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Abstract: Micronutrients refer to a group of organic vitamins and inorganic trace elements that
serve many functions in metabolism. Assessment of micronutrient status in critically ill children is
challenging due to many complicating factors, such as evolving metabolic demands, immature organ
function, and varying methods of feeding that affect nutritional dietary intake. Determination of
micronutrient status, especially in children, usually relies on a combination of biomarkers, with only
a few having been established as a gold standard. Almost all micronutrients display a decrease in
their serum levels in critically ill children, resulting in an increased risk of deficiency in this setting.
While vitamin D deficiency is a well-known phenomenon in critical illness and can predict a higher
need for intensive care, serum concentrations of many trace elements such as iron, zinc, and selenium
decrease as a result of tissue redistribution in response to systemic inflammation. Despite a decrease
in their levels, supplementation of micronutrients during times of severe illness has not demonstrated
clear benefits in either survival advantage or reduction of adverse outcomes. For many micronutrients,
the lack of large and randomized studies remains a major hindrance to critically evaluating their
status and clinical significance.

Keywords: micronutrients; vitamins; minerals; critical illness; pediatric intensive care unit; neonatal
intensive care unit

1. Introduction

Micronutrients refer to a group of organic vitamins and inorganic trace elements, all of which play
a wide range of essential functions in maintaining the body’s homeostasis. They serve as co-factors
for many important metabolic enzymes, regulate gene transcription, and power the body’s defense
against oxidative stress [1]. Most micronutrients circulate in association with carrier proteins, the levels
of which are reduced by the effects of acute inflammation and the body’s response to physiologic stress.
For this reason, critically ill patients are at risk of developing micronutrient deficiency. Unfortunately,
traditional markers used to assess micronutrient status in healthy patients are often unreliable in
the critically ill [2]. Assessment of micronutrients in this patient population is challenging due to
multiple factors that include illness severity, nutritional status, medication use, and undesirable
consequences of medical and surgical interventions. Determining micronutrient status in infants and
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children is further complicated given their immature organ function and specific metabolic demands
that differ significantly from that of the adult population. This review aims to systematically present
the most current knowledge on evaluating micronutrient status in critically ill children, and identify
opportunities and challenges that can guide future research in this area.

2. Water Soluble Vitamins

2.1. B Vitamins

2.1.1. Introduction

The B vitamins are composed of 8 essential water-soluble vitamins that function as co-factors for
various metabolic processes (Table 1). Folate, cobalamin, and thiamine have drawn great interest due to
the detrimental clinical manifestations that result from deficiency states. Folate is particularly important
in fetal development as deficiency may result in life threatening neural tube defects [3]. Cobalamin
deficiency during this stage can also lead to neurologic sequelae and poor development [4,5]. Thiamine
is essential for various cellular processes and deficiency may result in Wernicke–Korsakoff syndrome,
beriberi, and death [6–11]. In general, deficiency of the B vitamins in children may impair growth and
development due to their essential cellular and biochemical functions [3,12].

Table 1. Vitamin B complex and functions.

Vitamin Name Function and Enzyme Co-Factor

B1 Thiamine Aerobic and carbohydrate metabolism
B2 Riboflavin Oxidation-Reduction reactions: FAD and FMN
B3 Niacin Oxidation-Reduction reactions: NAD and NADP
B5 Pantothenic acid Acylation and acetylation: coenzyme A
B6 Pyridoxal Phosphate Metabolism of proteins, carbohydrates, and fats
B7 Biotin Carboxylase enzymes
B9 Folate DNA and RBC synthesis
B12 Cobalamin DNA, RBC, and myelin synthesis

Abbreviations: DNA, deoxyribonucleic acid; FAD, flavin adenine dinucleotide; FMN, flavin mononucleotide;
NAD, nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; RBC, red blood cells.

2.1.2. Assessment

Due to their multiple roles in regulating various metabolic reactions, indirect assessment of
vitamin B status can be achieved by functional assays that measure their activity as related to
a specific enzyme or metabolite (Table 2). More recently, the availability of high performance liquid
chromatography (HPLC) has allowed for direct measurements of these vitamin complexes in blood and
other organs [3,5,6,8,11,13–15]. However, plasma concentrations of riboflavin, flavin mononucleotide,
and flavin adenine dinucleotide have been shown to be significantly affected by acute inflammation,
and show transient decreases that might not reflect true body storage. For this reason, some have
advocated for the use of erythrocyte concentrations as a better indicator of their status, especially
during times of acute illness and inflammation [11,16,17].

Table 2. Tests and their respective purposes of commonly used methods used to assess micronutrient status.

Test Purpose

Vitamin B1
Erythrocyte thiamine pyrophosphate Quantification of thiamine pyrophosphate in erythrocytes

Erythrocyte transketolase Functional assessment of coenzyme activity

Vitamin B2

Erythrocyte glutathione reductase activity
coefficient assay Functional assessment of coenzyme activity

Erythrocyte FAD Measurement of the active form of riboflavin

Vitamin B3
Erythrocyte NAD and NADP Measurement of active coenzymes of niacin

Urinary 1-MN and 2-PYR Measurement of niacin metabolites
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Table 2. Cont.

