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Abstract: In this study, we determined the effects of hederagenin isolated from Akebia quinata
fruit on alcohol-induced hepatotoxicity in rats. Specifically, we investigated the hepatoprotective,
anti-inflammatory, and anti-apoptotic effects of hederagenin, as well as the role of AKT and
mitogen-activated protein kinase (MAPK) signaling pathways in ethanol-induced liver injury.
Experimental animals were randomly divided into three groups: normal (sham), 25% ethanol,
and 25% ethanol + hederagenin (50 mg/kg/day). Each group was orally administered the respective
treatments once per day for 21 days. Acetaldehyde dehydrogenase-2 mRNA expression was higher
and alcohol dehydrogenase mRNA expression was lower in the ethanol + hederagenin group than
those in the ethanol group. Pro-inflammatory cytokines, including TNF-α, IL-6, and cyclooxygenase-2,
significantly increased in the ethanol group, but these increases were attenuated by hederagenin.
Moreover, Western blot analysis showed increased expression of the apoptosis-associated protein,
Bcl-2, and decreased expression of Bax and p53 after treatment with hederagenin. Hederagenin
treatment attenuated ethanol-induced increases in activated p38 MAPK and increased the levels
of phosphorylated AKT and ERK. Hederagenin alleviated ethanol-induced liver damage through
anti-inflammatory and anti-apoptotic activities. These results suggest that hederagenin is a potential
candidate for preventing alcoholic liver injury.
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1. Introduction

Recently, adolescent alcohol consumption has been associated with negative health and social
consequences in Korea [1]. In addition, alcohol-related liver disease showed a major cause of
morbidity and mortality worldwide [2]. Alcoholic liver disease is characterized by lipid accumulation,
inflammation and apoptosis, leading to cirrhosis, fibrosis and liver cancer [3]. Several studies have
shown that oxidative stress and acetaldehyde play an pivotal role in the pathogenesis of alcoholic liver
disease, including hepatocyte dysfunction, inflammation, apoptosis, and fibrosis [1–3].

In the liver, ethanol is oxidized to a toxic form, acetaldehyde, by alcohol dehydrogenase (ADH).
Acetaldehyde is then oxidized to acetic acid, which is non-toxic, by acetaldehyde dehydrogenase
(ALDH) [4]. As a toxic by-product of ethanol metabolism, acetaldehyde has greater chemical reactivity
and toxicity than ethanol [5]. Acetaldehyde can combine with proteins and form aldehyde protein
adducts that lead to protein dysfunction and result in the creation of antigens that contribute to
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inflammation [6]. The elimination of acetaldehyde is regarded as an important process in the prevention
of alcoholic liver disease [7].

Generally, chronic alcohol consumption elevates the production of pro-inflammatory
cytokines [8,9]. Pro-inflammatory mediators are involved in inflammatory responses, and of these,
inducible interleukin-6 (IL-6), cyclooxygenase-2 (COX-2) and tumor necrosis factor (TNF-α) play
important roles [10]. In particular, TNF-α can bind to its corresponding membrane receptor and further
increase the generation of reactive oxygen species (ROS), contributing to the development of alcoholic
liver disease and induction of apoptosis [4].

Apoptosis is a gene-regulated phenomenon that occurs through several pro- and anti-apoptotic
genes expressing homologous proteins of the Bcl-2 family, such as Bcl-2 and Bax, which are
known to play a major role in determining whether a cell undergoes apoptosis [11]. Previously,
it was shown that chronic ethanol-induced apoptosis increases the expression of p53 and the molecular
Bax/Bcl-2 ratio [12]. Especially, the tumor suppressor protein p53 is activated by DNA damage-
or oncogene-induced signaling pathways and promotes the transcription of several genes that are
involved in apoptosis, including those encoding death receptors and pro-apoptotic members of
the Bcl-2 family [13]. In most cases, p53-induced apoptosis promotes release of cytochrome c
in mitochondrial and induced caspase activation [14]. Under normal conditions, Bcl-2 levels are
maintained in the cell; however, following a toxic stimulus, Bcl-2 initiates apoptosis [11]. A decrease in
Bcl-2 protein expression results in the release of the apoptotic protein, Bax [15]. The Bax/Bcl-2 ratio
has been used as an important marker for ethanol-induced apoptosis [11].

