding, partner at birth, parental education, 

housing status, crowding and use of iron, fish oil and vitamin/mineral supplements. The level of 

maternal iodine appeared sufficient to affect brain development in the offspring as shown by: 

○ Significantly lower total IQ at age 8; 

○ Significantly lower reading accuracy at age 9; 

○ Poorer school performance at age 11, including significantly poorer in mathematics. 

These results suggest the importance of achieving adequate iodine status during pregnancy and 

highlight the possibility that iodine deficiency can pose a risk to the developing infant, even in a 

country considered to be iodine replete.  

5.2. Intervention Trials 

To date, most trials involving iodine supplementation during pregnancy have reported effects on 

maternal and/or infant thyroid function and have not specifically measured indicators of brain 

development and function [66]. Even so, authors of these studies have argued that even  

mild-to-moderate iodine deficiency in pregnancy similar to that seen presently in Europe, may 

negatively affect cognitive function in the offspring [66]. Of those studies that have assessed offspring 

brain development and/or function, some [165], but not all [166] have reported improvements 

following supplementation. A study including 133 women who received 300 μg/day of potassium 

iodide during the first trimester of pregnancy and 61 women who received no iodine evaluated the 

psychobiological development of their infants aged 3 to 18 months. The neuropsychological status of 

the children was evaluated with the Bayley Scales of Infant Development, and measurements were 

made of TSH, free T3, free T4, and urinary iodine. Those children whose mothers received iodine 

supplementation had more favourable psychometric outcomes including higher scores on the 
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Psychomotor Development Index (p = 0.02) and the Behaviour Rating Scale than those of the  

non-supplemented group. This study showed that dietary iodine supplementation during pregnancy had 

no harmful effect on the neurodevelopment of the children and was instead beneficial [165]. However, 

in a double blind controlled trial in five villages in Papua New Guinea, several measures of motor and 

cognitive function showed no significant differences at either age 11 or 15 years between those 

children whose mothers had received supplementary iodine during pregnancy and the control children 

whose mothers had received the placebo [166]. 

6. Safe Intake Recommendations 

6.1. DHA 

Scientific data collected prior to 2008 established that dietary fat intake in pregnant women affects 

pregnancy outcome and fat intake during pregnancy and while breast-feeding impacts the growth, 

development and health of their offspring. Given the importance of this issue for public health, the 

European Commission charged the European research project, PeriLip (Influence of Dietary Fatty 

Acids on the Pathophysiology of Intrauterine Foetal Growth and Neonatal Development) and 

EARNEST (Project Coordinating Committee of the Early Nutrition Programming project), with the 

task of developing recommendations on dietary fat intake in pregnancy and lactation, based on 

scientific evidence [167,168]. These groups included representatives of the: 

• Child Health Foundation; 

• Diabetic Pregnancy Study Group; 

• European Association of Perinatal Medicine; 

• European Society for Clinical Nutrition and Metabolism; 

• European Society for Pediatric Gastroenterology; 

• Hepatology and Nutrition; 

• Committee on Nutrition; 

• International Federation of Placenta Associations; 

• International Society for the Study of Fatty Acids and Lipids.  

This authoritative body of experts undertook an extensive review of current scientific evidence to 

develop recommendations for dietary fat, fatty acid and antioxidant intake during pregnancy and 

lactation. Their review included omega-3 LC-PUFA intakes for women with low and high risk 

pregnancies, intakes during lactation and their effects on human milk composition and infantile 

outcome, effects of antioxidant intakes in pregnant and lactating women and toxicological evaluations 

on sea fish consumption in women of childbearing age.  

This review established that: 

• Fat, as a proportion of total energy needs should be the same in pregnant and lactating women as 

recommended for the normal population.  

• Pregnant and lactating women require at least 200 mg of DHA per day. Numerous populations 

studies throughout westernized countries have confirmed that our intake is much lower than this, 

with a mean of about 150 mg per day [169]. 
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• Maternal intake of fish, fish oils or omega-3 LC-PUFAs result in a slightly longer duration of 

gestation, a somewhat higher birth weight and a reduced risk of early preterm delivery.  

• The foetus and neonate must receive sufficient LC-PUFA to support optimal visual and  

cognitive development. 

