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Abstract: Recent studies have demonstrated that the intestine is a key target organ for 

overall health and longevity. Complementing these studies is the discovery of the  

trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse 

cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism 

in the intestine provides an attractive platform for intestine-specific nutritional intervention 

strategies to lower blood cholesterol levels for protection against cardiovascular diseases. 

Notably, there is mounting evidence that stimulation of pathways associated with calorie 

restriction may have a large effect on the regulation of cholesterol removal by the intestine. 

However, intestinal energy metabolism, specifically the idiosyncrasies surrounding 

intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to 

review recent insights into cholesterol regulation by the intestine and to discuss the 

potential for positive regulation of intestine-driven cholesterol removal through the 

nutritional induction of pathways associated with calorie restriction.  
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1. Introduction 

Elevated low-density lipoprotein (LDL) cholesterol in circulation can lead to cholesterol deposition 

and crystallization within artery walls, which is recognized as the hallmark of early atherosclerotic 

lesions [1]. It has been estimated that one in every six deaths in the US is attributed to coronary heart 

disease (CHD) [2]. As CHD continues to burden developed countries, the need for more effective 

strategies to lower plasma cholesterol levels becomes increasingly apparent. Current hypocholesterolemic 

strategies largely focus on either lowering circulating LDL cholesterol or promoting reverse cholesterol 

transport (RCT), a process classically thought to involve the delivery of excess cholesterol from the 

periphery to the liver for subsequent biliary excretion. However, recent evidence demonstrates that the 

intestine is host to novel pathways capable of modulating whole body cholesterol metabolism. 

Targeting the intestine to lower plasma cholesterol concentrations is therapeutically attractive because 

stimulation of hepatic cholesterol secretion to bile can facilitate gallstone formation [3,4]. 

The role of the intestine in the regulation of whole body cholesterol status has been historically 

underestimated. The recent elucidation of trans-intestinal cholesterol efflux (TICE) [5,6] and intestinal 

contributions to high-density lipoprotein (HDL) biogenesis [7] and RCT [8,9] make the gut an 

excellent nutritional target for CHD prevention. However, the metabolic states and biological 

processes that regulate cholesterol homeostatic pathways in the intestine are poorly understood. The 

goals of this review are to discuss recent understandings of the role of the intestine in the removal of 

circulating cholesterol and to examine the interface between intestine-specific cholesterol regulation 

targets and cellular responses associated with calorie restriction. 

2. Trans-Intestinal Cholesterol Efflux (TICE) 

It has long been accepted that cholesterol removal from the periphery, and subsequently the body, is 

confined to hepatobiliary excretion via HDL-mediated RCT. However, overlooked evidence dating 

back as far as the early 20th century has suggested a non-biliary route of cholesterol excretion [10,11]. 

Recent observations have renewed focus on this possibility [12]. Using ATP-binding cassette 

transporter A1 (ABCA1) knockout (Abca1−/−) mice, which have nearly undetectable plasma HDL 

cholesterol levels, Groen et al. [13] showed that a lack of HDL did not affect hepatobiliary cholesterol 

secretion and fecal excretion of neutral and acidic sterols. Plosch et al. [14] and Kruit et al. [15] also 

demonstrated that increased fecal neutral sterol loss by the activation of liver X receptor (LXR) could 

not be solely attributed to increased hepatobiliary cholesterol excretion. More recently, liver-specific 

acyl CoA:cholesterol acyltransferase 2 (ACAT2) depletion in mice paradoxically resulted in increased 

fecal sterol loss without increases in biliary cholesterol excretion [6]. This collection of increasingly 

confounding evidence has led to the recent elucidation of trans-intestinal cholesterol efflux (TICE). 

