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Abstract: Inflammation is a normal acute response of the immune system to pathogens
and tissue injury. However, chronic inflammation is known to play a significant role in
the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type
2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation
may provide key insight into mitigating chronic disease risk. Eggs are recognized as a
functional food that contain a variety of bioactive compounds that can influence pro- and
anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation
varies across different populations, including those that are classified as healthy, overweight,
metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and
anti-inflammatory properties of egg components, with a focus on egg phospholipids,
cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of
egg consumption of inflammation across human populations will additionally be presented.
Together, these findings have implications for population-specific dietary recommendations
and chronic disease risk.
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1. Introduction

Inflammation is a normal, adaptive physiological response to pathogenic insult, including microbial
infection and tissue injury; however the incidence of chronic low-grade, systemic inflammation
underlying multiple highly prevalent chronic metabolic diseases has warranted the evaluation of
inflammatory processes in disease pathogenesis [1,2]. Acute inflammatory responses mediated by
immune system cells are considered beneficial if executed in a local, controlled manner, as they
function to rapidly and effectively eliminate pathogenic stimuli and return the affected tissue to a
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normal, homeostatic state through coordinated activation and resolution of pro-inflammatory leukocyte
activity [1]. However, failure of the body to appropriately execute and resolve acute inflammatory
responses can lead to a detrimental chronic inflammatory tissue state, characterized by pathological
tissue remodeling, fibrosis, and impaired functioning due to persistent inflammatory cell infiltration,
activation, and leukocyte-mediated tissue damage [3,4]. These detrimental effects are observed in
cases of inappropriate activation of the immune system, such as autoimmune conditions and allergic
responses [5–7]. It has additionally been well established that similar adverse physiological adaptations
occur in obesity-related disorders, where prolonged metabolic stress and tissue malfunction play a role in
the development of chronic diseases, such as metabolic syndrome, cardiovascular disease (CVD), type 2
diabetes mellitus (T2DM), and cancer—all of which coincide with a chronic state of systemic, low-grade
inflammation [8–11].

Given its significant role in the pathophysiology of many chronic diseases, inflammation has become
a primary target for nutritional intervention. Various dietary patterns, functional foods, nutrients, and
bioactive components have been shown to modulate inflammatory processes within the context of
disease risk and progression [12–15]. Within this category, eggs are one of the most complex and
controversial foods [16]. Eggs contain a variety of essential nutrients and bioactive components, but are
most often recognized as a relatively rich source of high-quality protein and dietary cholesterol [17–19].
This had led to discrepancy in dietary recommendations across populations, where egg consumption has
traditionally been considered more advisable to young, healthy populations and/or athletes (e.g., those
with greater protein needs that can withstand a dietary cholesterol “challenge”), whereas egg intake by
individuals at risk for CVD has been discouraged [20,21]. These recommendations have held, despite
numerous epidemiological studies finding no association between egg intake and risk of coronary heart
disease (CHD) mortality or stroke in the general U.S. population [22–25]. However, some studies
have found eggs to be associated with an increased risk for T2DM [26,27], although these findings
are not consistent across studies [28,29]. While the majority of egg nutrition studies have focused on
parameters of lipid metabolism and markers of CVD risk, research has additionally revealed differential
inflammatory responses across human populations. These findings indicate that healthy individuals
often have greater pro-inflammatory responses to egg intake [30,31], whereas egg consumption by
individuals who are overweight [32], classified with metabolic syndrome [33–37], or type 2 diabetic [38]
is associated with a reduction in inflammatory markers. In this review, egg components known to
modulate inflammatory pathways will be discussed, with a focus on their composition, bioavailability,
and known mechanisms of action in cell, animal, and human models. The effects of egg consumption
of inflammation across human populations will additionally be presented. Together, these findings have
important implications for the role of eggs in modulating inflammation within the context of chronic
diseases and immune defense.

2. Composition and Bioavailability of Egg Components

Eggs contain a wide variety of essential nutrients and bioactive compounds that can impact human
health [17,39]. At only 72 kilocalories/large egg, eggs are a good source of high quality protein,
fat-soluble and B vitamins, minerals, and choline, while providing relatively less saturated fat per gram
compared to other animal protein sources [17,40]. This review will focus on primary components of eggs
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that are relatively abundant, bioavailable, and have pro- and anti-inflammatory properties: phospholipids,
cholesterol, the carotenoids lutein and zeaxanthin, and egg white- and yolk-derived proteins.

