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Abstract: Non-alcoholic fatty liver disease (NAFLD) is defined as a pathologic 
accumulation of fat in the form of triglycerides (TG) in the liver (steatosis) that is not 
caused by alcohol. A subgroup of NAFLD patients shows liver cell injury and 
inflammation coupled with the excessive fat accumulation (steatohepatitis), which is 
referred to as non-alcoholic steatohepatitis (NASH). Patients with NASH may develop 
cirrhosis and hepatocellular carcinoma (HCC). NAFLD shares the key features of 
metabolic syndrome including obesity, hyperlipidemia, hypertension, and insulin resistance. 
The pathogenesis of NAFLD is multi-factorial, however the oxidative stress seems to plays 
a major role in the development and progression of the disease. The emerging field of 
epigenetics provides a new perspective on the pathogenesis of NAFLD. Epigenetics is an 
inheritable but reversible phenomenon that affects gene expression without altering the 
DNA sequence and refers to DNA methylation, histone modifications and microRNAs. 
Epigenetic manipulation through metabolic pathways such as one-carbon metabolism has 
been proposed as a promising approach to retard the progression of NAFLD. Investigating 
the epigenetic modifiers in NAFLD may also lead to the development of preventive or 
therapeutic strategies for NASH-associated complications. 
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1. Introduction 

Non-alcoholic fatty liver disease (NAFLD), ranging from simple steatosis through steatohepatitis to, 
ultimately, cirrhosis, is characterized by an abnormal accumulation of triglycerides (TG) in the liver 
without alcohol consumption [1]. NAFLD is often associated with the most common clinical features 
of metabolic syndrome, such as central obesity, type 2 diabetes mellitus, dyslipidemia and arterial 
hypertension [2]. It is generally considered a benign condition, affecting up to 60%–70% of diabetic 
and obese patients [3]. About 25% of patients affected by NAFLD progress to non-alcoholic 
steatohepatitis (NASH), which is characterized by inflammation, hepatocellular ballooning 
degeneration, fibrosis and liver cell injury [4–6]. A pathologic study using human liver biopsy 
specimens revealed that cirrhosis can develop in about 25% of patients with NASH [7]. Most 
individuals with NAFLD remain asymptomatic, while patients with NASH may develop to 
cryptogenic liver cirrhosis, end-stage liver disease or even hepatocellular carcinoma (HCC) [8,9]. 

The prevalence of NAFLD in the general population of Western countries ranges from 20%  
to 30% [10,11]. Population based screening has estimated that at least 25% of the general population in 
the United States (US) has NAFLD [12]. Furthermore, the incidence ratio of NASH has increased in 
recent years of up to 8% of US adults, which reflects a substantial proportion of individuals at risk of 
NAFLD-related morbidity [4,12]. The incidence of obesity has rapidly increased in Korea, resulting in 
a high prevalence of NAFLD in the Korean population, ranging from 20% to 25% [13–15]. In many 
other Asian countries, the incidence and prevalence of obesity-related NAFLD are also increasing due 
to the ongoing socioeconomic transition and shift toward Westernized diet [10,16,17]. Since obesity is 
strongly associated with NAFLD [18,19], the prevention of obesity is now a major public issue in 
Asian countries similar to Western countries [2,5,20]. Until recently, pharmacologic treatment of 
NAFLD-associated obesity remained uncertain [21]. Thus, a reduction in total energy intake and body 
weight with appropriate dietary modifications and exercise has been the cornerstone of NAFLD 
treatment [14,22–24]. 

The pathogenesis of NAFLD is not yet entirely understood, but it seems that it is multi-factorial [1,25]. 
Liver fat accumulation is mainly induced by insulin resistance and increased free fatty acids, and 
NASH is developed by oxidative stress, mitochondrial dysfunction, and cytokine interplay [26–28]. 
Interestingly, genetic and environmental factors such as exercise and diet interact to define the NAFLD 
phenotype and determine its progression [29,30]. A large proportion of the population is at the greater 
risk of NAFLD owing to the high prevalence of obesity and insulin resistance, but only a limited 
number of individuals affected by those conditions develops NASH and its associated morbidity [31], 
suggesting many other factors are involved in the development of this disease. Among them is the 
individual genetic susceptibility to NASH [30]. 