TICE refers to the flux of cholesterol from circulating lipoproteins through the intestine and into the 

lumen for subsequent excretion or reabsorption [16–18]. TICE has been shown to occur throughout the 

small intestine with the greatest percentage of TICE occurring in the proximal intestine [5]. To gain 

insight into the role of HDL in TICE, HDL particles with radiolabeled cholesterol were injected into 

mice genetically deficient of ABCA1 and scavenger receptor class B type 1 (SR-B1), which have 

extremely low HDL cholesterol levels and a defect in HDL clearance [19]. Both wild-type and the 
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double knockout mice failed to take up and secrete HDL-derived cholesterol via TICE, suggesting a 

minimal contribution of HDL to TICE. Although the specific cholesterol donor(s) for TICE have yet to 

be determined, apolipoprotein B-containing lipoproteins are likely the cholesterol donors for  

TICE [16]. The ability to study TICE has been enabled by innovative surgical techniques  

(i.e., intestinal perfusions [5] and biliary diversions [20]) and genetic mouse models with drastically 

reduced biliary cholesterol excretion such as mice with liver-specific overexpression of Niemann-Pick 

C1-like 1 (NPC1L1) [20,21] and multidrug resistance P-glycoprotein 2 (Mdr2) deficient mice [15]. It 

has been estimated that TICE accounts for ~20%–33% of basal fecal sterol losses in both  

humans [22,23] and mice [15,24]. Importantly, using murine models it has been shown that the  

non-biliary TICE pathway can be stimulated to become quantitatively more important than 

hepatobiliary cholesterol removal [24,25]. Activation of LXR [14,20,24] and peroxisome  

proliferator-activated receptor δ (PPARδ) [25], ezetimibe administration [26] and fasting [27]  

are known to stimulate TICE. The therapeutic implications of TICE induction were further highlighted 

by the finding that TICE can participate in macrophage RCT in mice [20]. Since HDL does not 

directly contribute to TICE in mice [19], this finding by Temel et al. [20] also challenges the 

selectivity of HDL for macrophage-derived RCT.  

Despite evidence of TICE stimulation suggested by several studies, the precise underlying 

mechanisms and pathways that induce TICE are largely unknown. In addition to the identification of 

cholesterol donors for TICE, cholesterol transporters in the apical and basolateral membrane of 

enterocytes, intracellular mechanisms and mediators for cholesterol trafficking and lumenal cholesterol 

acceptors still need to be determined to gain better insight into the overall TICE process. The use of 

nutritional interventions that offer well-characterized alterations in metabolism may be a logical 

approach to resolve these TICE unknowns. Identification of the metabolic controls and corresponding 

physiological events that stimulate TICE will highlight key cellular components involved in TICE and 

help elucidate additional therapeutic targets. Importantly, it needs to be determined if intestine-specific 

intervention strategies can lead to TICE induction and subsequent cholesterol removal. Intestine-specific 

regulation of cholesterol removal would offer nutritional targets in an organ that bypasses many of the 

bioavailability concerns that plague dietary nutrients and bioactive components. Preliminary evidence 

described above suggests that intestine-specific strategies are a viable option for cholesterol removal 

and this evidence will be discussed next. 

3. Intestinal Contributions to RCT & HDL Biogenesis 

At the molecular level, synthetic agonists of LXRs are arguably the most effective activators of 

RCT. LXRs are nuclear receptors that transcriptionally regulate lipid homeostasis and cholesterol 

efflux in the liver, intestine and macrophages in response to cellular sterol levels [8,28]. Activation of 

hepatic LXR leads to increased biliary cholesterol excretion, while also inducing hepatic de novo 

lipogenesis [9]. Therefore, cholesterol-lowering strategies have steered away from targeted stimulation 

of RCT via enhanced biliary cholesterol excretion considering that this approach also promotes 

cholesterol gallstone disease [3] and hepatic steatosis [4]. Alternatively, recent findings have shown 

that intestine-specific LXR activation stimulates cholesterol transport from macrophage to feces via a 

process called “macrophage RCT” and circumvents the side effects of hepatic LXR activation such as 
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increased lipogenesis [8,9]. GW6340, an intestine-specific LXR agonist, stimulated macrophage RCT 

by ~52% in mice [9]. Lo Sasso et al. [8] also demonstrated that intestinal LXR activation reduced 

atherosclerosis development in LDL receptor knockout mice and increased RCT in mice with 

intestine-specific, constitutively activated LXRα.  