Test Purpose

Vitamin B5 Urine pantothenic acid Direct quantification of vitamin B5

Vitamin B6

Plasma pyridoxal phosphate Direct quantification of the active form of vitamin B6 in plasma
Erythrocyte pyridoxal phosphate Direct quantification of the active form of vitamin B6 in erythrocytes

Plasma PA:(PL+PLP) ratio Measurement of vitamin B6 catabolism in plasma

Vitamin B7
Urinary 3-HIA and 3-HIAc Indirect measurement of biotin-dependent mitochondrial carboxylase activity
Holo-PCC and holo-MCC Quantification of vitamin B7-dependent enzymes in lymphocytes

Vitamin B9
Plasma 5-methyltetrahydrofolate Measurement of the primary active form of folate

Plasma homocysteine Measurement of a precursor substrate for an enzyme that requires vitamin B9

Vitamin B12

Plasma cobalamin Direct quantification of vitamin B12
Plasma homocysteine Measurement of a precursor substrate for an enzyme that requires vitamin B12

Plasma MMA Measurement of a precursor substrate for an enzyme that requires vitamin B12
Urine MMA Measurement of a precursor substrate for an enzyme that requires vitamin B12

Vitamin C Plasma ascorbic acid Direct quantification of vitamin C

Vitamin A

Plasma retinol Direct quantification of one of the three forms of vitamin A

Plasma retinol/RBP molar ratio Measurement of proportion of a form of vitamin A and one of its circulating
carrier proteins in plasma

Relative-dose-response of retinol Measurement of a form of vitamin A in response to its administration
Changes in RBP following vitamin A

administration
Measurement of one of the circulating carrier proteins of vitamin A in plasma

in response to administration of vitamin A
Fasting plasma retinyl esters Direct quantification for vitamin A toxicity

Vitamin D
Plasma 25(OH)D Direct quantification of free vitamin D metabolite

Plasma bioavailable 25(OH)D Direct quantification of free plus albumin-bound vitamin D metabolite

Vitamin E Plasma alpha-tocopherol Direct quantification of the major isoform of vitamin E (consider adjusting to
cholesterol or total lipids in critically ill patients)

Vitamin K
Plasma phylloquinone Direct quantification of the major form of vitamin K in plasma

Coagulation function (INR and PT) Functional assessment of vitamin K-dependent coagulation factors
PIVKA-II and uOC Measurement of undercarboxylated prothrombin and osteocalcin

Iron

Serum iron Direct quantification of iron levels in serum
Ferritin Measurement of iron storage

Transferrin/TIBC Measurement of the capacity for iron transport
Transferrin saturation Quantification of the percentage of iron-bound transferrin

ZnPP/H Measurement of the proportion of protoporphyrin molecules associated with
zinc vs. iron

Calcium
Serum total calcium Direct quantification of total circulating calcium in serum

Serum ionized calcium Direct quantification of free circulating calcium in serum

Magnesium
Serum magnesium Direct quantification of magnesium levels in serum

Serum ionized magnesium Direct quantification of ionized magnesium in serum
24-hour urinary magnesium Measurement of magnesium levels in urine

Phosphorus Serum phosphate Direct quantification of phosphate levels in serum

Zinc
Serum or plasma zinc Direct quantification of zinc levels in serum or plasma

Metallothionein Measurement of zinc storage
ALP Functional assessment of a zinc-dependent enzyme

Selenium
Serum selenium Direct quantification of selenium levels in serum
GSHpx activity Functional assessment of the main selenium-dependent enzyme

Copper
Serum copper Direct quantification of copper levels in serum
Ceruloplasmin Measurement of the main protein for copper transport
SOD activity Functional assessment of a major copper-dependent enzyme

Abbreviations: 1-MN, 1-methylnicotinamide; 2-PYR, I-methyl-2-pyridone-5-carboxamide; 3-HIA, hydroxyisovaleric
acid; 3-HIAc, hydroxyisovalerylcarnitine; 25(OH)D, 25-hydroxyvitamin D; ALP, alkaline phosphatase;
FAD, flavin adenine dinucleotide; GSHpx, glutathione peroxidase; holo-MCC, 3-methylcrotonyl-CoA carboxylase;
holo-PCC, propionyl-CoA carboxylase; INR, international normalized ratio; MMA, methylmalonic acid;
PA, pyridoxic acid; PL, pyridoxal; PLP, pyridoxal 5’-phosphate; PIVKA-II, protein-induced in vitamin K absence-II;
PT, prothrombin time; RBP, retinol-binding protein; SOD, superoxide dismutase; TIBC, total iron binding capacity;
uOC, undercarboxylated osteocalcin; VDBP, vitamin D-binding protein; ZnPP/H, zinc protoporphyrin/heme ratio

2.1.3. Vitamin B in Critical Illness

Assessment of water soluble vitamins can be particularly challenging in pediatric patients given
the present lack of understanding of micronutrient status in the critically ill. At baseline, children have
varying levels of B vitamins due to normal growth and development [9,18–20]. Critically ill children are
even more prone to deficiency and abnormal concentrations due to a hypermetabolic state, decreased
intestinal absorption, insufficient intake, excretion, drug-related fluctuations, and underlying metabolic
diseases [21]. Additionally, due to the complex cellular and biochemical mechanisms involving B
vitamins and the imbalances that occur during critical illness, functional assays for enzyme activity and
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indirect measurements of biomarkers for these vitamins may not be as accurate as direct quantification
of the active B vitamins. Given these challenges, there is limited data on the assessment of vitamin B
status in the critically ill pediatric population.