Because liver is central for the whole-body metabolism, NAFLD leads to changes in cell 
transcriptional status that may cause a perturbation in energy metabolism, contributing to the 
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development and progression of many chronic diseases, including atherosclerosis and type 2 diabetes 
mellitus [32]. The dysregulation of energy metabolism has been thought to be conveyed by epigenetic 
mechanisms, thereby changing the expression of critical genes [2,33]. Indeed the emerging field of 
“epigenetics” provides new perspectives on the pathogenesis of chronic liver diseases, including 
NAFLD [34]. Comprehensive investigations of epigenetic marks that predispose an individual to 
NAFLD may lead to the development of novel biomarkers for early diagnosis of NAFLD and may 
allow early preventive or therapeutic strategies for the people at the high risk for NASH and NASH 
associated HCC [8,10]. This review is focused on the currently available knowledge on epigenetic 
modifiers that influence the development and progression of NAFLD. 

2. Epigenetic Mechanism Underlying Disease Development 

Epigenetics describes reversible changes in gene expression that can be inherited through mitosis 
and/or meiosis and finally affects the phenotype by allowing the fine-tuning of gene transcription 
without altering the primary DNA sequence [35]. It is known that the gene expression can be regulated 
by any of the following control steps: (a) chromatin structure; (b) initiation of transcription;  
(c) processing of the transcript; (d) transport to the cytoplasm; (e) translation of mRNA; and (f) the 
stability of protein activity [36]. The epigenetic phenomena regulate the chromatin structure 
modifications and the initiation of transcription in a manner that alters the availability of genes to 
transcription factors required for their expression [37]. 

At present, four mechanisms responsible for mediating epigenetic effects are: (a) DNA methylation 
(occurring at the 5′-position of cytosine residues within CpG dinucleotides); (b) histone modifications 
(acetylation, methylation, phosphorylation, ubiquitination, ribosylation, biotinylation and sumoylation 
of histone tails); (c) chromatin remodeling; and (d) possibly RNA-based mechanisms such as 
microRNA (miR) [3]. The most studied epigenetic marks are DNA methylation and posttranslational 
modifications of histones [38]. The enzymes involved in these reactions include DNA 
methyltransferases (DNMTs), histone methyltransferases (HMTs), histone demethylases (HDMs), 
histone acetyltransferases (HATs), and histone deacetylases (HDACs) [39–41]. 

During the past decade, cancer has been the most extensively studied field in epigenetics [38,42].  
In fact epigenetic dysregulation of critical gene expression has been known to initiate cancer 
development and contribute to cancer progression [8,43]. As epigenetic modifications are reversible, 
the new therapeutic strategies to modulate epigenetic aberrancies are now being extensively 
investigated [43,44]. In contrast, the role of epigenetics in the pathogenesis of NAFLD has not been 
completely elucidated until now. The epigenetic studies of NAFLD and associated metabolic syndrome 
still remain in its infancy. Increasing our understanding of epigenetics and disease-associated epigenetic 
patterns should provide important future directions to develop novel strategies to cope with the 
growing worldwide epidemic of obesity, metabolic syndrome, and fatty liver diseases [10,37]. 

3. Potential Role of Epigenetics in NAFLD 

Since liver is a central organ in lipogenesis, an abnormal accumulation of TG can impair hepatic 
functions and lead to steatohepatitis, cirrhosis and possibly HCC [32]. There is some evidence showing 
that the dysregulation of hepatic function is conveyed by epigenetic mechanisms in NAFLD [2]. 
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Targeted epigenetic manipulation of certain metabolic or stress-response pathways such as one-carbon 
metabolism or nuclear transcription factor-κB (NF-κB) signaling has been highlighted in clarifying the 
pathways that regulate disease progression in NAFLD [5,10]. In fact, epigenetic phenomena are 
modulated by environmental stimuli, such as stress and nutritional status [45,46]. Recently, several 
examples of dynamic changes in epigenetic marks by nutritional interventions have been reported, 
including the use of the DNA methylation profile as a prognostic biomarker of diet response [47,48]. 
The liver is responsible for many biological methylation reactions including the methylation of DNA 
and histones [2]. The interplay between chromatin-modifying enzymes and hepatic transcription 
factors may induce the epigenomic reprogramming that may provide a milieu leading to malignant 
conversion of hepatocytes [8,49]. The candidate epigenetic mechanisms for NAFLD are summarized 
at Table 1. 

Table 1. Epigenetic mechanism for non-alcoholic fatty liver disease. 

Mechanism Subject Study Result References 

DNA 
Methylation 

Mouse 
Hepatic epigenetic phenotype predetermines individual 
susceptibility to hepatic steatosis. 

Pogribny et al. [50] 

Human 
Hepatic methylation and transcriptional activity of the MT-ND6 
are associated with the histological severity of NAFLD. 