• Breast feeding is endorsed as the preferred method of feeding to supply LC-PUFAs to the 

growing infant for the first 6 months of life. Dietary LC-PUFA supply should also continue after 

that time, but currently there is insufficient data to provide specific recommendations. 

• Dietary intakes up to 1 g DHA/day or 2.7 g EPA + DHA/day have been used in clinical trials 

without occurrence of significant adverse effects.  

There is no clinical evidence to support a safety concerns for DHA supplementation during 

lactation. Intake of 2 g/day of combined EPA and DHA is similar to that seen in large sectors of the 

Japanese population and well below that of Greenland Inuit, both of whom suffer no ill effects from 

this routine consumption throughout all phases of their lives including breast feeding [170].  

6.2. Vitamin D  

Currently there are no consistent recommendations amongst or even within countries for vitamin D 

intake during pregnancy and lactation. Independent researchers have recommended up to 100 μg (4000 IU) 

daily to increase maternal and neonatal vitamin D status to optimal levels [171]. In 2011, the US 

Endocrine Task Force on vitamin D stated that 15 μg (600 IU) daily may not be enough to correct 

vitamin D deficiency in pregnant and lactating women. Their recommendation was 37.5–50 μg  

1500–2000 IU) per day in pregnant and lactating women with vitamin D deficiency [172]. Table 1 

includes recommendations from various health agencies and governments around the world. 

Table 1. Vitamin D intake recommendations during pregnancy and lactation. 

Agency/Government Recommendation 

UK—for the elderly, pregnant & lactating women [173] Dietary Reference Values 10 µg/day (400 IU/day) 

UK Department of Health 2007—for pregnant and 

lactating women [45] 

10 µg/day (400 IU/day) 

UK National Institute of Health and Clinical Excellence 

Guideline Review Panel 2007 [45] 

All women should be informed about the importance for their 

own and their baby’s health of maintaining adequate vitamin D 

stores during pregnancy and whilst breast feeding and may 

choose to take 400 IU/day. 

Canadian Paediatric Society [45] 50 μg/day (2000 IU/day) throughout pregnancy 

Federal Department of Health Canada [45]  5 μg/day (200 IU/day) for pregnant and breast-feeding women 

European Commission [45] 10 μg/day (400 IU/day) during pregnancy 

World Health Organisation 2004 [45] 5 μg/day (200 IU/day) during pregnancy 

The Institute of Medicine US 2010 [172,174] 15 μg/day (600 IU/day) in pregnant and lactating women 

US Endocrine Task Force on Vitamin D 2011 [174] 37.5–50 μg/day (1500–2000 IU) in pregnant and lactating 

women with vitamin D deficiency. 

A recent Cochrane Review assessed the effects and safety of vitamin D supplementation in 

pregnancy and examined whether supplementation with vitamin D alone or in combination with 

calcium and other vitamins and minerals given to women during pregnancy could safely improve 
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pregnancy outcomes [175]. The review included five trials involving 623 women comparing the 

effects of vitamin D alone versus no supplementation/placebo and one trial with 400 women 

comparing the effects of vitamin D and calcium versus no supplementation. Data from four trials 

involving 414 women consistently showed that women who received vitamin D supplements during 

pregnancy had higher concentrations of vitamin D in serum at term than those women who received no 

intervention or a placebo; however the magnitude of the response was highly heterogenous. Data from 

three trials suggested that vitamin D supplemented women had babies with birth weights below  

2500 g less frequently than those women receiving no treatment or placebo. Women with  

pre-eclampsia who received 1200 IU vitamin D along with 375 mg of elemental calcium per day were 

as likely to develop pre-eclampsia as women who received no supplementation. There were no 

significant differences in adverse side effects including nephritic syndrome, stillbirths or neonatal 

deaths between women who received vitamin D supplements relative to women who received no 

treatment or placebo. The authors concluded that vitamin D supplementation in a single or continued 

dose during pregnancy increases serum vitamin D concentrations. However, due to the small number 

of high quality studies currently reported, the clinical significance of this finding and the potential safe 

use of this intervention as part of routine antenatal care are yet to be determined through rigorous 

randomised trials.  