In adults, low plasma thiamine levels are common and are associated with increased mortality in
patients in intensive care units (ICU) [6]. In one study, up to 12.5% of pediatric intensive care unit (PICU)
patients were found to be thiamine deficient based on erythrocyte transketolase, while pyridoxine
deficiency was not observed and riboflavin deficiency occurred at a much lower rate [10]. A similar
trend was also seen in children receiving chemotherapy, suggesting that thiamine deficiency is
an unrecognized problem in many children with critical illness. The authors also noted that due to the
lack of specific signs and symptoms, screening for clinical manifestations of Wernicke encephalopathy
was insufficient for the diagnosis of thiamine deficiency. Other studies in adults do show decreased
plasma levels of pyridoxal 5′-phosphate in different inflammatory conditions, mostly due to alterations
in its tissue distribution and increased catabolism [22,23]. The pyridoxic acid to pyridoxal plus
pyridoxal 5′-phosphate ratio (PA:(PL + PLP)) has been shown to be a useful marker of vitamin
B6 catabolism during states of inflammation [23]. Similarly, vitamin B6 increases with systemic
inflammation, as measured by erythrocyte pyridoxal phosphate levels [11,24]. Another study showed
that plasma concentrations of thiamine were decreased in association with systemic inflammation
based on C-reactive protein (CRP) levels [9]. However, no association between low thiamine levels
and outcome variables such as mortality, length of stay, or ventilator dependence was observed.
Higher vitamin B12 levels were found in critically ill adults and showed a correlation with CRP levels
and higher mortality [25,26]. However, assessment of these vitamins in the pediatric population has
not yet been studied.

2.2. Vitamin C

2.2.1. Introduction

Vitamin C (ascorbic acid) is an essential vitamin that functions physiologically as a water-soluble
antioxidant. It is found in both the intra- and extracellular compartments in blood where it reduces
harmful oxidants, improves immune function, plays a major role in wound healing, facilitates uptake
of non-heme iron, and acts as a co-factor for many enzymes [27–30]. Vitamin C is also essential for
scavenging reactive oxygen species (ROS) which may damage lipids, proteins, and deoxyribonucleic
acid (DNA) [27,31]. Toxicity is rare, as excess is excreted in the urine [32]. However, large doses
may cause gastrointestinal discomfort [32]. Deficiency may result in poor wound healing, lethargy,
or symptoms of scurvy such as perifollicular petechiae, gingivitis, and bleeding from mucus
membranes [30]. Infants may develop signs of inadequate intake of vitamin C particularly in the
first year of life if they are fed unsupplemented cow’s milk or if they suffer from gastrointestinal
malabsorption [33,34]. Children may exhibit similar signs of deficiency in addition to poor formation
of bone osteoid, leg swelling, subperiosteal hemorrhage, hemarthrosis, and iron deficiency [33].

2.2.2. Assessment

Methods for measuring vitamin C include several enzymatic, spectrophotometric, and chromatographic
assays. HPLC is an accurate and efficient method for analysis [30,35]. However, it is expensive and
not routinely available. In healthy adults, the average level of vitamin C is 20 mg/kg by body weight,
and the mean plasma concentration is 45–85 µmol/L [29,32,35,36]. Significantly higher concentrations
are found in immune cells [30]. However, there is relatively little long-term body storage of vitamin C
and thus, concentrations are largely dependent on daily intake. Deficiency is defined as serum
concentrations of less than 20 µmol/L [29]. There is no standard for serum or urine vitamin C
concentrations in the pediatric population. Similarly, there are no set recommendations for dietary
intake for normal healthy infants. There is active placental transfer in utero and thus, newborn levels
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most closely reflect those of maternal plasma concentrations [33]. Vitamin C is also present in breast
milk in higher concentrations than in cow’s milk [33].

2.2.3. Vitamin C in Critical Illness

Interpreting serum levels in the acutely ill is difficult due to variations in absorption, distribution,
consumption, and renal excretion [28,29]. Due to the unstable nature of the compound and the lack
of a gold standard technique for measuring levels, serum analysis for vitamin C continues to be
a challenge in most clinical settings. Many groups have studied the association between vitamin C and
oxidative stress resulting from sepsis, ischemia/reperfusion injury, hemorrhage, multiple organ failure,
and post-cardiac surgery [28,30,32]. As a biomarker, vitamin C decreases in states of oxidative stress,
likely related to increased immune cell turnover and changes in body compartment distribution [28,29].
There is limited data regarding appropriate vitamin C levels in pediatric patients. However, as in
adults, critically ill children may require higher doses of vitamin C supplementation as it supports
microcirculatory changes and immune function [28,30]. Despite being an important factor in the body’s
defense against oxidative stress, the difficulty in measuring vitamin C concentrations and interpreting
their changes in critically ill children has resulted in a paucity of data. Further research aimed at
understanding the role of vitamin C levels in the pediatric population is required in order to assess the
clinical utility of measuring concentrations.