Pirola et al. [51] 

Mouse 
Puffs from dams fed a high fat diet display characteristics of 
NAFLD phenotype and associated changes in gene expression and 
DNA methylation. 

Dudley et al. [52] 

Mouse 
Coupling global methylation and gene expression profiles reveal 
key pathophysiologic events in liver injury. 

Tryndyak et al. [53] 

Human 
Epigenetic regulation of insulin resistance in NAFLD: Impact of 
liver methylation of the PPARγ coactivator 1alpha promoter. 

Sookoian et al. [54] 

Human 
Altered methylation of genes that regulate processes such as 
steatohepatitis, fibrosis, and carcinogenesis indicate the role of 
DNA methylation in progression of NAFLD. 

Murphy et al. [55] 

Histone 
Modifications 

Mouse 
Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the 
regulation of NF-κB-dependent inflammatory genes. Relevance to 
diabetes and inflammation. 

Li et al. [56] 

Mouse 
Inhibition of hepatic p300 activity may be beneficial for treating 
hepatic steatosis in obesity and identify specific p300 inhibitors as 
potential targets for therapy. 

Bricambert et al. [57] 

Mouse 
A circadian rhythm orchestrated by histone deacetylase 3 controls 
hepatic lipid metabolism. 

Feng et al. [58] 

Mouse 
When challenged with a high-fat diet, liver-specific Sirt1 
knockout mice develop hepatic steatosis and inflammation. 

Purushotham et al. [59]

Mouse 
Loss of Sirt3 and dysregulation of mitochondrial protein 
acetylation contribute to the metabolic syndrome and NASH 
development. 

Hirschey et al. [60] 
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Table 1. Cont. 

Mechanism Subject Study Result References 

MicroRNA 

Human 
Nonalcoholic steatohepatitis is associated with altered hepatic 
microRNA expression. 

Cheung et al. [61] 

Mouse 
Deletion of mouse miR-122 resulted in hepatosteatosis, hepatitis, and 
the development of tumors resembling HCC. 

Hsu et al. [62] 

Mouse 
The up-regulation of miR-335 is associated with lipid metabolism in 
liver and white adipose tissue of obese mice. 

Nakanishi et al. [63] 

Mouse 
Difference in the expression of hepatic microRNAs (miR-29c,  
miR-34a, miR-155, and miR-200b) is associated with strain-specific 
susceptibility to dietary nonalcoholic steatohepatitis in mice. 

Pogribny et al. [64] 

One-carbon 
metabolism 

Mouse 
Absence of Matla resulted in a liver that is more susceptible to injury, 
expresses markers of an acute phase response, and displays increased 
proliferation. 

Lu et al. [65] 

Mouse 
A critical role for S-adenosylmethionine in maintaining normal hepatic 
function and tumorigenesis of the liver. 

Martinez-Chantar et al. 
[66] 

Mouse 
Loss of the glycine N-methyltransferase gene leads to steatosis and 
hepatocellular carcinoma in mice. 

Martinez-Chantar et al. 
[67] 

Mouse 
Hepatic PC synthesis is a key player in maintaining serum VLDL and 
HDL, and also important in hepatic HDL formation. 

Jacobs et al. [68] 

Human 
L-Carnitine supplementation to diet is useful for reducing TNF-α and 
CRP, and for improving liver function, serum glucose level, lipid profile 
and histological manifestations of NASH. 

Malaguarnera et al.  
[69] 

Abbreviations: CRP, C-reactive protein; HCC, hepatocellular carcinoma; NAFLD, non-alcoholic fatty liver  

disease; NASH, non-alcoholic steatohepatitis; MT-ND6, mitochondrially encoded NADH dehydrogenase 6;  

PC, phosphatidylcholine; PPARγ, peroxisome proliferator-activated receptor gamma; MAT, methionine 

adenosyltransferase; miR, microRNA; TNF, tumor necrosis factor. 

3.1. DNA Methylation in NAFLD 

The earliest discovery of epigenetic gene-silencing was DNA methylation [70]. DNA methylation 
refers to the addition of a methyl group on cytosine with guanine as the next nucleotide, known as CpG 
sites [71,72]. The clustering of CpG dinucleotides (usually referred as CpG island) is commonly 
present with higher frequency at the promoter regions of the genes than other sites [35]. Hypermethylation 
of CpG islands is generally associated with gene repression, while hypomethylation of promoter  
region may induce gene activation. Global DNA hypomethylation is known to influence the genome 
stability [10]. Such characteristics are connected to malignant transformation [73,74]. Enzymes  
that catalyze DNA methylation utilize S-adenosylmethionine (SAM) generated by one-carbon 
metabolism [75]. The DNA methylation patterns are known to be maintained by the functions of 
DNMTs. In humans, three functional DNMT isoforms have been identified: DNMT1, DNMT3A, and 
DNMT3B. DNMT1 is responsible for the maintenance of DNA methylation, while DNMT3A and 
DNMT3B catalyze de novo DNA methylation to establish new DNA methylation [76]. 