Hederagenin is a pentacyclic triterpenoid saponin that acts as a chemotaxonomic marker for plants
of the Sapindaceae family [16]. In addition, multiple pharmacological activities have been attributed
to hederagenin, including anti-hyperlipidemic, anti-lipid peroxidation, anti-platelet aggregation,
hepatoprotective, and anti-inflammatory properties [16]. Hederagenin also showed a protective
effect on vascular walls by improving lipid metabolism disorders and lipid deposition [17]. Recently,
hederagenin showed anti-edema effects [18] and induced autophagy and promoted the degradation
protein in neurodegenerative disease [19]. However, the effects of hederagenin on alcoholic liver injury
and the mechanisms underlying these responses remain unclear.

In the present study, a Wistar rat model of alcoholic liver disease was established to evaluate
the beneficial effects of treatment with hederagenin against alcoholic liver damage, including
its anti-inflammatory and anti-apoptotic effects. We report for the first time the effects of
hederagenin isolated from the Akebia quinata fruit on apoptotic and cytokine pathways associated with
alcohol exposure.

2. Materials and Methods

2.1. Cell Culture

RAW 264.7 cells (Korea Cell Line Bank, Seoul, Korea) were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS, Hyclone, Logan, UT, USA) and 1%
penicillin–streptomycin (GIBCO, Grand Island, NY, USA) in a 5% CO2 incubator at 37 ◦C.

2.2. Akebia Quinata (AQ) Extraction and Isolation of Hederagenin

Whole fruit of Akebia quinata cultivated in Jirisan (Hamyang-gun, Gyeongsangnam-do) was
purchased from gyeongdong market (Seoul, Korea). The air-dried and milled fruits of Akebia quinata
(4 kg) were subjected to extraction with methanol (40 L) for up to 24 h at 23 ◦C [20]. The filtered
extract was concentrated under a vacuum to yield 400 g of residue, which was dissolved in methanol
and sequentially partitioned using ethyl acetate, n-butanol, and water for 24 h at 25 ◦C in a shaking
incubator. After filtration through filter paper (Whatman #2), the n-butanol-soluble fraction (20 g)
was hydrolyzed in 5% HCl in MeOH: H2O (2:8 v/v) under reflux for 4 h. After cooling, the reaction
mixture was extracted with ethyl acetate. The ethyl acetate-soluble fraction (0.3 g) was washed
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with distilled water and subjected to thin layer chromatography (TLC) and EtoAC: MeOH: H2O
(70:27:3 v/v/v) to produce three sub-fractions (Figure 1A). High-performance liquid chromatography
(HPLC) with a reverse-phase column (SunFire C18, 4.6 × 250 mm, 5-µm diameter; Waters, Milford,
MA, USA) and HPLC Empower Software (Waters, Milford, MA, USA) were used to analyze the
compounds in the extract. The mobile phase was acetonitrile: methanol: water. The flow rate was
1 mL/min, and the injection volume was 20 µL. The chromatograms were detected at 270 nm and
collected at 30 ◦C. Hederagenin was purchased from Sigma-Aldrich (St. Louis, MO, USA) and used as
an authentic standard (Figure 1A).
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Figure 1. Flows diagram of extraction and isolation of hederagenin from Akebia quinata (A);
and suppressive effect of hederagenin against Nitric oxide generation in RAW 264.7 cells (B).

2.3. Nitric Oxide (NO) Assay

RAW 264.7 cells (1 × 106 cells/well) were cultured in 96-well plates and incubated at 37 ◦C
for 24 h [21]. The medium was then removed from each well and replaced with phenol red-free
DMEM. For assays incorporating the various treatments, cells were first activated by the addition
of lipopolysaccharide (LPS, 1 mg/mL), tetrahydrobiopterin (BH4, 10 µg/mL), 200 mM L-arginine,
and interferon-γ (IFN-γ, 100 U/mL) for 24 h at 37 ◦C and 5% CO2. Cells with media alone served as
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a negative control and activated cells served as a positive control. In the presence of NO, the Griess
reagent forms a violet color. Therefore, the supernatant from each well was transferred to a fresh
96-well plate and mixed with Griess reagent (1% sulfanilamide and 0.1% naphthylethylene diamine
dihydrochloride in 2% H3PO4) for 10 min at room temperature. The optical density of the samples
was obtained using a spectrophotometer (Biochrom) at 540 nm. Cell viability was assessed using the
MTT assay.