The intestine also plays a critical role in the biogenesis of HDL. ABCA1, a LXR target gene 

expressed on the basolateral membrane of enterocytes, is a ubiquitous, membrane-bound transporter 

that mediates cellular cholesterol and phospholipid efflux to lipid-free or lipid-poor apolipoprotein AI 

(apoA-I) for nascent HDL formation [29]. Murine intestinal ABCA1 is responsible for ~30% of the 

steady-state HDL cholesterol in plasma [7] and increased plasma HDL cholesterol via treatment with 

GW3965, a synthetic LXR agonist, was completely nullified in mice lacking intestinal ABCA1 [30]. 

Furthermore, intestine-specific constitutive activation of LXRα in mice led to increased intestinal 

ABCA1 expression with a concomitant increase in HDL biogenesis [8]. Cardio-protective effects from 

simply increasing plasma HDL cholesterol levels has proved controversial, so a premium should be 

placed on HDL-raising therapies that subsequently promote cholesterol excretion [31]. In this context, 

intestine-specific LXR activation to increase nascent HDL formation holds great promise.  

Activation of PPARδ has also been shown to stimulate RCT via an intestine-specific mechanism of 

action [32,33]. In general, PPARs are a subgroup of ligand-activated transcription factors that regulate 

a variety of genes involved in lipid and energy metabolism [34,35]. Of the several PPAR subtypes, 

PPARδ is the least understood, but the physiological role of PPARδ is believed to involve glucose and 

fatty acid metabolism [35,36]. The recent development of PPARδ agonists has led to the discovery of 

increased HDL cholesterol levels and RCT upon the activation of PPARδ in insulin resistant mice [37] 

and monkeys [38]. Moreover, increased HDL cholesterol levels were observed in healthy human 

subjects when a PPARδ agonist was administered [39]. Like LXR, PPARδ has been separately 

implicated in intestine-specific TICE stimulation [25] and RCT [32]. However, enhanced RCT from 

PPARδ activation has been attributed to reduced intestinal reabsorption of HDL-derived biliary 

cholesterol [32]. The reduction in intestinal cholesterol absorption by PPAR activation is at least 

partly due to decreased expression of intestinal NPC1L1 [32,33]. NPC1L1 is a cholesterol transporter 

that is highly expressed on the brush border of enterocytes and it is critical for intestinal cholesterol 

absorption [40]. Van der Veen et al. [33] documented that PPARδ-induced decreases in intestinal 

NPC1L1 expression corresponded to increased fecal neutral sterol excretion, which persisted even 

when increases in HDL cholesterol levels were nullified in mice lacking ABCA1. Briand et al. [32] 

showed a similar stimulation of RCT after treatment with ezetimibe, a specific NPC1L1 inhibitor. 

Interestingly, ezetimibe was also shown to increase TICE via a mechanism that could not be solely 

attributed to its inhibitory action on intestinal cholesterol absorption [26].  

Clearly, the intestine has emerged as a dynamic organ with tremendous therapeutic potential for 

lowering cholesterol. However, the cellular factors that promote atheroprotection via TICE and/or 

intestine-driven RCT remain elusive. As discussed above, pharmacological activation of both LXR and 

PPARδ has been reported to independently stimulate each of these intestinal pathways for cholesterol 

removal. Therefore, understanding metabolic controls that promote activation of these targets may help 

unveil the mechanisms for intestine-specific cholesterol removal and elucidate additional therapeutic 

targets for cholesterol reduction via the intestine.  
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4. Energy Deprivation and Intestinal Cholesterol Regulation 

In general, the connection between energy deprivation and the gut’s pivotal role in overall health 

and longevity was recently demonstrated in Drosophila melanogaster [41–43]. Intestine-specific 

overexpression of the Drosophila peroxisome proliferator-activated receptor  coactivator-1α (PGC-1α) 

homolog, a key regulator of energy metabolism induced by energy deprivation, delayed age-related 

deterioration of intestinal homeostasis and extended life span of the organism. Other studies in  

C. elegans [44] and mice [45] also support the notion that enhanced intestinal function/homeostasis 

increases lifespan.  