2.1. Phospholipids

Eggs—particularly the yolk fractions—are one of the richest dietary sources of phospholipids [41,42].
On average, one large egg contains approximately 1.3 g of phospholipids [43,44], which
represent approximately 28%–30% of total lipids by weight [45]. The predominate phospholipid
class found in eggs is the glycerophospholipid phosphatidylcholine, representing approximately
~72% of phospholipids. Additional phospholipid classes include phosphatidylethanolamine (~20%),
lysophosphatidylcholine (3%), phosphatidylinositol (2%), and the sphingolipid sphingomyelin
(3%) [46]. While the fatty acid composition of egg phospholipids varies across classes, the majority of
phospholipids contain long-chain saturated and monounsaturated fatty acids—the distribution of which
can be somewhat reflective of the hen’s diet, age, and environmental conditions [44,47,48].

The majority of egg-derived phospholipids are highly bioavailable, with glycerophospholipid
classes such as phosphatidylcholine being absorbed at >90% efficiency [49,50]. Tracer studies
have demonstrated that dietary phospholipids are preferentially incorporated into plasma high-density
lipoprotein (HDL) fractions over apoB-containing lipoproteins, red blood cells, or total blood
fractions [50]. Similar findings were observed in subjects classified with metabolic syndrome,
where consumption of 3 eggs per day for 12 weeks resulted in greater enrichment of
HDL-phosphatidylethanolamine when compared to subjects consuming a yolk-free egg substitute.
Further, subjects consuming whole eggs exhibited greater enrichment of egg-derived sphingomyelin
species, indicative of the high bioavailability egg phospholipids and incorporation into HDL
particles [46]. In general, phospholipids are known to influence plasma lipids and preferentially
raise HDL-cholesterol [51,52], making them the likely egg component attributable to increases in
HDL-cholesterol observed from egg intake [34,53].

2.2. Cholesterol

Eggs are one of the richest sources of dietary cholesterol, with an average large egg providing
approximately 186 mg cholesterol [17]. Similar to the majority of phospholipids, cholesterol is
localized to the yolk fraction; however, cholesterol only contributes ~5% of total yolk lipids by
weight [45,54]. Although dietary recommendations for egg intake are often based on their cholesterol
content, absorption efficiency of dietary cholesterol has been shown to be highly variable between
individuals, ranging from 15% to 85% [55]. Efficiency of cholesterol absorption additionally seems
to vary across human populations, with individuals who are insulin-resistant absorbing less cholesterol
then insulin-sensitive counterparts [56,57], regardless of body weight status [58]. However, obese
and insulin resistant subjects exhibit increased rates of endogenous cholesterol synthesis, contributing
to hypercholesterolemia commonly observed in these populations [56–58]. Obesity is additionally
associated with elevated secretion of biliary cholesterol, which may compete with dietary cholesterol
for micellarization and absorption [59–61].

In addition to body weight and health status, cholesterol absorption efficiency is affected by
food matrix composition [43,58,62,63]. The absorption of egg-derived cholesterol can be altered by
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interactions with phospholipids, potentially altering the mobilization of cholesterol from micelles in
the intestine [41,43,63]. In Sprague-Dawley rats, egg-derived phosphatidylcholine and sphingomyelin
lowered the intestinal absorption of cholesterol [43,63], whereas, the addition of lysophosphatidylcholine
increased cholesterol absorption [64]. Given that phosphatidylcholine represents that vast majority
of egg phospholipid species [46], intestinal cholesterol-phosphatidylcholine interactions likely limit
egg-derived cholesterol absorption [43,64].

Cholesterol that is absorbed is packaged into chylomicrons and HDL by the enterocyte for ultimate
release into the circulation and delivery to the liver and peripheral tissues [65,66]. Interestingly, in
healthy young men (age 17–22 years), consumption of 3 whole eggs + labeled tracer led to a 52%
slower fractional clearance rate of 14C-cholesteryl ester in plasma, indicating an increased retention
time in chylomicron remnants following egg consumption [67], potentially through downregulation of
receptors involved in systemic cholesterol clearance [67,68]. Overall, while cholesterol intake is known
to impact plasma lipid levels, it is difficult to attribute changes in plasma lipids solely to cholesterol
provided in eggs, due to the similarity of effect on plasma lipids from providing whole eggs or isolated
phospholipid [51–53].

2.3. Lutein and Zeaxanthin

In addition to phospholipids and cholesterol, egg yolks contain various antioxidant carotenoids [69].
Carotenoids are plant-derived pigments that confer yellow, orange, and red color to fruits and
vegetables [70]. As such, the carotenoid composition of egg yolk is reflective of the hen’s diet,
with greater intake of carotenoid-rich grains resulting in greater yolk enrichment [71]. Lutein and
zeaxanthin are the predominant carotenoid species found in egg yolk, although β-carotene, α-carotene,
and β-cryptoxanthin are also present at lower levels [69].