2.4. Animal Experiments

All of the experiments were performed with approval from the Institutional Animal Care and
Use Committee at Konkuk University (IACUC approval number KU 15057), Seoul, Republic of Korea.
Male Wistar rats weighing 200 g and aged 5–6 weeks (Orient bio. Korea) were used in this
study. The animals were maintained in temperature-controlled (21–22 ◦C) and light-controlled
(12-h light, 12-h dark cycle) environments with 70% humidity and given free access to water and
food. The experimental animals were randomly divided into three groups: (1) normal (sham);
(2) 25% ethanol; and (3) 25% ethanol + hederagenin. During the 21-day experimental period, the rats
were orally administered 1 mL of 25% ethanol or 1 mL of water (sham group). After administration
of the ethanol or water, hederagenin was orally administered (50 mg/kg) according to the respective
treatment groups. Treatment consumption was measured daily and weight gain was measured weekly.
At the end of the 21-day period, the rats were fasted for 16 h and then killed by decapitation. Blood
samples were collected from the heart, and the serum was separated by centrifugation at 1610× g
for 30 min. The liver, kidney, and spleen were excised, and the blood and debris were removed by
washing with physiological saline. The dry weight of the samples was recorded, and then they were
stored at −80 ◦C until further analysis.

2.5. Biochemical Assays

Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities were
quantified to assess hepatotoxicity according to the methods described by Reitman and Frankel [22].
Total serum cholesterol levels were determined using commercial kits (Sigma, St. Louis, MO, USA)
based on modification of the cholesterol oxidation method of Alain et al. [23]. Serum triglyceride
concentrations were measured enzymatically using the Free Glycerol Determination Kit according to
manufacturer’s instructions (Sigma, St. Louis, MO, USA).

2.6. Enzyme-Linked Immunosorbent Assay (ELISA) of TNFα and IL6

TNF-α and IL-6 levels in the liver were determined using mouse TNF-α and IL-6 ELISA kits
(Abcam, Cambridge, UK) according to the manufacturer’s protocol. The amount was expressed as
pg/mg protein.

2.7. Reverse Transcription-PCR

The liver tissue was separated from total RNA using Trizol solution (Trizol, Invitrogen, Carlsbad,
CA, USA). cDNA was synthesized using the first strand cDNA synthesis kit (18080-051, Invitrogen,
Carlsbad, CA, USA). PCR was performed using the KAPA Taq Extra PCR kit (KR0355, Kapa Biosystems,
Wilmington, DE, USA). Primer sequences were as follows: GAPDH: 5′-ATCCCATCACCATCTT
CCAG-3′, 5′-CCTGCTTCACCACCTTCTTG-3′, ALDH2: 5′-GCTGTCAGCAAGAAAACATTCCCC-3′,
5′-CTTGTCAGCCCAGCCAGCATAATA-3′, ADH: 5′-ACCATCGAGGACATAGAA-3′, 5′-GTG
GAGCCTGGGGTCAC-3′, TNF-α: 5′-GTAGCCCACGTCGTAGCAAA-3′, 5′-CCCTTCTCCAGCTGG
AAGAC-3′, COX-2: 5′-CTGCATGTGGCTGATGTCATC-3′, 5′-AGGACCCGTCATCTCCAGGGTAATC-3′,
IL-6: 5′-CAAGAGACTTCCAGCCAGTTC-3′, 5′-GAAACGGAACTCCAGAAGACC-3′. PCR was
initiated at 95 ◦C for 3 min followed by 30 cycles at 95 ◦C for 30 s and 50–60 ◦C for 30 s. The number of
cycles and annealing temperature for each primer pair were optimized. A final extension of 72 ◦C for
10 min was included. The amplified PCR products were subjected to electrophoresis at 100 V through
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1.2% agarose gels for 40 min. A 100 bp DNA ladder was used as a molecular marker. The bands were
visualized with ethidium bromide and analyzed using BandScan.