In a mouse model the development of hepatic steatosis was accompanied by changes in Dnmt1 and 
Dnmt3a expression in the liver [50]. Hepatic DNMT1 level was significantly increased in patients with 
NASH [51]. Pronounced global DNA hypomethylation and aberrant DNA methylation at specific gene 
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promoter regions were found in steatosis and NASH developed from mice fed with lipogenic diet [50]. 
In an animal study, promoter DNA methylation of the glucokinase gene (Gck) decreased the 
expression of protein level and kinase activity in the rat liver, thereby increasing the risk of 
hyperglycemia and fatty liver [77]. Rat offsprings exposed prenatally to high fat diet also had the 
NAFLD phenotype, as well as increased expression of hepatic cell cycle inhibitor Cdkn1a, which is 
known to be hypomethylated at specific DNA sites during the perinatal periods [52]. This might be 
suggestive of early hepatic dysfunction in puffs from dams fed high fat diet, which may be associated 
with the process of demethylation and remethylation during the development of germ cells, referred to 
as “epigenetic fetal programming” [3,78]. 

Comprehensive genome-wide methylation analysis found extensive DNA methylation changes in 
more than a hundred of genes associated with lipid and glucose metabolisms, DNA damage and repair, 
fibrosis and liver tissue remodeling [53]. The mitochondrial gene NADH dehydrogenase 6 gene  
(MT-ND6) was transcriptionally silenced by promoter hypermethylation, which was significantly 
associated with the histological severity of NAFLD [51]. The hepatic promoter methylation of the 
peroxisome proliferative activated receptor (PPAR)-gamma coactivator one alpha (PGC1-α) gene, a 
key transcriptional regulator of mitochondrial fatty acid oxidation, not only correlated with the status 
of peripheral insulin resistance, but also associated with the fasting insulin levels of NAFLD  
patients [54]. In a whole-genome promoter DNA methylation analysis of skeletal muscle, PGC1-α 
hypermethylation was found in diabetic subjects [79]. Methylation levels negatively correlated with 
the expression of PGC1-α mRNA and mitochondrial density. Interestingly, non-CpG methylation of 
PGC1-α was increased by tumor necrosis factor (TNF)-α or free fatty acids, which can be elevated in 
the metabolic syndrome and NAFLD. Selective silencing of the DNMT3B, excluding DNMT1 and 
DNMT3A, prevented TNF-α induced non-CpG methylation of PGC1-α and consequently increased 
PGC1-α mRNA. Non-CpG site methylation is quite rare in human DNA compared with CpG 
methylation, but it is also known to affect gene expression. 

Growing evidence indicates that hepatic DNA methylation and insulin resistance in NAFLD 
patients are critical factors for the conversion from simple steatosis to severe fibrotic NASH [8].  
A recent methylome and transcriptome study found that differentially methylated genes may 
distinguish patients with advanced NASH from simple steatosis [55]. Such integrated omics studies 
have increasingly revealed the critical role of DNA methylation in the progression of NAFLD (Table1). 

3.2. Histone Modifications in NAFLD 

In the mid-1990s, histone modifications were discovered as an epigenetic determinant of chromatin 
structure and gene expression [80,81]. Among them is histone acetylation, the acetylation of lysine 
residues at the N terminus of histone tails catalyzed by HAT [82]. Histone acetylation is usually 
associated with the activation of gene transcription. On the other hand, histone deacetylation is 
catalyzed by HDAC and involved in gene repression [83]. Indeed, altered expression and activity of 
certain histone acetylation modifying enzymes have been reported to influence gene expression in 
NAFLD, leading to altered hepatic metabolism and cellular transformation [8] (Table 1). The 
understandings of this epigenetic mechanism underlying NAFLD may provide new perspectives in the 
identification of novel epigenetic targets for the management of NAFLD [49,84]. 
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Aberrant histone modifications contribute to the development of insulin resistance and consequently to 
fatty liver disease [85]. Histone acetylation is dependent on the enzymatic conversion of glucose-derived 
citrate to acetyl-CoA, linking nutrient metabolism to epigenetic control [86]. The imbalance between 
HAT and HDAC has been reported to influence the histone acetylation status and phenotypic gene 
expression in NAFLD, resulting in the perturbation of hepatic metabolism and liver injury [8]. Among 
the HAT family members, the transcriptional coactivator p300 is an important component of the 
transcriptional regulator involved in the NF-κB dependent inflammatory pathways [87]. Poor glycemic 
control increases NF-κB activity and the expression of genes encoding inflammatory cytokines via 
interplay between NF-κB and HAT, e.g., p300 [3,88]. The methyltransferase SET7/9, which  
targets lysine residue 4 of histone H3 (H3K4), affects the recruitment of NF-κB p65 to gene promoters 
and subsequently promotes the expression of NF-κB induced inflammatory cytokines [56].  
The transcription factor carbohydrate-responsive element-binding protein (CBP) has also emerged  
as a major player in the development of hepatic steatosis and type 2 diabetes mellitus [89].  
The glucose-activated p300 also increased the CBP transcription activity. Thus, p300 contributes to the 
development of NAFLD through enhanced glycolytic and lipogenic gene activation via histone and 
non-histone protein acetylation [8,57]. 