Lutein and zeaxanthin are dipolar xanthophylls comprised of hydrophilic ionone ring structures with
hydroxyl groups on each end, connected by a lipophilic central chain consisting of conjugated C = C
bonds. Lutein and zeaxanthin structures are near identical, apart from a difference in the positioning of
a double bond the ring structure [72,73]. The predominant isomers of carotenoids found in raw chicken
eggs include all-E-lutein, all-E-zeaxanthin, 131-Z-lutein, 13-Z-zeaxanthin [74,75].

Compared to plant sources, eggs contain a relatively low amount of lutein and zeaxanthin; however,
egg-derived carotenoids have been shown to be significantly more bioavailable [76]. Factors affecting
the bioavailability of egg-derived lutein and zeaxanthin include method of cooking and the food
matrix [74,75,77]. Using an in vitro gastrointestinal model, Nimalaratne et al. [75] found that the
primary egg carotenoids, all-E-lutein and all-E-zeaxanthin, were highly stable during digestion, yet
the method of cooking impacted carotenoid bioaccessibility—the release of the carotenoids from the
whole food matrix to allow for micellarization into an absorbable form [75,77]. Boiled eggs promoted
the greatest bioaccessibility, whereas scrambling had the most deleterious effect [75]. Cooking methods
have additionally been shown to differentially promote the formation of Z-isomers from all-E-lutein [74],
which may impact downstream micellarization and absorption [78]. Carotenoid absorption can further
be influenced by phospholipid interactions in the intestine [79–81].

Dietary consumption of egg-derived lutein and zeaxanthin often correlates with concentrations in
plasma, where carotenoids are carried by lipoproteins [69]. In a crossover study conducted in healthy
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men, serum lutein concentrations were increased to the greatest extent following consumption of a
lutein-enriched egg, as opposed to a lutein supplement, lutein ester supplement, or spinach [76].
Plasma lutein and zeaxanthin levels have also been shown to be increased in healthy adults following
consumption of one lutein- or zeaxanthin-enriched egg per day for 90 days [82], as well as
hypercholesterolemic adults who consumed 1.3 egg yolks per day for 4.5 weeks [83]. Increases in plasma
lutein, zeaxanthin, and β-carotene were observed in subjects with metabolic syndrome who consumed
3 eggs per day for 3 weeks. These changes corresponded to enrichment of HDL (+20%, +57%) and
low-density lipoproteins (LDL) (+9%, +46%) fractions with lutein and zeaxanthin, respectively [69].

Once in circulation, lutein is preferentially localized to the retina of the eye, which has been shown
to increase macular pigment density and protect against age-related macular degeneration [72,84]. In
older adults (60 years +), consumption or 2 or 4 eggs per day for 5 weeks increased serum lutein
and zeaxanthin, in addition to increasing macular pigment optical density [85]. Serum zeaxanthin
and macular pigment density was additionally increased in adult women (age 24–59) who consumed
6 eggs/week for 12 weeks [86]. In addition to accumulating in the eye, lutein supplementation
increases lutein concentrations various other tissues, including skin [87], liver [84], and adipose [88,89].
Interestingly, obesity is associated with increased carotenoid deposition in adipose and lower circulating
levels of carotenoids, potentially making them less available for other tissues [90].

2.4. Egg Proteins

Eggs are a good source of high-quality protein that promote protein synthesis and maintenance of
skeletal muscle mass [91–93]. On average, one large egg provides ~6.3 g protein that is rich in essential
amino acids [17,94]. Eggs also contain a variety of bioactive proteins that possess antimicrobial and
immunoprotective properties—that majority of which can be found in the egg white fraction [54,95–97].
The predominant egg white proteins that can impact inflammation include ovalbumin (54% of egg white
protein by weight), ovotransferrin (12%), ovomucin (3.5%), lysozyme (3.4%), and avidin (0.5%) [54].
Egg white additionally contains ovoinhibitor, a serine proteinase inhibitor that can reduce enzymatic
digestion by trypsin and chymotrypsin, and it has been demonstrated that certain egg proteins can
be absorbed intact [98–100]. Lysozyme is absorbed intact via endocytic and paracellular transport in
proximal intestine of rats [99], whereas ovalbumin is preferentially absorbed in the distal intestine via
paracellular and receptor- and clatharin-mediated endocytic transport [100]. The absorption of intact
egg proteins has been implicated in mediating allergic responses to egg proteins, whereas heating and
digestion of egg proteins can lower allergenicity [99–101]. Methods of cooking and preparation of eggs
may further impact overall egg protein bioavailability. Using tracer studies, cooked egg proteins have
been found to be highly digestible (~91%) as compared to raw egg protein (~51%) [102].