2.8. Western Blotting Analysis

The rat livers were lysed in ice-cold lysis buffer (RIPA, 20 mM Tris-HCl (pH 7.5), 150 mM
NaCl, 1 mM ethylenediaminetetraacetic acid disodium salt (Na2EDTA), 1 mM ethylene glycol-bis(β-
aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 1% NP-40, 1% sodium deoxycholate, 2.5 mM
sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM sodium orthovanadate (Na3VO4),
1 µg/mL leupeptin, and 1 mM phenylmethylsulfonyl fluoride (PMSF, as a protease inhibitor).
The membranes were then incubated with β-actin (Cell Signaling Technology, Beverly, MA, USA),
Bcl-2 (Abcam, Cambridge, UK), Bax (Cell Signaling Technology), Bcl-X (Abcam, Cambridge,
UK), p53 (Abcam, Cambridge, UK), p-AKT (Cell Signaling Technology), p-ERK (Cell Signaling
Technology), and p-p38 (Cell Signaling Technology) antibodies, followed by a goat anti-rabbit IgG
(H+L) HRP-conjugated secondary antibody (Zymax, San Francisco, CA, USA). The blots were detected
using chemiluminescence using an X-ray film (AGFA, Mortsel, Belgium).

2.9. Histopathological Observation

The rat liver and kidney were fixed with a 10% formaldehyde solution for 24 h, embedded in
paraffin, and cut into 4-µm-thick slices. The slices were stained with hematoxylin–eosin (H&E) for
routine histopathological examination, and then examined and imaged using a light microscope at
×100 magnification to determine the degree of hepatic steatosis.

2.10. Statistical Analysis

Statistical analysis was performed using SPSS 18.0 (SPSS Inc., Chicago, IL, USA). Averages and
standard deviations were calculated and differences between groups were assessed using the analysis
of variance method and the Duncan’s multiple range test. A difference was considered significant
if p < 0.05.

3. Results

3.1. Inhibition of NO of Hederagenin from AQ

The data in the present study show a suppressive effect on NO generation following treatment
with hederagenin attributable to inhibition of the de novo synthesis and catalytic activity of inducible
nitric oxide synthase (iNOS) in RAW 264.7 cells. As shown in Figure 1B, no cytotoxicity was observed
following treatment of the cells with hederagenin at concentrations of 50–500 µg/mL. Thus, the IC50

value by which hederagenin inhibited the formation of NO was determined to be 25 µg/mL (Figure 1B).
In the present study, we show for the first time that hederagenin is an important phytochemical with
the potential to scavenge free radicals and suppress the generation of NO in inflammatory leukocytes,
including neutrophils and macrophages.

3.2. Weight Gain and Liver Weight

As shown in Table 1, weight gained in the 25% ethanol only and ethanol + hederagenin treated
groups was slightly higher than that of the normal (sham) group, but the differences were not
significant. Similarly, liver and kidney weights from the ethanol only and ethanol + hederagenin
treated groups were lower than those of the normal group, but the differences were not significant
(Table 1).
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Table 1. Effects of hederagenin from Akebia quinata fruit on body weight and liver weight in
ethanol-treated rats.

Treatment Normal Ethanol Hederagenin

Initial body weight (g) 128.5 ± 3.39 a 128.71 ± 5.31 a 130.17 ± 3.19 a

Final body weight (g) 245.13 ± 41.49 a 270.01 ± 31.01 a 260.86 ± 9.68 a

Body weight gain/day (g) 5.55 ± 1.81 a 6.72 ± 1.22 a 6.22 ± 0.31 a

Liver weight (g) 10.90 ± 1.43 a 9.61 ± 0.92 a 9.39 ± 1.07 a

Kidney weight (g) 2.61 ± 0.11 a 2.44 ± 0.17 a 2.34 ± 0.24 a

LW/BW 0.045 ± 0.034 a 0.036 ± 0.030 a 0.036 ± 0.110 a

Results are presented as mean ± standard deviation. Within rows, means with different superscripts are
significantly different (p < 0.001).