3. Fat Soluble Vitamins

3.1. Vitamin A

3.1.1. Introduction

Vitamin A was the first vitamin to be discovered. It exists in three forms: retinal, retinoic acid,
and retinol, with the latter being routinely used to measure its status [37]. Given its fat-soluble nature,
vitamin A circulates in plasma bound to a water-soluble complex of retinol-binding protein (RBP) and
transthyretin. It is stored in the liver, adipose tissue, and the adrenal glands [38]. Dietary sources of
vitamin A include animal products which are rich in preformed vitamin A (retinyl esters), fruits and
vegetables high in carotenoids, and the provitamin form of vitamin A [39]. Although its main role
pertains to visual health, vitamin A serves other functions in the body that allow for adequate growth,
immune and reproductive function, and epithelial integrity [37,40].

3.1.2. Assessment

Measurement of retinol concentration in serum is the main test to assess vitamin A status in the
clinical setting. Adequate plasma retinol levels in older children and adults fall between 0.7–2.8 µmol/L.
However, special considerations must be taken into account when assessing vitamin A status in preterm
infants [41]. Preterm neonates are born with low hepatic reserves of vitamin A and significantly lower
concentrations of plasma retinol and RBP, with the latter being a result of both liver immaturity and
interruption of transplacental transfer of RBP to the fetus [42]. Other assessment methods have thus
been proposed in this setting, including the plasma retinol/RBP molar ratio, and the relative dose
response of retinol (RDR), which measures changes in RBP levels following administration of a single
dose of vitamin A [43,44] and takes into account the mobilization from hepatic stores during states
of deficiency. The use of these methods has been particularly useful in assessing vitamin A status in
preterm neonates given the association of its deficiency with the development of bronchopulmonary
dysplasia (BPD) and retinopathy of prematurity (ROP). Apart from serum biomarkers, other markers of
vitamin A status include those that assess visual function, including measurement of dark adaptation,
electroretinography, and pupillary threshold testing [45]. As for vitamin A toxicity, measurement of
fasting plasma retinyl esters is the test of choice, although some conditions such as liver disease and
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malnutrition can raise its levels despite normal vitamin A status [45]. Caution must therefore be taken
when interpreting levels of retinyl esters in those with pre-existing conditions and in the critically ill.

3.1.3. Vitamin A in Critical Illness

Interpretation of retinol levels in the critically ill must also take into account the fact that serum
RBP levels decrease significantly as other acute phase reactants are synthesized by the liver in times
of physiologic stress. The elevation in levels of CRP that occurs in the setting of acute infections
and other inflammatory conditions has shown a good correlation with dropping levels of serum
retinol, which is likely the result of decreased hepatic RBP synthesis [46]. Also, the vasodilation
and resulting leakage may lead to the extravasation of RBP and other lipids into the extracellular
compartment [47]. The drop in circulating lipid levels that occurs during the inflammatory response
compromises the interpretation of fat-soluble vitamin status in the critically ill. The transient drop that
is seen in circulating levels of vitamin A (and other fat-soluble vitamins) in the setting of inflammation
disappears once corrected for lipid levels [48,49]. The duration of an inflammatory state also impairs
vitamin A status and increases the risk of deficiency in this patient population. Critically ill children are
at particular risk for developing vitamin A deficiency due to inadequate nutritional provision either
through the parenteral (e.g., light-induced vitamin degradation, adsorption via infusion lines) or enteral
routes (e.g., malabsorption syndromes, bowel immaturity) [40]. Those born to vitamin A-deficient
mothers are also at risk [45]. Additionally, urinary excretion of retinol increases significantly in the
setting of infection, and is even more pronounced in sepsis [50]. Stephensen et al. found that almost
a third of patients with severe infections excreted amounts of retinol in urine equivalent to 50% of the
recommended dietary allowance [51]. Similarly, Mitra et al. estimated the effects of a single episode of
sepsis on the vitamin A status of an average 2-year-old child. In developed countries, the urinary loss of
retinol would translate into depletion of nearly 20% of the total liver stores. This number rises to almost
75% in developing countries, where children have significantly less hepatic reserves of vitamin A [50].

Although it is well known that vitamin A deficiency is associated with respiratory complications in
the critically ill preterm neonate, data supporting its supplementation for their prevention is mixed [41].
A recent systematic review by Darlow et al. evaluated the results from 11 trials and found a small
benefit of vitamin A supplementation in reducing the risk of mortality and the development of chronic
lung disease in very low birth weight (VLBW) infants [40]. Another systematic review by the same
author addressed the effectiveness of supplementation on ROP and found a positive trend towards
a beneficial effect, although it did not reach statistical significance [52]. In older children, the effects of
vitamin A supplementation proved to be of no benefit in the treatment of severe lower respiratory tract
infections [53]. However, this was not the case for children with severe measles, in which provision of
vitamin A proved to be beneficial in reducing the mortality rate and other associated complications [54].