3. Pro- and Anti-Inflammatory Properties of Egg Components: Mechanisms of Action

The components of eggs highlighted above each possess unique pro- and/or anti-inflammatory
properties that likely contribute to the effects that egg intake has on inflammation in human
populations [30–32,36,54,72,103]. The following section summarizes known mechanisms of action for
each egg component as it relates to inflammation and human health.
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3.1. Phospholipids

Egg-derived phospholipids have pro- and anti-inflammatory properties via both direct and indirect
mechanisms. The majority of research investigating inflammatory properties of phospholipids
has focused on phosphatidylcholine. In Caco-2 cells, phosphatidylcholine (200 µmol) has
been shown to inhibit TNFα-induced alterations of plasma membrane architecture required for
receptor-mediated signaling, activation of the pro-inflammatory mitogen-activated protein kinases
(MAPKs), extracellular-signal-regulated kinase (ERK) and p38, nuclear factor κB (NF-κB) subunit
translocation to the nucleus, and up-regulation of pro-inflammatory cytokines, such as tumor
necrosis factor α (TNFα), interleukin (IL)-8, intercellular adhesion molecule (ICAM)-1, monocyte
chemoattractant protein (MCP)-1, interferon γ-induced protein (IP)-10, and matrix metalloproteinase
(MMP)-1 [104,105]. Individuals with ulcerative colitis have lower levels of phosphatidylcholine in
the gastrointestinal mucus layer, and supplementation of phosphatidylcholine has positive clinical
outcomes [106–108]. Phosphatidylcholine supplementation through diet enrichment has additionally
been shown to reduce adverse leukocyte-endothelial interactions and inflammatory joint damage in
a chronic murine model of rheumatoid arthritis [109]. In a rat model of neuroinflammation, oral
administration of phosphatidylcholine reduced lipopolysaccharide (LPS)-induced plasma TNFα and
mitigated disturbances in hippocampal neurogenesis [110].

Despite the evidence to suggest that phosphatidylcholine is anti-inflammatory, egg phospholipids
have recently been implicated in the promotion of inflammation and atherosclerosis due formation
of trimethylamine-N-oxide (TMAO) [31,111]. Production of TMAO is dependent upon intestinal
microbiota-induced conversion of phosphatidylcholine to trimethylamine (TMA), followed by oxidation
of TMA by hepatic flavin-containing monooxygenase 3 (FMO3). TMAO has been shown to promote
atherosclerosis in animal models, whereas high levels of plasma TMAO has been associated with
increased risk for major adverse cardiovascular events in a cohort of 4007 patients [31,112]. TMAO
has additionally been shown to increase adipose tissue inflammation and impair glucose tolerance
in mice [111]. Egg intake has also been shown to dose-dependently increase post-prandial TMAO
concentrations in plasma, although large interindividual variability was observed [113]. Variation
between individuals may be attributable to differences in FMO3 expression and/or intestinal microbiota
composition [114]. However, intake of more than one egg per day has been associated with
lower atherosclerotic burden, as determined by coronary angiography [115]. Given that numerous
epidemiological studies have failed to find an association between egg intake and atherosclerosis,
additional long-term studies are needed to determine whether egg-induced TMAO production has
detrimental effects on inflammation and disease risk.

3.2. Cholesterol

Dietary cholesterol is known to be pro-atherogenic and pro-inflammatory in animal studies [116,117];
however, these studies are often not representative of egg consumption, as cholesterol is provided in
high doses as an isolated form, thus failing to take into account the phospholipid matrix, realistic
dose provided by eggs, and the variability in cholesterol absorption across populations [17,43,55,57].
Nevertheless, cholesterol is known to possess pro-inflammatory properties by inducing cytotoxicity
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in its free, unesterified form, in addition to promoting the formation of lipid rafts in plasma
membranes of leukocytes, resulting in greater hypersensitivity to activation by pro-inflammatory
signaling pathways [118,119]. Increased lipid raft formation has been associated with increased
pro-inflammatory responses in macrophages and T lymphocytes [119–122]. In mouse models, dietary
cholesterol provided by standard atherogenic diets has additionally been shown to promote aortic
inflammation and the formation of macrophage foam cells—the hallmark of atherosclerosis [123,124].
In guinea pigs fed a low-carbohydrate diet, the addition of high cholesterol (0.25/100 g) increased
concentrations of total and free cholesterol in the aorta and adipose tissue, while also increasing
pro-inflammatory cytokine levels in adipose [125]. In line with its atheroprotective properties, HDL
and its related lipid transporter, ATP-binding cassette transport A 1 (ABCA1), have been shown to exert
direct and indirect anti-inflammatory activity by reducing cellular cholesterol levels, lipid raft formation,
and mitigating leukocyte inflammation [120,121,126–128]. This may have significant implications for
egg consumption, which is known to favorably modulate HDL metabolism, as discussed in greater detail
below [33,34,36,46].