3.3. Effects of Hederagenin on Biomarkers of Liver Injury

AST and ALT levels in the ethanol-treated group were higher than those in the normal group;
however, AST and ALT levels were lower in the ethanol + hederagenin group than those in the
ethanol-treated group (Table 2). Total serum cholesterol levels were significantly higher in the
ethanol-treated rats than those in the normal rats (Table 2), an effect that was suppressed by treatment
with hederagenin. Triglyceride concentrations were also significantly higher in the ethanol-treated
groups than those in the normal and ethanol + hederagenin-treated groups. However, total serum
cholesterol and triglyceride levels were lower in the ethanol + hederagenin group than those in
rats treated with ethanol. Therefore, hederagenin treatment reduced ALT, AST, total cholesterol,
and triglycerides in the serum of rats.

Table 2. Effects of hederagenin from Akebia quinata fruit on serum aspartate aminotransferase
(AST), alanine aminotransferase (ALT), total cholesterol (TC), and triglyceride (TG) levels in
ethanol-treated rats.

Treatment AST (IU/L) ALT (IU/L) TC (mg/dL) TG (mg/dL)

Normal (n = 6) 113.03 ± 28.20 c 35.14 ± 2.41 a 85.55 ± 4.06 b 30.28 ± 10.55 c

Ethanol (n = 7) 235.93 ± 45.38 a 42.17 ± 20.48 a 95.47 ± 8.65 a 55.32 ± 9.80 a

Hederagenin (n = 6) 208.65 ± 32.94 b 27.53 ± 7.38 a 79.75 ± 5.24 b 41 ± 9.79 b

Results are presented as mean ± standard deviation. Within column, means with different superscripts are
significantly different (p < 0.001).

3.4. Histological Analysis

Histological examination by H&E staining showed a normal liver lobular architecture in the
control rats. However, the livers from rats administered ethanol showed micro- and macro-vesicular
steatosis and excessive inflammatory cell infiltration. Those pathological changes were attenuated by
hederagenin treatment (Figure 2). The liver of ethanol + hederagenin treated rats showed a similar
pattern to the normal group. Our results suggest that hederagenin treatment attenuates the degree
ethanol-induced liver fibrogenesis and inflammatory cell infiltration.

3.5. Effects of Hederagenin on Hepatic ADH and ALDH2 mRNA Expression

We investigated changes in the mRNA expression of ADH and ALDH2 using RT-PCR. Hepatic
ADH mRNA expression levels were 8.09-fold higher in the ethanol-treated group than those in the
normal group (Figure 3). However, ADH mRNA expression was 2.96-fold lower in the ethanol +
hederagenin group than that in the ethanol-treated group. The level of ALDH2 mRNA expression was
7.68-fold lower in the ethanol group than that in the control group; however, this effect was partially
attenuated in the ethanol + hederagenin group, which showed a 5.48-fold increase in ALDH2 mRNA
expression over that in the ethanol-treated group. Thus, treatment with hederagenin increased the
ethanol-induced suppression of ALDH2 mRNA expression.
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Figure 3. Effects of hederagenin on mRNA expression of ADH and ALDH2 assessed using RT-PCR.
Results are expressed as the means ± SD. Significant differences (p < 0.05) are represented using
different letters. ADH, alcohol dehydrogenase; ALDH, acetaldehyde dehydrogenase.

3.6. Effect of Hederagenin on Inflammation

The level of TNF-α mRNA expression in the ethanol group was significantly higher (17.65-fold)
than that of the normal group; however, TNF-α mRNA expression in the ethanol + hederagenin
group was 14.49-fold lower than that of the ethanol-treated group (Figure 4A). COX-2 mRNA
expression in the ethanol-treated group was markedly increased to 1.72-fold that of the normal
group, and that increase was attenuated in the ethanol + hederagenin group. Similar to IL-6 mRNA
expression levels significantly increased in the ethanol-treated group, but were reduced in the
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ethanol + hederagenin group. Hederagenin attenuated ethanol-induced increases in TNF-α, COX-2,
and IL-6 mRNA expression.