3.2. Vitamin D

3.2.1. Introduction

The nutritional forms of this fat-soluble vitamin are ergocalcipherol (vitamin D2) and cholecalciferol
(vitamin D3). The former is derived from plant sterols, whereas the latter is synthesized in the skin
from its precursor, 7-dehydrocholesterol, under the catalysis of ultraviolet radiation exposure [55].
Vitamin D has many different metabolites, with 1,25-dihydroxyvitamin D (1,25(OH)2D) being the
most physiologically active form [56,57]. A sequence of hydroxylation reactions, first in the liver and
then in the kidney, results in the activation of vitamin D into 1,25(OH)2D. Hydroxylation of vitamin D
in the liver leads to the formation of its main circulating, yet inactive form, 25-hydroxyvitamin D
(25(OH)D). The physiologically active 1,25(OH)2D, in conjunction with parathyroid hormone (PTH),
calcitonin, and sex steroids, acts mainly on bone and the small intestine to regulate calcium homeostasis.
Vitamin D metabolism is tightly regulated by serum levels of calcium, phosphorus, PTH, and
1,25(OH)2D itself [55].
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Risk factors associated to vitamin D deficiency can be environmental (e.g., limited exposure
to sunlight and/or ultraviolet radiation) or inherent to the host (e.g., dark pigmented skin, limited
dietary intake, malabsorptive syndromes, chronic illnesses) [58]. Vitamin D deficiency in children can
result in decreased bone mineralization and rickets, which can lead to stunted growth development
and an increased risk of fractures. Also, low levels of vitamin D may impair the innate and adaptive
immune responses, and increase the risk of developing other chronic diseases such as type 1 diabetes
and other autoimmune disorders [58–60].

3.2.2. Assessment

Given its lipophilic nature as a steroid hormone, vitamin D is transported in plasma almost
in its entirety by a liver-derived glycoprotein known as vitamin D-binding protein (VDBP) [61].
Although VDBP is the major carrier of vitamin D in the bloodstream, it does not ultimately affect the
levels of free or bioavailable vitamin D, and its absence does not seem to affect the actions of vitamin D
in target tissues [62,63]. For this reason, calculation of the bioavailable 25(OH)D—25(OH)D not bound
to VDBP—has been proposed more recently as a more reliable marker of vitamin D status [64,65].
Serum 25(OH)D has a half-life of 14–20 days and accurately correlates with the amount of vitamin D
present in body stores. The Institute of Medicine has defined levels of cord serum 25(OH)D at which
there is an increased risk of vitamin D deficiency (<30 nmol/L), an adequate threshold (40 nmol/L),
and sufficiency (≥50 nmol/L) [66].

Whereas vitamin D is required to maintain normal calcium levels in adults, calcium homeostasis
and bone development are not dependent on vitamin D levels during the fetal period [67].
Several mechanisms of maternal adaptation for calcium provision alongside fetal parathyroid
hormone-related protein (PTHrP) ensure that calcium levels remains optimal to promote the adequate
development of the fetal skeleton [68]. Since 1,25(OH)2D does not cross the placenta, its blood levels in
the fetus are very low. Following birth, the quick drop in calcium levels leads to a rise in blood levels
of PTH and subsequently 1,25(OH)2D, the latter reaching adult levels approximately two days after
delivery [68,69]. In that sense, although the fetus seems to be unaffected by vitamin D levels during
pregnancy, there is an increased risk of hypocalcemia during the neonatal period of those born to
vitamin D-deficient mothers. Although the data is mixed, vitamin D supplementation of pregnant
mothers seems to allow neonates to better withstand the changes in calcium metabolism that occur
postnatally, and the bone accretion rates seen during this period [58,66].

3.2.3. Vitamin D in Critical Illness

The physiologic and metabolic stress that is seen in the critically ill can lead to acute changes in
vitamin and mineral concentrations. Critically ill patients can be particularly affected by vitamin D
deficiency, given the resulting detrimental effects on calcium homeostasis, immune function, and the
oxidant-antioxidant balance [70,71]. Similar to what occurs with other micronutrients, the duration of
inflammation may be an important factor in determining whether a low concentration of vitamin D is
truly a marker of deficiency. Reid et al. described a rapid and significant drop of approximately 40% in
plasma levels of 25(OH)D in adult patients during the evolution of the systemic inflammatory response
in the immediate postoperative period [72]. Overall, the prevalence of vitamin D levels <50 nmol/L in
patients admitted to PICU ranges from 28–69% [70,73–79]. A multicenter study across Canada found
that almost 70% of patients had levels of 25(OH)D <50 nmol/L on admission [70]. Consistent with
what is known from studies performed in the adult population, this study also showed an association
between low admission vitamin D levels and both increased illness severity scores and longer PICU
length of stay. Similarly, single-institution studies in the United States and India separately found that
nearly 40% of patients admitted to the PICU had 25(OH)D levels below 50 nmol/L, more commonly
during the winter months and in those with darker skin [73,77]. There is also an inverse relationship
between 25(OH)D levels and illness severity scores at admission, need for vasopressor support during
ICU stay, and mean duration of mechanical ventilation. Another study in a pediatric burn unit showed
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that more than half of all patients presenting with severe burns (>25% total body surface area) had
levels of 25(OH)D below 37.3 nmol/L, with a relationship observed between hypovitaminosis and the
presence of inhalational injury, and a trend showing an association between low vitamin D and burn
severity [80]. These findings are likely the result of a combination of factors that include electrolyte
derangements (i.e., hypocalcemia, hypomagnesemia, and hypophosphatemia), disruption of the
epidermis and vitamin D synthesis in the skin, limited sun exposure, and prolonged immobilization
among others [80].