3.3. Lutein and Zeaxanthin

Despite the relatively high bioavailability of both lutein and zeaxanthin from egg yolk [69,76],
lutein has gained considerably more attention due to its protective effects against age-related macular
degeneration [72,129]. Supplementation with lutein alone or in combination with zeaxanthin has been
shown to have anti-inflammatory effects in a variety of experimental models. The anti-inflammatory
properties of lutein are thought to be related to its antioxidant activity, conferred by its conjugated C = C
double bonds that can readily quench singlet oxygen species, triplet states of photoreactive molecules,
and scavenge free radicals [130,131]. Lutein has been shown to protect against cisplatin-induced DNA
damage, chromosome instability, and oxidative stress in mice and HepG2 human liver cells [132–134].
In guinea pigs fed a hypercholesterolemic diet, lutein supplementation (0.01 g/100 g) has been shown to
exert anti-inflammatory effects in the liver, aorta, and eye [84,131]. Following a 12-week period, lutein
treatment lowered aortic pro-inflammatory cytokines, in addition to oxidized LDL (oxLDL) in plasma
and aorta. Aortic morphology further indicated protective effects of lutein against atherosclerosis [131].
Similar anti-inflammatory effects were observed in the liver, as lutein supplementation lowered the
NF-κB p65 DNA binding activity compared to control animals, in addition to lowering liver TNFα
protein and hepatic free cholesterol by 43% [84]. Reductions in eye TNFα and IL-1β were additionally
observed in the lutein-supplemented group [84]. In apoE´/´ mice, combined supplementation of lutein
and egg yolk reduced detrimental ultrastructural alterations of the retina, whereas egg yolk additionally
reduced the degree of systemic lipid peroxidation [135].

Studies have further shown lutein to protect mice from LPS-induced lethality, while also
inhibiting NF-κB-mediated pro-inflammatory gene expression induced by hydrogen peroxide [136].
Following LPS injection, dietary lutein supplementation (50 mg/kg of feed) dose-dependently reduced
TNFα mRNA expression in the spleen of F-line turkeys, while increasing mRNA expression of
anti-inflammatory IL-10 [137]. Interestingly, Meriwether et al. [138] found that the lutein status of
laying hens impacted the inflammatory immune response in chick offspring, where depletion/deficiency
of lutein during embryonic development and early life was associated with greater pro-inflammatory
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responses to LPS [138]. Lutein derivatives generated from UV-irradiation have additionally been shown
to have anti-inflammatory effects via inhibition of serum TNFα and IL-6 in LPS-treated mice [139].
Lutein has additionally been shown to suppress Th2 lymphocyte-mediated airway inflammation in a
murine model of asthma [140]. However, in a study conducted in healthy adults by Graydon et al. [141],
lutein (10 mg/day) and zeaxanthin (5 mg/day) supplementation for 8 weeks did not affect serum ICAM-1,
VCAM-1 or CRP levels [141]. These results may be indicative of a lower bioavailability of lutein and
zeaxanthin from supplements, or perhaps a lack of an anti-inflammatory effect in healthy individuals
who do not exhibit physiological stress and tissue dysfunction [8,76].

3.4. Egg Proteins

As detailed above, eggs contain a variety of bioactive proteins in the white fraction, including
ovalbumin, ovotransferrin, ovomucin, lysozyme, and avidin [54]. These proteins possess antibacterial
and immunoprotective properties, yet are also capable of inducing unfavorable pro-inflammatory
responses in individuals allergic to egg proteins [99–101]. Egg white-derived lysozyme naturally
exerts antimicrobial activity against Gram-positive and Gram-negative bacteria through hydrolysis of
structural peptidoglycans in the bacterial cell walls, in addition to giving rise to antibacterial peptides
from within its complete protein structure through enzymatic hydrolysis [142,143]. In a porcine model of
dextran sodium sulfate (DSS)-induced colitis, hen egg lysozyme supplementation reduced intestinal gene
expression of pro-inflammatory cytokines (TNFα, IL-6, IFNγ, IL-8, IL-17) while increasing expression
of anti-inflammatory IL-4 and transforming growth factor β (TGFβ). Further, lysozyme attenuated
weight loss, colonic crypt distortion, muscle wall thickening, and gastric wall permeability observed
in control DSS-treated animals [97]. Ovotransferrin, an iron-binding glycoprotein with antibacterial
activity, has additionally been shown reduce inflammatory colitis pathology in a DSS-induced mouse
model of colitis [95,144]. Oral administration of egg ovotransferrin reduced inflammatory cytokines,
while additionally mitigating clinical markers of colitis, including weight loss and histological scores
of the colon [95]. Egg yolk-derived phosvitin additionally has significant bactericidal activity against
E. coli, which was shown to be attributable to its high metal-chelating properties, in addition to its
high surface activity under thermal stress [145]. Ovokinin, a biologically active peptide derivative
of ovalbumin, has been shown to lower blood pressure in spontaneously hypertensive rats when
provided via oral administration [146]. This phenomenon was dependent upon the presence of egg
yolk phospholipids during administration, provided as either the whole egg yolk, the yolk phospholipid
fraction, or isolated egg phosphatidylcholine [146].