There has been little toxicity reported in adults taking doses of vitamin D as high as 10,000 IU/day 

(250 µg/day) of vitamin D [176–178] although toxicity becomes generally present at 20,000 IU/day  

(500 µg/day). Recently, a randomized, controlled trial, including 350 women with a singleton 

pregnancy at 12 to 16 weeks’ gestation supplemented with 400 (10 μg), 2000 (50 μg), or 4000 IU 

(100 μg) of vitamin D per day until delivery. The primary outcome was maternal/neonatal circulating 

25(OH)D concentration at delivery, with secondary outcomes of a 25(OH)D concentration of 

80 nmol/L or greater achieved and the 25(OH)D concentration required to achieve maximal  

1,25-dihydroxyvitamin D(3) production. There were no differences between groups on any safety 

measure. Not a single adverse event was attributed to vitamin D supplementation or circulating 

25(OH)D levels. The authors concluded that vitamin D supplementation of 4000 IU/day for pregnant 

women is safe and most effective in achieving sufficiency in all women and their neonates regardless 

of race, whereas the current estimated average requirement is comparatively ineffective at achieving 

adequate circulating 25(OH)D concentrations, especially in African Americans [179]. 

6.3. Folic Acid 

The recommended dietary allowance for women of childbearing age is 400 μg/day of folic acid 

according to the Institute of Medicine [58]. These recommendations are based on the amount of dietary 

folate equivalents needed to maintain normal red blood cell concentration. In addition to this dietary 

recommendation, all women who may become pregnant should take a multivitamin containing  

400 μg/day of folic acid to reduce the risk of neural tube defects. These recommendations are 

recognized and endorsed around the world [63,64,180–184]. Some countries provide additional 

recommendations such as those in New Zealand where women at low risk of a neural tube defect 

affected pregnancy who plan to become pregnant, are recommended to take a 800 µg of folic acid 
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daily for at least four weeks prior to conception and for 12 weeks after conceiving to reduce the risk of 

neural tube defects [64].  

Folate intake from food is not associated with any health risk. The risk of toxicity from folic acid 

intake from supplements and/or fortified foods is also low [185]. It is a water soluble vitamin, so any 

excess intake is usually lost in the urine. There is some evidence that high levels of folic acid can 

provoke seizures in patients taking anti-convulsant medications [186] and recommendations are that 

anyone taking such medications should consult with a medical doctor before taking a folic  

acid supplement.  

A 2009 meta-analysis including 1083 published articles of randomized, controlled trials,  

case-control studies and systematic reviews assessing the harms associated with folic acid containing 

supplements did not find any association of folic acid supplementation with either twin pregnancy or 

masking vitamin B12 deficiency (both concerns previously raised in the literature). One fairly well 

designed study suggested that confounding by infertility treatment explains previously reported 

associations of folic acid and twin pregnancy. The retrospective cohort study examined the association 

between risk for twining in 176,042 women who gave birth in Norway between December 1998 and 

December 2001 and their history of multivitamin or folic acid use before or during pregnancy. After 

adjusting for age, parity, underreporting of folic acid use and in vitro fertilization, the OR for twin 

delivery after preconceptional supplementation was 1.02 (CI, 0.85 to 1.24) and was about the same as 

for women who did not take folic acid [153].  

The Institute of Medicine has established a tolerable upper intake level (UL) for folate from 

fortified foods or supplements (i.e., folic acid) for ages one and above. Intakes above this level 

increase the risk of adverse health effects. In adults, supplemental folic acid should not exceed the UL 

to prevent folic acid from triggering symptoms of vitamin B12 deficiency [58]. It is important to 

recognize that the UL refers to the amount of synthetic folate (i.e., folic acid) being consumed per day 

from fortified foods and/or supplements. There is no health risk, and no UL, for natural sources of 

folate found in food. Table 2 lists the UL for folate, in micrograms (μg), for women of child bearing age. 

Table 2. Tolerable upper intake levels for folate in women [58]. 

Age (Years) Females (μg/day) During Pregnancy (μg/day) During Lactation (μg/day) 

9–13 600 N/A N/A 

14–18 600 800 800 

>19 1000 1000 1000 

6.4. Iodine 

Recently WHO/UNICEF/ICCIDD increased the Recommended Nutrient Intake (RNI) for iodine 

during pregnancy and lactation to 250 μg/day [66,187]. The RNI is the intake estimated to cover the 

needs of “nearly all” healthy individuals in the specified life stage. In addition, women should take 

iodine supplements (in the recommended dose for pregnancy) from the point of planning pregnancy 

through the full duration of pregnancy and breast feeding [72]. Risks associated with iodine 

supplementation in the recommended doses are low since only a small amount of iodine can be stored 

in the body and any excess is excreted [72]. Women with pre-existing thyroid conditions should seek 
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advice from their medical practitioner before taking an iodine supplement [72]. Table 3 lists the intake 

recommendations from various health agencies and governments around the world. 