The metabolic dichotomy between fed and fasted states in the intestine may offer a useful tool to 

study the metabolic pathways related to TICE and intestinal contributions to whole body cholesterol 

homeostasis. In particular, the metabolic responses to energy deprivation are an evolutionary 

conserved set of highly regulated biological events that promote the mobilization of stored energy and 

enhance oxidative metabolism [46–48]. Studies on energy deprivation responses at an organismal level 

are often carried out using caloric restriction (CR), which is defined as a 20%–40% caloric reduction 

versus ad libitum feeding [49,50]. CR has been shown to extend lifespan and protect against  

age-related diseases in a number of organisms, including mammals [50–52]. Notably, CR has been 

shown to mitigate the risk for atherosclerosis development in humans [53]. The hallmark signatures of 

CR in mammals reflect the reciprocal activation of AMP-activated protein kinase (AMPK) and  

NAD+-dependent sirtuins (SIRTs) [48,54–57]. AMPK responds to increased cellular AMP/ATP ratios 

by increasing cellular NAD+ [56]. Interestingly, AMPK activation has been shown to mediate the  

CR-like effects of PPAR agonists [36]. It is well understood that cells have evolved to use NAD+ as a 

nutrient sensor and determinant of cellular metabolism and survival [58,59]. NAD+ levels have been 

shown to rise in numerous tissues in response to fasting, CR and exercise, while high-fat diets reduce 

the NAD+ levels in mice [60].  

Several metabolic responses associated with energy deprivation/CR are mediated by NAD+-dependent 

mammalian orthologs of lower eukaryotic Sir2: SIRTs [61]. The seven mammalian SIRTs, i.e., SIRT1-7, 

are an unusual and conserved class of deacetylases and mono-ADP-ribosyltransferases that use NAD+ 

as a co-substrate to regulate metabolic processes, including lipid metabolism [47,50]. SIRTs can 

regulate cellular activities by deacetylating a wide array of histone and non-histone proteins in 

response to cellular energy deficits [60]. SIRT1, the most studied mammalian SIRT, has been shown to 

regulate a number of transcription factors and proteins involved in cholesterol and lipid metabolism, 

including PGC-1α [48,62], PPARα and γ [47,63,64], farnesoid X receptor (FXR) [65], sterol 

regulatory element-binding proteins (SREBPs) [66,67], cholesterol 7α-hydroxylase (CYP7A1) [68] 

and LXR [28]. Significant decreases in plasma total and LDL cholesterol concentrations were 

observed in transgenic mice overexpressing SIRT1 [69], while SIRT1 knockout (Sirt1−/−) mice showed 

blunted HDL cholesterol increases after an 8-day LXR agonist (T0901317) administration [28]. 

However, contributions of SIRT1 to intestine-specific regulation of cholesterol metabolism remain to 

be determined. 
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4.1. Prolonged Fasting Stimulates TICE 

A range of evidence exists that suggests many of the cellular processes associated with energy 

deprivation and CR may influence intestine-specific regulation of cholesterol removal. Sokolovic et al. [27] 

demonstrated increases in intestinal cholesterol levels and TICE during prolonged fasting (48 h) in 

mice. Similarly, increased output of biliary bile salts, phospholipids and cholesterol were also observed 

during fasting. As corresponding increases in fecal neutral sterols were not observed during fasting in 

this study, the physiological significance of increased TICE during energy deprivation in regulating 

whole body cholesterol homeostasis is not clear. Nonetheless, the findings highlight that energy status 

in the intestine is an important factor to modulate intestinal cholesterol flux. Elevated TICE during 

fasting may be partly explained by increases in biliary outputs of bile salts and phospholipids as their 

presence in the intestinal lumen has been shown to stimulate TICE by functioning as cholesterol 

acceptors [5]. Alternatively, Danielsen et al. [70] provided evidence for the role of enterocytes in 

fasting-induced TICE by demonstrating that apoA-I is secreted apically from enterocytes into the 

lumen of porcine small intestines during fasting. The study also showed bile-dependent deposition of 

apically secreted, lipid-free/poor apoA-I in the brush border, and microvillar apoA-I was shown to be 

associated with cholesterol. The authors conjecture that this deposited apoA-I is well suited to 

participate in TICE [70]. ApoA-I acts as a cholesterol acceptor by interacting with ABCA1 [71–73]. 