In addition to the bioactive proteins above, utilization of immunoglobulin Y (IgY) in medicine has
additionally shown promising results in promoting passive immunity against a variety of pathogens
in the treatment of conditions such as colitis, influenza, and infection of Clostridium botulinum,
Staphylococcus aureus, Candida albicans, and Helicobacter pylori [96,147]. In cystic fibrosis
patients, daily use of a mouthwash containing IgY antibody purified from eggs of hens immunized
against Pseudomonas aeruginosa significantly decreased Pseudomonas aeruginosa colonization [148].
Together, these findings highlight a unique immunomodulatory and anti-inflammatory role of
egg-derived proteins.
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4. Effects of Egg Intake on Inflammation in Human Populations

As outlined above, eggs contain a variety of bioactive components that possess pro- and/or
anti-inflammatory properties. Each of these components likely contribute to the overall response
observed in human subjects following egg consumption; however, evidence suggests that the effects
of egg intake on inflammatory markers differs across populations, based on body weight and health
status [30–33,35,36]. The following section explores these findings, with a summary of the relationship
between egg intake and inflammation presented in Table 1.

Table 1. Effects of egg intake on inflammation in different human populations.

Population, n Intervention Conditions Effect on Inflammation Ref.

Healthy Adults

n = 66
4 eggs/day for 4 weeks; AHA NCEP
step 1 diet

Ò serum amyloid A, CRP [30]

n = 40 2-egg meal Ò postprandial TMAO [31]

Young men, n = 24 1-, 2-, or 4-egg meal
Ò ex vivo J774 macrophage cell
free cholesterol

[149]

Young men and women, n = 50 2 eggs/day for 4 weeks Ó AST and ALT [150]

Overweight

Men, n = 28
3 eggs/day for 12 weeks, ad libitum
carbohydrate-restricted diet

Ó CRP Ò adiponectin [32]

Insulin resistant

Lean, n = 76
4 eggs/day for 4 weeks; AHA NCEP
step 1 diet

Øserum amyloid A, CRP [30]

Obese, n = 59
4 eggs/day for 4 weeks; AHA NCEP
step 1 diet

Øserum amyloid A, CRP [30]

Metabolic syndrome

Men and women, n = 37
3 eggs/day for 12 weeks, moderate
carbohydrate-restricted diet

Óoxidized LDL [34]

Men and women, n = 37
3 eggs/day for 12 weeks, moderate
carbohydrate-restricted diet

ÓTNFα, serum amyloid A [35]

Men and women, n = 5
3 eggs/day for 12 weeks, moderate
carbohydrate-restricted diet

ÓLPS-induced TNFα and IL-1β
production from PBMCs ex vivo

[36]

T2DM

Men and women, n = 29 1 egg/day for 5 weeks ÓTNFα and AST Ø CRP [38]

Men and women, n = 65 2 eggs/day for 12 weeks ØCRP and homocysteine [151]

Abbreviations: Ò: increase; Ó: decrease; Ø: no change; AHA: American Heart Association; ALT: alanine
aminotransferase; AST: aspartate aminotransferase; CRP: C-reactive protein; IL-1β: interleukin 1 β; NCEP:
National Cholesterol Education Program; PBMC; peripheral blood mononuclear cells; T2DM: type 2 diabetes
mellitus; TMAO: trimethylamine-N-oxide; TNFα: tumor necrosis factor α.