The levels of TNF-α and IL-6 levels in the livers from control animals were 7.53 pg/mL and
38.70 pg/mL, respectively (Figure 4B). Ethanol consumption significantly increased the liver levels of
TNF-α and IL-6 to 51.98 and 89.21 pg/mL, respectively. TNF-α levels in the ethanol + hederagenin
group clearly decreased to 5.1-fold less than that in the ethanol-treated group. In addition, IL-6 levels
in the ethanol + hederagenin group were reduced to 2.06-fold less than that in the ethanol-treated
group. These results show the anti-inflammatory properties of hederagenin.
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Figure 4. Effect of hederagenin on inflammation-related gene expression in the livers of
ethanol-exposed rats (A); and mRNA expression of the liver TNF-α, IL-6, and COX-2 assessed using
RT-PCR (B). The liver concentration of TNF-α and IL-6 was determined using an enzyme-linked
immunosorbent assay. Results are expressed as the means ± SD. Significant differences (p < 0.05) are
represented using different letters. TNF, tumor necrosis factor; IL, interleukin; COX, cyclooxygenase.
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3.7. Effects of Hederagenin on the Expression of Bcl-2, Bax, Bcl-x, and p53

We examined the impact of hederagenin on apoptosis related protein expression in
ethanol-induced liver injury by using Western blot analysis. Western blot analysis showed that
p53 expression was activated in the ethanol group and clearly reduced in the ethanol + hederagenin
group. As shown in Figure 5, expression of the anti-apoptotic protein Bcl-2 decreased, whereas
expression of the pro-apoptotic protein Bax increased in the ethanol-induced hepatic injury. Further,
the Bax/Bcl-2 ratio was elevated in the ethanol group. In contrast, treatment with hederagenin
reversed the expression levels of Bcl-2 and Bax and reduced the Bax/Bcl-2 ratio. We further analyzed
the expression of proapoptotic proteins in the liver tissue and determined that the expression of Bcl-xL
was lower in the ethanol + hederagenin group than that of the ethanol group.
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Figure 5. Effects of hederagenin on apoptotic signaling cascades in ethanol-treated hepatocytes.
Extracts of the liver proteins from the different groups were subjected to Western blotting. Expression
levels of cytoplasmic Bcl-2, Bax, Bcl-X, and p53 are shown. Results are expressed as the means ± SD.
Significant differences (p < 0.05) are represented using different letters.

3.8. Effects of Hederagenin on Phosphorylation of AKT, ERK, and p38 MAPK

Hederagenin acts against ethanol-induced cytotoxicity by promoting AKT phosphorylation to
form phospho-AKT (p-AKT) (Figure 6). We examined the effects of hederagenin on the activation of
p38 MAPK and ERK pathways in ethanol-induced liver injury. Ethanol treated group increased the
level of activated p38 MAPK, an effect that was blocked by the addition of hederagenin. Similarly,
downregulation of activated p-ERK was observed in ethanol-treated rats, an effect that was increased
by the addition of hederagenin.
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4. Discussion

In the present study, supplementation of hederagenin for three weeks significantly inhibited the
progression of alcoholic liver injury in rats. Hederagenin supplementation alleviated ethanol-induced
liver injury and inflammation, as reflected by decreased serum AST, ALT, triglycerides, and total
cholesterol levels, as well as decreased serum TNF-α and IL-6 levels. In addition, hederagenin reduced
the inflammatory response to ethanol, as evidenced by significantly suppressed levels of hepatic
TNF-α, IL-6, and COX-2 mRNA expression. Second, hederagenin supplementation modified the
effects of ethanol on ADH and ALDH2, exerting a protective mechanism against ethanol-induced liver
injury in rats. Third, hederagenin reduced apoptosis in the liver of rats exposed to ethanol, as shown
by the decreased ratio of Bax/Bcl-2 and p53 activities. Finally, our study found that ethanol exposure
reduces the expression of p-AKT and p-ERK. To the best of our knowledge, this is the first evidence
that hederagenin reduces liver injury through anti-inflammatory and anti-apoptotic activities in rats
exposed to ethanol.