Several HDACs are known to play a pivotal role in the pathogenesis of NAFLD. Defects  
in the regulation of circadian clock genes by HDAC3 may lead to abnormal lipid metabolism in the 
liver [58]. Misalignment between the circadian rhythms of HDAC3 recruitment to target metabolic 
genes with behavioral patterns alters lipid metabolism causing NAFLD [90]. Liver-specific deletion of 
HDAC3 causes both advanced fibrotic NAFLD and HCC [91]. Additionally, NAD-dependent sirtuins 
(class III HDAC, SIRT), which target both histones and non-histone proteins, mediate adaptive 
responses to metabolic stress and regulate adipogenesis and insulin secretion [92]. SIRT1 inhibits  
NF-κB activity to reduce inflammatory response and modulates other cytokines involved in lipid 
metabolism [8,93]. Thus, liver-specific deletion of SIRT1 had increased fatty liver disease and obesity 
induced inflammation, while SIRT1 over-expression showed protective effects against steatohepatitis 
and insulin resistance [94,59]. SIRT1 improves insulin sensitivity under the insulin-resistant conditions 
by repressing protein tyrosine phosphatase 1B (PTP1B), a negative regulator of insulin signaling, and 
is recruited to telomeric repeats to enhance genomic stability [95–97]. In a high-fat diet murine model 
exposed to chemical carcinogen, over-expression of SIRT1 effectively reduced the development of 
HCC. This tumor suppressive effect might be attributed to the dual effects that ameliorate DNA 
damages elicited by both chemical carcinogen and high fat diet [98]. 

One of the molecular targets of SIRT1 is macroH2A1, a variant of histone H2A, which is involved 
in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and 
macroH2A1.2 [99]. Immunopositivity for both macroH2A1 isoforms were markedly upregulated  
in HCC, whereas macroH2A1.2 was specifically upregulated in steatosis. A recent study by  
Pazienza et al. [100] showed that over-expression of SIRT1-metabolite binding macroH2A1.1 can 
protect hepatocytes against lipid accumulation. Otherwise, the SIRT3 localizes mainly in the 
mitochondria, and it is required for maintenance of mitochondrial integrity upon oxidative stress [101]. 
SIRT3 deficient mice have been reported to display NASH and perturbation of the SIRT3 activity in 
mice was associated with the abnormalities similar to metabolic syndrome and NAFLD [60]. Both the 
SIRT1 and SIRT3 are very important in the homeostatic balance of redox status, epigenetic alteration 
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and lipid metabolism in the hepatocytes. These metabolic cascades of histone deacetylase activity are 
intertwined in NAFLD pathogenesis. 

Epigenetic mechanisms of nuclear chromatin remodeling including post-translational modifications 
of histones, and incorporation of histone variants into the chromatin are also increasingly recognized as 
crucial factors in the pathophysiology of NAFLD [78]. Likewise, the histone amino-terminal 
modifications can generate dynamic transitions between transcriptionally active and silent chromatin 
states [102]. Thus, the combinatorial nature of histone amino-terminal modifications reveals a “histone 
code” that considerably extends the potential information of the genetic code and plays an essential 
role in gene expression [103]. 

3.3. microRNAs (miRs) in NAFLD 

In the early 2000s, non-coding miRs were identified and their epigenetic properties were 
characterized [104]. Indeed, miRs are the most extensively investigated epigenetic mechanism  
in NAFLD relative to the other epigenetic machineries [10]. miRs are small, naturally occurring 
single-stranded RNA (18–25 nucleotides in length) regulating mRNA degradation or protein 
translation, ultimately affecting the phenotypic expression of target genes [104,105]. miRs typically 
regulate transcription in either a positive or a negative manner through the inhibition of translation or 
the increased degradation of target mRNAs [106]. miRs function in the context of the RNA-induced 
silencing complex (RISC), whereby the miR directs RISC to target mRNAs via complementary  
base pairing. 