4.1. Healthy Populations

A number of intervention trials conducted in healthy adults have demonstrated a pro-inflammatory
response to egg intake. Tannock et al. [30] investigated the effects of egg consumption in lean insulin
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sensitive, lean insulin resistant, and obese insulin resistant subjects on an American Heart Association
(AHA)—National Cholesterol Education Program (NCEP) step 1 diet. Interestingly, after consuming 4
eggs per day for 4 weeks, CRP and serum amyloid A—both acute phase inflammatory proteins—were
significantly increased in the lean insulin sensitive subjects, whereas no changes were observed in either
lean or obese insulin resistant groups—despite their having higher baseline levels of inflammation [30].
This was associated with increased cholesterol absorption in the lean insulin sensitive subjects, whereas
both lean and obese insulin resistant subjects exhibited greater cholesterol synthesis [58]. In a crossover
study conducted in 13 subjects with LDL-C over 130 mg/dL (>3.36 mmol/L), addition of daily egg
yolk to a diet of 30% fat (predominantly polyunsaturated and saturated fatty acids) for 32 days resulted
in increased susceptibility of LDL to in vitro oxidation [152]. Increased susceptibility to plasma and
LDL oxidation was additionally observed by Levy et al. [153] in subjects consuming 2 eggs per day for
3 weeks. These subjects additionally exhibited minor increases in plasma glucose [153], contributing to
the controversial body of research regarding the effects of egg intake on T2DM risk [26,27]. Similarly,
healthy subjects who consumed a 2-egg meal exhibited increased plasma levels of pro-inflammatory
TMAO postprandially; however, these increases were dependent upon the presence of normal intestinal
microbiota, as administration of an oral broad-spectrum antibiotic suppressed the egg-induced increase in
TMAO [31]. In a study by Ginsberg et al. [149], the serum from healthy men following consumption of a
meal containing 0, 1, 2, or 4 eggs was incubated with J774 murine macrophage cells for 18 h. Following
incubation, cellular free cholesterol content of J774 cells was highest when incubated with serum
post-egg consumption when compared to the 0-egg meal [149]. Although markers of inflammation
were not assessed, elevated levels of leukocyte cholesterol is known to increase the pro-inflammatory
potential of the cell [120,121]. Conversely, in a study in college-aged men and women participating a
crossover study, liver enzymes aspartate aminotransferase (AST) and alanine aminotransferase (ALT)
were lower following consumption of a 2-egg per day for 4 weeks vs. an oatmeal breakfast, whereas no
changes were observed in CRP [150].

4.2. Overweight

It has been well established that excessive weight gain and obesity is associated with a chronic state
of low-grade systemic inflammation and metabolic tissue dysfunction. This physiological milieu is
thought to stem from dysfunctional adipose, which becomes stressed as it attempts to expand in order
to accommodate an excess influx of nutrients [8]. In contrast to what is observed in most healthy
populations, egg consumption in overweight populations shows beneficial anti-inflammatory effects.
In a study by Ratliff et al. [32], overweight men consuming 3 eggs per day for 12 weeks while following
an ad libitum carbohydrate-restricted diet showed reductions in plasma CRP, that were not observed
in overweight men consuming a carbohydrate restriction diet with yolk-free egg substitute. However,
men consuming the egg substitute showed significant decreases in pro-inflammatory MCP-1 [32].
Interestingly, men on both whole egg and egg substitute groups increased plasma levels of the
anti-inflammatory adipokine adiponectin over 12 weeks, with greater increases observed in the whole
egg group (+21% vs. +7%) [32]. Consumption of eggs for breakfast has additionally been shown to
increased satiety in overweight/obese women [154] and healthy men [155] when compared to a bagel
breakfast, while also promoting weight loss and reductions in daily caloric intake [155,156]. Increased
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satiety from egg consumption has also been observed in young adults [157]. Together, these findings
suggest that egg consumption may improve inflammation in overweight/obese individuals undergoing
weight loss—either through direct action of bioactive components or indirect action of promoting satiety,
weight loss, and restoration of adipose tissue function.

4.3. Metabolic Syndrome

Metabolic syndrome is characterized by a clustering of cardiometabolic risk factors that increase
an individual’s risk of developing CVD and T2DM by 2- and 5-fold, respectively [20]. Individuals
with metabolic syndrome commonly present with insulin resistance, endothelial dysfunction, adverse
lipoprotein profiles, and a chronic state of low-grade inflammation [158]. However, similar to
what has been observed in obesity, egg consumption has been shown to mitigate inflammation in
metabolic syndrome. In men and women classified with metabolic syndrome following a moderate
carbohydrate-restricted diet, consumption of either 3 eggs per day or the equivalent amount of yolk-free
egg substitute for 12 weeks lowered oxLDL [34]. Interestingly, reductions in plasma TNFα and
serum amyloid A were only observed in the group consuming whole eggs that included the yolk,
whereas no changes in CRP, adiponectin, IL-6, or IL-10 were observed in either whole egg or egg
substitute groups [35].

The effects of egg consumption during carbohydrate restriction in metabolic syndrome was further
assessed in regard to peripheral blood mononuclear cell inflammation [33,36]. Despite increases in
peripheral blood mononuclear cell (PBMC) toll-like receptor 4 (TLR4) mRNA expression, whole egg
intake did not alter lipopolysaccharide-induced TNFα or IL-1β secretion by PBMCs. Surprisingly,
lipopolysaccharide-induced TNFα or IL-1β secretion in PBMC was increased over the 12 week
period in subjects consuming the yolk-free egg substitute. Interestingly, there was a trend toward a
decrease in PBMC cholesterol content in the whole egg group, as changes in PBMC cholesterol content
over the 12-week intervention positively correlated with lipid raft content [33,36]. These changes
corresponded to increased PBMC mRNA expression of ABCA1, which is known to exert direct and
indirect anti-inflammatory activity [120,121]. Egg consumption in metabolic syndrome has additionally
been shown to increase HDL-phosphatidylethanolamine content and the ex vivo cholesterol-accepting
capacity of serum from lipid-loaded macrophages [46]. While the anti-inflammatory properties of
egg-induced, phosphatidylethanolamine-enriched HDL were not assessed, phosphatidylethanolamine
may confer antithrombotic properties [159,160]. Thus, taken together with the reductions in serum
amyloid A, which is predominantly associated with HDL in circulation, it is possible that some of these
observations may be attributable to more anti-inflammatory and functional HDL [35,46,161].