Generally, ALT and AST levels are the most frequently used biomarkers for evaluating liver
injury [4]. In this study, ALT and AST levels increased in the serum of ethanol-treated rats. However,
this effect was attenuated by treatment with hederagenin. In addition, pro-inflammatory cytokines
have emerged as important mediators of hepatic inflammation associated with excessive ethanol
intake [3]. The release of inflammatory cytokines, such as TNF-α and IL-6, could lead to hepatocyte
apoptosis [4]. Decreases in TNF-α, IL-6, and COX-2 activity have been used as valuable indicators
of an inflammatory response to potentially toxic agents [3,6]. In our study, TNF-α and IL-6 levels in
the livers from ethanol-treated rats were significantly increased. However, hederagenin treatment
significantly attenuated the increased release of liver TNF-α and IL-6 levels observed in animals treated
with ethanol. In addition, our study showed that expression of TNF-α, IL-6, and hepatic COX-2 mRNA
was elevated after alcohol treatment. These increases were dramatically attenuated by hederagenin
treatment. These results are in agreement with those of a study indicating that induction of TNF-α,
IL-6, and COX-2 expression in rats administered ethanol was attenuated by Agrimonia eupatoria [3].
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Those observations support data suggesting that pro-inflammatory cytokines are released by damaged
hepatocytes, as well as the protective effect of hederagenin.

The ethanol metabolic pathway plays a significant role in the pathogenesis of alcoholic liver
disease. Toxic acetaldehydes can lead to mitochondrial dysfunction and apoptosis, resulting in serious
damage to liver function. Overexpression of ADH increases susceptibility to ethanol toxicity in
myocardial cells. However, overexpression of ALDH has a protective effect on alcohol-induced cardiac
injury [4–7]. In this study, we determined the mRNA expression of ADH and ALDH2. We found that
hederagenin decrease ethanol-induced ADH activation. In addition, we observed that hederagenin
activates ALDH2 in rats exposed to ethanol. These results suggest that the protective effects exerted
by hederagenin may be attributable to modification of the ethanol metabolic pathway by preventing
acetaldehyde accumulation.

Apoptosis is involved in the process of liver fibrosis. In addition, apoptosis may be used to
modulate liver fibrosis [24]. Endogenous p53 activation in hepatocytes induced liver fibrosis [24].
Bcl-2 plays an important role in cell apoptosis [25]. The Bcl-2 family modulates apoptosis,
with the Bax/Bcl-2 ratio serving as a rheostat to determine cell susceptibility to apoptosis [26]. In the
present study, expression of Bcl-2 sharply decreased and the expression of Bax and p53 increased in
ethanol-treated rats. In contrast, this tendency was reversed in the ethanol + hederagenin-treated
animals. Our results show that hederagenin may be used as an anti-apoptotic agent.

The AKT, a serine/threonine kinase, is a key player in regulating cell signals that are important for
cell death and survival. Activation of the AKT pathway promotes cell survival and is involved in the
upregulation of Bcl-2 [27]. In this study, hederagenin treatment suppressed ethanol-induced reductions
in activated AKT in the liver. In cultured hippocampal neurons and endothelial cells, elevations in
activated ERK have been shown to mediate the inhibition of apoptosis, preventing the loss of activated
ERK may be a mechanism by which hederagenin inhibits ethanol-induced apoptosis [26]. Our study
shows that hederagenin treatment significantly attenuates the increase in activated p38 MAPK induced
by ethanol. Hederagenin may inhibit ethanol-induced apoptosis by promoting the activation of AKT
and ERK and blocking the activation of p38 MAPK.

In conclusion, the present study shows for the first time that hederagenin has various protective
effects against liver injury in rats treated with ethanol. The protective activities of hederagenin in
the liver against ethanol toxicity involve the reduction of acetaldehyde through the activation of
ALDH2. Further, our study shows that hederagenin can protect against ethanol-induced liver injury
by suppressing inflammatory mediators such as TNF-α, IL-6, and COX-2. Moreover, hederagenin
decreases mediators of apoptosis (Bax and p53) by activating the AKT and ERK signaling pathways.
Our findings suggest that hederagenin is a potential candidate for the prevention and treatment of
ethanol-induced liver injury.
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