Therefore, for the microvillar apoA-I to be a functional cholesterol acceptor in the lumen of the 

intestine, an unknown transporter on the apical membrane of enterocytes is likely necessary to interact 

with apoA-I. Furthermore, the capacity of apoA-I to draw cholesterol from enterocytes to the intestinal 

lumen may not be quantitatively significant. Thus, the contributions of microvillar apoA-I to TICE as a 

cholesterol acceptor need further investigation.  

While this review discusses evidence suggesting that processes associated with energy deprivation 

can positively regulate intestine-specific cholesterol removal, it should be noted that increases in TICE 

were also observed in mice fed Western-type and high fat diets [74]. The reasons for this ambivalent 

regulation of TICE by energy deprivation as well as Western-type diets containing high fats and 

cholesterol remain to be determined. In general, TICE stimulation resulting from diets rich in 

cholesterol and lipids is likely related to the body’s effort to remove excess cholesterol for maintaining 

cholesterol homeostasis. In contrast, given that adipose tissue contains 15%–20% of the body’s 

cholesterol in normal individuals and more than 50% in obese subjects [75], increased cholesterol 

mobilization as a consequence of triglyceride hydrolysis in adipose tissue may contribute to the 

increased intestinal cholesterol uptake and subsequent TICE during fasting. This ambivalent behavior 

of TICE could be problematic for nutritional interventions, yet pursuing intervention strategies that are 

already known to positively influence cholesterol profiles and protect against CVD (i.e., inducing 

energy deprivation pathways) may be a logical first-step approach. 

4.2. PPARδ Agonists and CR  

PPARδ agonists induce metabolic changes consistent with CR and prolonged exercise [35]. 

Following short-term exposure to a PPARδ agonist, a decrease in cellular energy status and subsequent 

AMPK activation were observed in human myotubes [36]. Interestingly, PPARδ is highly expressed in 
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the intestine and PPARδ mRNA levels have been shown to increase in fasted mice [76]. Furthermore, 

activation of PPARδ has been shown to induce TICE without influencing biliary cholesterol  

excretion [25]. PPARδ agonists have been shown to promote RCT and reduce atherogenic 

inflammation [25,32,77,78]. Thus, it appears that PPARδ may play an athero-protective role at least in 

part by enhancing TICE and RCT in the intestine via the modulation of metabolic pathways similarly 

to CR. However, intestine-specific induction of PPARδ in relation to energy deprivation has yet to  

be assessed.  

4.3. Positive Regulation of LXR by SIRT1 

Studies have shown that intestine-specific LXR activation stimulates RCT/TICE [8,14,20,24]. LXR 

activation is generally associated with the fed state, but recent studies have paradoxically demonstrated 

positive regulation of LXR by SIRT1. Li et al. [28] showed that LXR acetylation occurs at a single 

conserved lysine residue (K432 in LXRα and K433 in LXRβ) and loss of SIRT1 in vivo leads to 

decreased expression of LXR target genes. In this study, Sirt1−/− mice had decreased plasma HDL 

cholesterol levels and peritoneal macrophages and hepatocytes from Sirt1−/− mice showed a reduction 

in apoA-I mediated cholesterol efflux [79,80]. A recent study by Defour et al. [81] also demonstrated 

that SIRT1 deacetylates LXRα and LXRβ in human skeletal muscle. It is tempting to speculate that the 

surge in intestinal cholesterol levels during fasting [27] offers a scenario where active LXR, and 

subsequent cholesterol efflux, could be positively regulated by SIRT1 during cellular energy deficits. 