4.4. T2DM

Of all populations, the recommendation of egg intake in T2DM is one of the most controversial,
given the results of some epidemiological studies that found a positive association between egg intake
and T2DM risk [26,27]. However, similar to what has been observed in obese and metabolic syndrome
populations, egg intake in T2DM appears to reduce markers of inflammation. In a randomized, crossover
study conducted in patients with well-controlled T2DM, intake of 1 whole egg per day breakfast for
5 weeks significantly reduced AST and TNFα when compared to an oatmeal-based breakfast [38].
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Further, there were no differences in fasting glucose, glycosylated hemoglobin (HbA1c), CRP, or plasma
lipids between the egg and oatmeal breakfast periods, suggesting that consumption of one egg per day
may mitigate the inflammation characteristic of T2DM without negatively affecting traditional markers
of glucose tolerance and CVD risk [38]. Similarly, in a study by Pearce et al. [151], T2DM patients fed
a hypoenergetic high-protein, high-cholesterol diet (achieved by consuming 2 eggs/day) for 12 weeks
exhibited no adverse changes in T2DM and CVD biomarkers. Conversely, egg consumption resulted
in greater increases in serum HDL-cholesterol and plasma lutein when compared to T2DM patients
consuming a low cholesterol hypoenergetic, high-protein diet that lacked eggs. However, no changes in
serum CRP or plasma homocysteine were observed in either group [151]. Thus, it appears eggs may
confer anti-inflammatory benefits in patients with well-controlled T2DM.

4.5. Acute Infection

The findings on egg intake and inflammation outlined above not only have implications for chronic
metabolic diseases, but also for immune function in cases of acute infection, where inflammation is
essential to clearing pathogenic factors. While research on egg intake in immunity is limited, one study
by Pérez-Guzmán et al. [162] investigated the effects of a cholesterol-rich diet on the treatment of, and
recovery from, pulmonary tuberculosis. Adult patients with newly diagnosed pulmonary tuberculosis
were assigned to consume a cholesterol-rich diet (800 mg cholesterol/day, provided by egg yolk,
butter, beef liver, and dairy products) or a control diet (250 mg cholesterol/day) for 8 weeks while
remaining hospitalized and receiving anti-tubercular drug treatments. Interestingly, subjects following
the cholesterol-rich diet exhibited faster reductions in sputum production and clearance of mycobacteria
from sputum cultures [162]. Given these findings, and those highlighted above, the effects of egg intake
in parameters of immunity across different populations warrants further investigation.

4.6. Implications from Human Studies

As presented above, the majority of research suggests that egg intake promotes a pro-inflammatory
response in healthy adults [30,31], whereas the consumption of eggs in conditions of overweight [32],
insulin resistance [30], metabolic syndrome [35,36], and T2DM [38,151] have either an
anti-inflammatory or neutral effect. It is possible that this variation is attributable to differences in
intestinal absorption of dietary cholesterol, which is known to be increased in healthy, non-insulin
resistant individuals [30,56–58]; however, it is possible that other factors impact the dietary response
to eggs, such as the composition of the microbiome or genetic variation [31,114]. It is additionally
important to recognize potential confounding variables across studies, such as differences in the number
of eggs consumed per day, concurrent dietary treatments/interventions, or medication regimens.

5. Conclusions

Bioactive egg components, including phospholipids, cholesterol, lutein, zeaxanthin, and proteins,
possess a variety of pro- and/or anti-inflammatory properties, which may have important implications
for the pathophysiology of numerous chronic diseases and immune responses to acute injury. The
unique formulation of the egg food matrix significantly impacts the bioaccessibility and absorption
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of these components, allowing each bioactive component to likely contribute to the overall effects of
egg intake on inflammatory processes. Thus, as opposed to solely basing dietary recommendations for
egg intake on cholesterol content, it is likely more beneficial to consider the relationship between egg
intake and inflammation in different populations. Moreover, given the essentiality of pro-inflammatory
responses in normal immune defense against pathogens, further research into the role of egg intake on
immunity is warranted. Together, the findings presented in this review have important implications for
population-specific dietary recommendations that add complexity to current guidelines and standards of
clinical practice.
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