Aberrant expression of miRs has been implicated in obesity, insulin resistance, type 2 diabetes 
mellitus, and fatty liver disease [107,108]. Recently, it has been shown that about 100 miRs are 
differentially expressed in human NASH [10]. These miRs have diverse functions involved in the 
pathogenesis of steatohepatitis, including the regulation of lipid and glucose metabolisms, oxidative 
stress, cellular differentiation, inflammation, and cell survival pathways [109,61] (Table 1). 

The miR-122, a highly abundant miR in the liver, has been known to perform a major role in the 
pathogenesis of liver diseases including both the metabolic and viral hepatitis [61,110–113]. 
Accounting for nearly 70% of all miRs in the liver, miR-122 is significantly under-expressed in 
NAFLD patients compared to control groups [61,110]. The liver-specific miR-122, which affects 
cholesterol biosynthesis in vivo, has been shown to promote adipocyte differentiation [114]. Recent 
animal studies have found that the genetic deletion of miR-122 in mice resulted in hepatic steatosis, 
inflammation, and HCC [62,115]. In a mouse model, the plasma cholesterol level, hepatic fatty-acid 
and cholesterol synthesis rate, and the level of hydroxy-methyl-glutaryl coenzyme A reductase 
(HMGCR) that produces cholesterol, were also significantly decreased after repression of miR-122 [114]. 
These findings strongly suggest that the miR-122 is an important regulator of lipid metabolism in the 
liver and consequently the miR-122 acts as a tumor-suppressor in the liver [8]. 

Besides miR-122, some other miRs have been shown to be involved in NAFLD development.  
miR-21, miR-23a, miR-34a, miR-143 and miR-146b were demonstrated to be significantly  
over-expressed in human NAFLD and NASH [8,61]. The enhanced miR-335 expression was also 
associated with increased white adipose tissue weight, as well as elevated hepatic TG levels. 
Furthermore, hepatic miR-335 level closely correlated with the expression of adipocyte differentiation 
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markers including PPAR-α [63]. Interestingly, emerging evidence indicates that miR-21, miR-103, 
miR-143 and miR-378 increase oxidative stress and inflammation in animal models with obesity  
and steatosis [108]. 

Recently, new research suggests that folate status may influence the miR expression linked to  
the severity of fatty liver disease [49]. Folate supplementation seems to affect the expression of  
miRs possibly through changes in methylation levels of promoter regions in the corresponding miR 
gene [116]. The severity of NAFLD induced by folate-deficient diet in mice is associated with the 
altered expression of hepatic miRs, including miR-181a, miR-34a, miR-200b, and miR-221 [117]. 
Furthermore, some of the differentially-expressed miRs, which function in hepatic lipid and glucose 
metabolisms, have been shown to promote the development of HCC in NAFLD [8]. 

In hepatocytes, unsaturated fatty acids trigger steatosis by inducing NF-κB signaling and 
concomitantly activating miR-21, which, in turn, directly suppress the expression of the phosphatase 
and tensin homolog gene (PTEN) [118]. Inhibition of miR-21 increased PTEN expression and 
decreased HCC tumor cell proliferation and migration, suggesting that the miR-21 and tumor 
suppressor PTEN pathway are involved in the NAFLD-related HCC development [119]. Additionally, 
miR-23a up-regulation was also observed in both human NASH and HCC, and the activation of the  
IL-6/STAT3/miR-23a pathway could promote hepatocarcinogenesis via the alteration of the glucose 
homeostasis [120]. Hepatic miR-155 was also found to be over-expressed in diet-induced NASH models, 
and the up-regulation of miR-155 was associated with the early stages of hepatocarcinogenesis [64,121]. 
Moreover, NF-κB activates miR-155 expression, thereby linking NF-κB signaling to NAFLD-related 
HCC via miR deregulation [122]. 