Regulation of LXR by SIRT1 in the intestine has yet to be addressed. 

5. Nutritional Induction of Energy Deprivation Pathways 

The intestine has emerged as an organ capable of stimulating RCT and coordinating the uptake, 

trafficking and efflux of circulating cholesterol, i.e., TICE. The evidence discussed above suggests that 

metabolic pathways associated with CR/energy deprivation can similarly promote TICE and/or 

intestine-specific RCT stimulation. However, unlike other tissues that make significant contributions 

to lipid metabolism, the cellular influences of CR/energy deprivation on the intestine are poorly 

understood. Recent studies using transcriptomic profiling suggested that the small intestine exhibits a 

biphasic metabolic response to fasting that differs from the well-characterized and progressive 

adaptive response to fasting by the liver [82,83]. This makes sense considering the unique energetic 

preference for glutamine by the intestine [84]. Therefore, the influence of CR on intestine-specific 

cholesterol removal pathways needs to be assessed.  

CR-mimetics and NAD+ precursors are an attractive means to study metabolic pathways that are 

triggered by energy deprivation in the gut. For instance, NAD+ precursors such as nicotinamide 

mononucleotide (NMN) and nicotinamide riboside (NR) hold great nutritional promise for lowering 

plasma cholesterol by increasing NAD+ and subsequently activating pathways associated with 

CR/energy deprivation via SIRT1 [85,86]. Dietary supplementation of NR, a compound found 

naturally in milk, was shown to prevent diet-induced obesity and significantly reduce plasma total 

cholesterol levels in C57BL/6J mice fed a high fat diet [85]. Similarly, daily i.p. injections of NMN 

(500 mg/kg) for 11 days ameliorated high fat diet-induced hypercholesterolemia in age-induced  

Type 2 diabetic mice [86]. Due to these findings, speculations have begun to circulate regarding the 
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unclear mechanisms behind niacin’s potent hypolipidemic effects. Niacin, in the form of nicotinic acid, 

is another NAD+ precursor and potent serum cholesterol-lowering agent that exhibits cardioprotective 

effects [87]. The original observation concerning the cholesterol-lowering effect of nicotinic acid by 

Altschul et al. [88] noted that similar cholesterol-lowering effects were not observed with nicotinamide 

treatments. Interestingly, nicotinamide, a product of SIRT deacetylation reactions, is a known feedback 

inhibitor of SIRT activity [89]. Overall, NAD+ precursors such as NR and NMN are promising 

candidates for cholesterol-lowering strategies that do not produce flushing, a severe side effect of 

nicotinic acid [85]. Yet, the effect of NR and NMN on intestine-specific cholesterol regulatory 

pathways and corresponding protection against CVD has yet to be assessed.  

The red wine polyphenol and CR mimetic, resveratrol has proved to be a small-molecule activator 

of AMPK and SIRT1 in vitro and in vivo [90,91]. A number of recent studies have truly begun to 

unravel the mechanistic influences of resveratrol [92,93]. Human trials have demonstrated mixed 

results concerning the effect of resveratrol on various metabolic and lipid parameters [94,95]. 

However, the specific role of resveratrol in the regulation of intestine-specific lipid/cholesterol 

metabolism and fecal sterol excretion remains to be determined. Additionally, a number of other 

dietary polyphenols have been suggested to regulate SIRT1 and the pathways associated with CR [96]. 

Future research into intestinal SIRT1 modulation by polyphenols could help elucidate the mechanism 

underlying hypocholesterolemic mechanisms of action for many of these highly consumed bioactives.  

6. Conclusions 

In support of the overall health promoting prominence of the intestine, recent findings have 

unveiled the critical roles of the intestine in the regulation of whole body cholesterol homeostasis 

particularly by enhancing TICE and RCT. For the field of nutrition, the discovery of novel cholesterol 

regulatory pathways in the intestine undoubtedly offers an unexplored platform for intestine-specific 

intervention strategies to lower blood cholesterol levels for protection against CVD.  
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