Levels of 25(OH)D in the critically ill should be interpreted with caution, as dysfunction of
other organs (i.e., parathyroid, kidney) may limit the conversion of 25(OH)D to 1,25(OH)2D [70].
Also, the acute fluid loading that is normally seen in this setting can cause a hemodilution effect and
lower the levels of both 25(OH)D and 1,25(OH)2D [81]. Data from a large cohort, single-institution
study highlighted the strong association between plasma 25(OH)D and both CRP and albumin
levels [82]. These findings support the unreliability of interpreting levels of plasma 25(OH)D in
critically ill patients. A single-institution study by Madden et al. showed that critically ill children
had lower levels of VDBP compared to the general pediatric population [65]. An acute phase reactant,
decreasing VDBP in turn increases the level of bioavailable 25(OH)D and thus may serve as a protective
mechanism against the detrimental effects of hypovitaminosis D in the critical care setting. It is clear
that vitamin D insufficiency or deficiency is highly prevalent in the PICU population and is associated
with worse outcomes in this setting. Providers should be aware of the different risk factors for
deficiency that may make some patients more susceptible than others, and implement adequate
strategies for supplementation.

3.3. Vitamin E

3.3.1. Introduction

Vitamin E is a lipid-soluble antioxidant with 8 natural isoforms [83,84]. Vitamin E plays a major
role in the balance between the body’s natural antioxidant system and oxidative damage from ROS
such as superoxide anions, hydrogen peroxide, and hydroxyl radicals [83,84]. Leaving unchecked,
these compounds may result in protein oxidation, lipid peroxidation, and DNA damage leading to
direct tissue injury [85–87]. Vitamin E is an important free radical scavenger that protects cells from
oxidative damage [83,85,87].

3.3.2. Assessment

Alpha-tocopherol is the primary determinant for vitamin E status in the body, as it is the active
isoform [83]. Alpha-tocopherol is also the most abundant form given the presence of a hepatic transfer
protein that prevents it from being excreted in bile with the other isoforms of vitamin E [88]. It is mostly
found in cell membranes, and normal healthy adults have a serum concentration of >11.5 µmol/L [87].
There is, however, no established reference range for children. There have been different approaches
to measuring α-tocopherol concentrations. The most common method for measuring α-tocopherol
levels is based on plasma concentrations using HPLC [85–87,89,90]. Several groups suggest measuring
ratios between α-tocopherol and serum lipid concentrations due to the relationship of plasma lipid
levels and the lipid-soluble nature of vitamin E [87,90,91]. Though plasma levels of α-tocopherol are
strongly associated with lipid concentrations, there is not enough data to establish a standard method
or reference range for these measurements [87,90].

3.3.3. Vitamin E in Critical Illness

Oxidative stress is associated with critical illness and its related complications of multiple organ
failure, sepsis, and mortality [30,83,92]. This is likely due to a combination of factors including
ischemia-reperfusion injury, systemic inflammatory response, fluid shifts in body compartments,
and a host of other physiologic responses to injury or disease. Many neonatal diseases and
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complications, such as respiratory distress syndrome, necrotizing enterocolitis (NEC), chronic lung
disease, ROP, and intraventricular hemorrhage are related to increased oxidative stress as well [93].
However, there are mixed reports of vitamin E status in critical illness. In one study, up to 21% of
adult surgical ICU patients were found to have low plasma concentrations of α-tocopherol [85,87],
while another group found that vitamin E status did not correlate with critical illness [25]. However,
interpretation of vitamin E levels in this setting should take into consideration the redistribution of
cholesterol that occurs as part of the systemic inflammatory response. Conway et al. evaluated the
effect of inflammation on plasma α-tocopherol levels in adult patients undergoing hip arthroplasty [49].
Although there was a significant transient reduction in α-tocopherol levels during the postoperative
period, this change disappeared once adjusted for cholesterol levels. These findings warn against
measuring isolated vitamin E levels in the critically ill and suggest adjusting its ratio to cholesterol
(or total lipids) for a more reliable assessment of vitamin E status. Studies evaluating vitamin E status
in PICU patients are currently lacking, and further investigation is required in order to understand its
specific roles in modulating oxidative damages during critical illness.