Table 3. Recommended Iodine Intake. 

Agency/Government Recommendation 

The Australian National Health and Medical 

Research Council [188] 

220 μg/day for pregnant women and 270 μg/day for breast 

feeding women 

New Zealand Ministry of Health [188] 220 μg/day for pregnant women and 270 μg/day for breast 

feeding women 

US Food and Nutrition Board of the Institute of 

Medicine [66,189] 

220 μg/day for pregnant women and 290 μg/day for lactating 

women 

The American Thyroid Association [165] 150 μg/day during pregnancy [67] and lactation, and that 

vitamins for prenatal use or use during pregnancy should be 

enriched with 150 μg/day of iodine  

In 2002, the EU Scientific Committee on Food completed a thorough review of the existing safety 

data pertaining to iodine intake and reported the UL of Iodine to be 1700 and 1800 μg/day for adults. 

The UL of 600 μg/day was considered to be acceptable for pregnant and lactating women based on 

evidence of lack of adverse effects at exposures significantly in excess of this level [190]. 

7. Conclusions  

A substantial amount of scientific research highlights the critical role that maternal nutrient intake 

during pregnancy and lactation plays to ensure normal offspring function. Many dietary nutrients are 

required for growth and development of the brain and central nervous system. However, common 

dietary deficiencies within many populations of particular nutrients including DHA, vitamin D, folic 

acid, and iodine, that all play critical roles at various developmental stages, have been shown to 

contribute to functional abnormalities, many of which have lasting effects.  

Adequate maternal intake of DHA during pregnancy and lactation is necessary for proper cell 

membrane formation in the brain and central nervous system and to ensure healthy foetal growth 

including birth weight, head circumference and birth length. Intervention trials have reported that DHA 

supplementation can prolong gestation in high risk pregnancies, increase birth weight, head 

circumference and birth length, enhance infant development including hand and eye co-ordination up 

to 2.5 years of age, visual acuity, attention processing efficiency, better neurological outcomes up to 

5.5 years, and problem solving ability, information processing and IQ up to age 7 years. In addition, it 

can reduce the incidence of “slow developers”. 

Vitamin D is involved in the regulation of cellular differentiation and apoptosis thereby exerting 

effects on foetal skeletal growth, development of the immune system and the brain. Preclinical studies 

in offspring born to vitamin D deficient mothers have reported gross morphological changes in brain 

structure that persist into adulthood resulting in impaired attention processing, sensitivity to agents that 

induce psychosis and abnormal movement patterns. Epidemiological studies have linked low maternal 

vitamin D status to severe preeclampsia resulting in miscarriage, risk of low birth weight and  
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small-for-gestational age infants, neonatal hypocalcaemia with seizures and possible involvement in 

the development of schizophrenia.  

Folic acid is necessary for cell division, synthesis of amino acids and nucleic acids and ultimately 

for normal development of the foetal spine, brain and skull in particular during the first four weeks of 

pregnancy to prevent neural tube defects including spina bifida and anencephaly. The impact of folic 

acid supplementation on prevention of neural tube defects has been extensively studied for decades 

resulting in the requirement for folic acid supplementation in women of child bearing age and during 

pregnancy becoming well established and internationally recognized. 

Iodine is essential for normal thyroid hormone production needed for normal brain and nervous 

system development during gestation. Epidemiological studies report that severe maternal iodine 

deficiency results in poor mental development of offspring including significantly reduced IQ while 

even mild to moderate deficiency negatively impacts IQ, reading accuracy and school performance. 

Intervention trials assessing offspring cognitive and motor function following maternal iodine 

supplementation during pregnancy are scarce and have reported significant enhancements up to  

18 months, but no significant improvements relative to control at age 11 or 15 years.  

Maternal supplementation with DHA, vitamin D, folic acid and iodine within recommended safe 

intake quantities in a large segment of the population that is currently deficient in these nutrients, could 

significantly prevent many brain and central nervous system malfunctions and even enhance brain 

development and function in future generations.  
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