4. Nutritional Intervention through One-Carbon Metabolism 

Liver is central for one-carbon metabolism, which is a biochemical network that delivers methyl 
group (one-carbon moiety) to the biological methylation pathway and nucleotide synthesis pathway.  
In one-carbon metabolism, water soluble B vitamins, including folate, vitamin B12, B6 and B2, act as 
coenzymes. Sulfur containing amino acids such as methionine, homocysteine and cysteine are 
involved in the synthesis of S-adenosylmethionine (SAM), and choline and betaine are folate 
independent source of methyl groups for homocysteine remethylation (Figure 1). Dysregulation of 
one-carbon metabolism, especially SAM biosynthesis, may alter the hepatocyte function, leading to 
fatty liver disease [123]. SAM is the unique methyl donor for many biological methylation reactions 
including the methylation of DNA and histone [84]. After transferring the methyl group, SAM is 
converted to S-adenosylhomocysteine (SAH), which is an inhibitor of methyltransferases such as 
DNMTs and HMTs [124]. Recent studies have demonstrated that imbalance of SAM and SAH by 
over-nutrition or under-nutrition can trigger epigenetic changes, thereby linking nutrients to epigenetic 
gene regulation in cell proliferation and survival [75,125,126]. 

Indeed, alterations in hepatic SAM and folate status were observed in obesity and metabolic 
syndrome that have hepatic steatosis [49]. Mouse models with genetic ablation of the methionine 
adenosyltransferase 1A gene (Mat1a), which encodes the enzyme that catalyzes the conversion of 
methionine to SAM, showed lower hepatic SAM level, higher lipogenesis and oxidative stress, and 
consequently were predisposed to the NAFLD-related HCC development [65,66]. Interestingly mice 
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deficient in the SAM catabolic enzyme, glycine N-methyltransferase (Gnmt) that showed extremely 
high hepatic SAM levels also developed steatohepatitis and HCC spontaneously [67]. Thus, the 
maintenance of adequate hepatic SAM levels is critical for hepatic energy metabolism and lipid 
homeostasis [8,127]. Either too much or too little SAM in the liver may cause aberrant DNA 
methylation and epigenetic dysregulation of metabolic pathways [128]. 

Figure 1. One-carbon metabolism. 

 
SAM, S-adenosylmethionine; SAH, S-adenosylhomocysteine; DNMT: DNA methyltransferase;  
HMT: histone methyltransferase; MAT: methionine adenosyltransferase; GNMT: glycine  
N-methyltransferase. 

A body of evidence has shown the comprehensive association between folate, choline, and hepatic 
lipid metabolism [129,130]. An important role of folate is in the maintenance of hepatic SAM and 
SAH balance [49]. Folate deficiency reduces de novo phosphatidylcholine (PC) synthesis resulting in 
accumulation of hepatic TG and NAFLD [131]. In murine models, changes in PC synthesis affected 
hepatic lipid storage and secretion, then it was predisposed to the development of steatosis [132,68]. 
Impaired PC production is associated with accumulation of hepatic TG due to a reduction in VLDL 
secretion [68]. Low dietary folate is associated with hepatic steatosis but it does not necessarily 
indicate that folic acid supplementation may prevent fatty liver disease [49]. 

In humans, folic acid, an oxidized synthetic form of folate, can effectively turn to the active form of 
folate, methyltetrahydrofolate, at low levels of intake up to 100 µg folic acid per day [117]. Intake 
above 200 µg/day, however, is the threshold at which folic acid begins to appear in the blood stream in 
the un-metabolized form, which may inhibit remethylation of homocysteine [133]. Thus, the notion 
that high intake of folic acid over the threshold may rather disturb one-carbon metabolism has been 
postulated [134,135]. On the other hand, supplementing the maternal diet with folate and choline 
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increased the DNA methylation status of the agouti gene and subsequently reduced the development of 
obesity and NAFLD in the agouti mouse model [3]. 

A most recent study revealed that the supplementation with L-carnitine, which requires SAM-dependent 
methylation for its synthesis, showed improvements in both clinical and histological aspects of liver 
damage in NASH patients [69]. Nevertheless, it is unclear whether fatty liver can be directly attributed 
by the reduction of carnitine synthesis due to the impaired methylation capacity [49]. Future studies 
examining the potential role of carnitine in the development of steatohepatitis are needed. 

5. Epigenetic Intervention Using Dietary Natural Compounds 

Recently, the beneficial effects of dietary natural compounds in the prevention and treatment  
of NAFLD have been reported [136]. Many natural compounds, especially polyphenols, isolated from 
fruits and vegetables have health promoting properties of anti-inflammation, anti-oxidation and  
anti-obesity. They also show hepatoprotective effects mainly by reducing lipogenesis and increasing 
the fatty acid oxidation in hepatic lipid metabolism [137]. Some of their chemopreventive functions  
are related to epigenetic modulation in some part, which have been demonstrated in animal and  
clinical studies. 