3.4. Vitamin K

3.4.1. Introduction

Vitamin K refers to a group of fat-soluble vitamins that include phylloquinone (vitamin K1) and
a collection of structurally similar vitamers called menaquinones (vitamin K2) [94]. Phylloquinone
constitutes the majority of vitamin K found in diet and is present in high amounts in green leafy
vegetables such as kale, spinach, and broccoli [95]. Menaquinones, found in eggs, meat, and fermented
products, can also be synthesized by intestinal bacteria and various organs in the body [96–99].
Vitamin K serves as a co-factor for γ-glutamyl carboxylase, which participates in post-translational
modification and activation of proteins that are essential to coagulation, calcium homeostasis,
and vascular health [94]. Among these are clotting factors II, VII, IX, and X, and anti-coagulant
proteins C and S of the coagulation cascade.

While the major form of vitamin K storage in adults is menaquinone, phylloquinone makes up
most of the hepatic content of vitamin K in neonates and breast milk [100]. Due to the neonate’s poor
vitamin K reserves, as well as the low content of vitamin K in breastmilk, both term and preterm infants
are at risk for vitamin K deficiency and, more seriously, vitamin K deficiency bleeding (VKDB)—a
condition characterized by spontaneous bleeding due to low levels of clotting factors [101,102]. However,
with adequate prophylaxis and formula supplementation, VKDB should be preventable and is now
rare in developed countries.

3.4.2. Assessment

Traditional methods of vitamin K assessment include evaluation of coagulation functions such
as prothrombin time (PT) and international normalized ratio (INR). However, a prolonged PT is not
specific for vitamin K deficiency and is only seen with a large drop in factor II levels [98]. Furthermore,
coagulation function is an especially poor indicator of vitamin K status in infants [103,104]. Neonatal
levels of clotting factors are less than 70% of those in adults and there is a poor correlation between
vitamin K prophylaxis and meaningful changes in coagulation functions.

Direct measurement of plasma phylloquinone is another method to assess vitamin K status.
Plasma phylloquinone, which makes up the majority of circulating vitamin K, has been shown to
correlate well with dietary intake [105,106] and serves as a good indicator of overall vitamin K status in
adults [107]. However, plasma phylloquinone in the normal population varies across a wide range [108].
Additionally, since the majority of phylloquinone in circulation is associated with triglyceride-rich,
very low density lipoprotein (VLDL), assessment of plasma phylloquinone needs to take into account
triglyceride levels [108]. In neonates, plasma phylloquinone is extremely low at birth but shows
a marked increase with oral or intramuscular administration of vitamin K [109]. However, even with
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the depot effect from intramuscular injection of vitamin K, the rise in phylloquinone levels is not
sustainable, as exclusively breastfed infants at six months of age still show significantly lower plasma
phylloquinone concentrations compared to those fed with fortified formula [110].

Another commonly used marker of vitamin K status is protein-induced vitamin K absence-II
(PIVKA-II), a mixture of functionally abnormal and undercarboxylated molecules of prothrombin
that only become detectable in the serum in states of vitamin K deficiency. PIVKA-II is a sensitive
indicator of vitamin K since its levels begin to rise even before any abnormality in PT is detected [102].
With a long half-life of 60 h, PIVKA-II measurement also allows for diagnosing vitamin K deficiency
even after corrective therapies have been initiated [102]. However, the utility of PIVKA-II in infants
is more debatable. Elevated PIVKA-II is found at birth in almost half of term infants and, given the
immature coagulation function in the neonates, the significance of this finding remains unclear [111].
PIVKA-II is commonly measured in many studies that evaluate the efficacy of continuing vitamin
K supplementation for exclusively breast-fed infants. Compared to those receiving intramuscular
prophylaxis at birth and those who are bottle fed, breastfed infants have significantly higher PIVKA-II
levels at 3 months of age [112]. A single dose of either oral or intramuscular injection of vitamin K at
birth is insufficient to suppress PIVKA-II at 3 months of age [113] and additional oral supplementation
beyond the postnatal period is needed in order to prevent biochemical evidence of vitamin K
deficiency [114,115]. However, the current North American guideline for vitamin K prophylaxis
in healthy term infants remains a single dose of 1 mg of phylloquinone by intramuscular injection
at birth [116].

3.4.3. Vitamin K in Critical Illness

In the face of acute inflammation, lipid soluble antioxidants such as vitamin A and E are known
to transiently decrease in part due to a fall in cholesterol and triglyceride concentrations [48,49].
Vitamin K, due to its association with VLDL, shows a linear correlation with plasma triglyceride levels
and thus displays a similar pattern in response to systemic inflammation [108]. Plasma phylloquinone
concentrations therefore should be used with caution when determining the vitamin K status of
patients with critical illness. An important factor that could affect the vitamin K status in critically
ill children is the prolonged use of antibiotics. Prolonged PT, or hypoprothrombinemia, has been
associated with the use of certain antibiotics, especially those containing the N-methyl-thiotetrazole
(NMTT) side chain, such as third-generation cephalosporins [117]. Proposed mechanisms include their
direct inhibitory effect on the γ-carboxylation of vitamin K-dependent clotting factors and disruption
of the intestinal flora that accounts for menaquinone production. Regardless of the true mechanism,
the effect of antibiotics on vitamin K status in critically ill children is most evident in those with
protein energy malnutrition or those on a prolonged course (10 days or more) [118,119]. However,
prophylactic administration of vitamin K in this population does not seem to prevent the development
of hypoprothrombinemia [119].