Resveratrol, a compound found largely in the skins of red grapes, is widely accepted as a 
chemopreventive agent and exerts its health benefits via anti-oxidative, anti-inflammatory, anti-cancer 
and anti-diabetic properties. Recent studies showed that resveratrol attenuates palmitate-induced 
deregulation of insulin signaling and endoplasmic reticulum stress through the activation of  
SIRT1-induced oxygen-regulated protein 150 [138]. Alberdi et al. reported that supplementation with 
low dose resveratrol in high-fat diet fed mice protected hepatic steatosis, via increased activities of 
palmitoyl transferase-1A and acyl-CoA oxidase, two enzymes involved in fatty acid oxidation [139]. 
This protective action of resveratrol was, in part, mediated through the up-regulation of SIRT1-AMPK 
signaling system. 

Other polyphenols, such as antocyanin Cy-3-g, proanthocyanidins, teaflavin and ellagic acid  
(a tannin), have been studied as potential agents for both prevention and treatment of NAFLD [137]. 
Baselga-Escudero et al. conducted a study of mice fed with proanthocyanidins from grape seed 
dissolved in the lard oil [140]. After supplementation of proanthocyanidins, a reduction in hepatic TG 
content was observed with increased miR-122 mRNA levels accompanied by decreased Fas cell 
surface death receptor (Fas) mRNA levels. Aoun et al. reported the supplementation effect of 
Provinol®, a polyphenol extract obtained from red wine, in a high fat diet animal model [141].  
A reduction in liver TG accumulation and hepatic lipid peroxidation were observed and the activation 
of Sirt1 has been suggested as a potential mechanism of these effects. 

Until now, these beneficial effects of natural compounds have been demonstrated mostly in animal 
models. Thus, human studies are needed to confirm the real efficacy of natural compounds in the 
prevention and treatment of NAFLD patients. 

6. Conclusions and Future Perspectives  

It is quite clear that the field of nutritional epigenetics is further clarifying the mechanisms of  
gene-nutrient interaction, providing the role of nutrition in determining phenotype from genotype [84]. 
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Thus, there is great interest in identifying epigenetic-based therapeutic strategies as a means to prevent 
the development of NAFLD related conditions. Even though knowledge regarding the effects of 
epigenetics on NAFLD is limited, epigenetic intervention is becoming a new and rapidly growing field 
for potential therapeutic strategies aimed at preventing diseases by reversing the epigenetic aberrancies. 
Epigenetic therapeutics could be directly targeted to epigenetic modifying enzymes [45,142] or indirectly 
targeted to one-carbon metabolism that controls the methylation of DNA and histones. In addition to 
potent epigenetic cancer chemotherapeutic agents, many botanicals have been identified as possible 
epigenetic modulators that ameliorate the metabolic syndrome and NAFLD [37,143]. To date, many 
reports have indicated that phytochemicals including epigallocatechingallate (EGCG), resveratrol, 
genistein, curcumin, and isothiocyanates can modify the enzymatic activities of DNMTs, Class I, II, IV 
HDACs, Class III HDAC SIRT1, and HATs, beneficially modulating inflammatory responses in 
metabolic syndrome [3,144]. As described above, there are extensive alterations in miRs in NAFLD, 
and the modulation of those critical miRs expression could also be an effective approach to NAFLD 
and NASH patients. 

The HCC is highly heterogenic from the perspectives of genetic and epigenetic mechanisms.  
The investigations underlying epigenomic aberrations that involve in the malignant transformation of 
hepatocytes could lead to the development of preventive and therapeutic strategies for NASH-associated 
HCC [8,145,146]. Through the studies regarding the relationship between the metabolic dysfunction 
and chromatin dynamics in NAFLD and HCC, eventually we could determine how metabolic 
syndrome reprograms the epigenome in the liver and whether the altered epigenetic patterns can be  
reversed [147,148]. Nowadays, new players of chromatin remodeling proteins and histone modifying 
proteins in the progression of NAFLD are being identified [99,149,150]. Furthermore, Genome Wide 
Association Studies that identified original gene-disease interactions is now being applied to functional 
epigenetics, which can guide us to the new arena of Epigenome-Wide Association Studies of NAFLD 
and associated morbidity [84]. 

The changes in DNA methylation, histone modifications as well as altered expression of miRs,  
all together can promote the development of NAFLD by altering lipid and glucose metabolism. Those 
epigenetic modifications claim a large proportion of disease phenotypes. Further research is needed to 
understand the basic epigenetic mechanisms by which diverse nutrients modify the development and 
progression of NAFLD for the ultimate purpose of avoiding the serious complications. 
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