Vitamin K prophylaxis has been extensively studied in preterm infants in order to prevent the
devastating complications of VKDB [120–125]. Multiple doses and routes of administration have been
investigated, and all of them consistently show a dramatic increase in plasma phylloquinone levels,
possibly due in part to the immature hepatic metabolism of vitamin K in premature infants. PIVKA-II
levels are also low-to-undetectable following prophylaxis, indicating adequate provision of vitamin K
with any route of administration. Compared to intramuscular injection, intravenous prophylaxis is
more likely to produce vitamin K overload in preterm neonates, yet it is less effective in sustaining the
plasma phylloquinone levels [123]. However, for preterm infants whose size precludes intramuscular
injection and in whom enteral feeding is yet to be established, parenteral administration of vitamin K
remains a feasible option for supplementation [121].
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4. Trace Elements

4.1. Iron

4.1.1. Introduction

Iron is an essential element that plays many central, but sometimes conflicting, roles in the body.
It is critical for oxygen transportation and energy generation as a part of the heme molecule and many
metabolic enzymes [38]. On the other hand, its roles in ROS formation through the Fenton reaction
have been theorized as a contributing etiology for a number of detrimental transfusion-associated
neonatal diseases, such as ROP and NEC [126,127]. Adequate iron status is vital for normal neurological
development, as iron deficiency results in defects in myelinogenesis, neurotransmission, and metabolic
activity of the neonatal brain [128]. Additionally, dysregulation of iron storage has been implicated in
hypoxic ischemic encephalopathy and the associated periventricular white matter damage [129,130].
Assessment of iron status in preterm infants and iron supplementation during the first few months of
life in this population have become a cornerstone of neonatal care [131].

Significant differences exist between neonatal iron metabolism and that of older children or adults.
Preterm infants are born with significantly less total body iron content compared to term infants,
mostly due to a shorter period of iron accumulation from the mother [132]. Newborns display high
levels of ferritin due to increased iron loads from continuing erythrocyte degradation in the face of
decreased erythropoiesis [133,134]. While iron metabolism is tightly regulated in adults, iron levels in
premature infants are much more susceptible to environmental influences such as dietary supplements,
phlebotomy, and transfusion. Infants lack the ability to control iron absorption from the gastrointestinal
tract and their iron levels vary in accordance with dietary iron supplementation [132]. Erythrocyte
transfusion in premature infants often results in iron overload [132,135] while phlebotomizing is
a major contributor to iron-deficiency anemia in neonates, as each gram of hemoglobin removed
results in a loss of 3.4 mg of iron [132].

4.1.2. Assessment

In adults, total iron content approximates 35–45 mg/kg, with almost two thirds being incorporated
into erythrocytes [136]. As iron losses through blood, sweat, skin, and intestinal cell sloughing are quite
minimal and its absorption from the gastrointestinal tract is a highly regulated process, the body relies
heavily on turnover from erythrocytes to maintain adequate iron stores. Iron is mostly stored in the
liver and tissue macrophages in the form of intracellular ferritin molecules. In blood, it is transported
from the sites of storage to sites of utilization (e.g., bone marrow and muscle) via transferrin. However,
measuring the plasma concentration of iron does not accurately reflect the total body storage, as only
1/1000 of the total iron content exists in circulating plasma [136].

The zinc protoporphyrin/heme (ZnPP/H) ratio has been regarded as a more sensitive
marker for iron deficiency, although it is not as commonly used as ferritin or transferrin [137].
Since protoporphyrin IX in erythrocytes incorporates zinc in place of iron during times of limited iron
availability, an elevated ratio indicates functional iron deficiency, and has been shown to correlate well
with other markers of iron status [138]. In neonates, ZnPP/H is found to be inversely proportional with
gestational age, indicating more severe iron deficiency in more premature infants [139]. The ZnPP/H
ratio also responds accordingly to changes in the body iron content as it decreases with iron
supplementation and blood transfusion but increases with recombinant erythropoietin treatment
and erythropoiesis [139,140]. However, ZnPP/H also varies with age and only measures functional
iron status. Therefore, it is best used when trended over time and in conjunction with other iron
biomarkers, as well as hematocrit and reticulocyte count.
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4.1.3. Iron in Critical Illness

The body responds to serious infection or critical illness by lowering its iron availability. This is
thought to be a defense mechanism against invading organisms by limiting their iron utilization [141,142].
The “master regulator of iron metabolism”, hepcidin, is upregulated in times of inflammation and
sequesters iron in its ferritin form by inhibiting iron export both in macrophages (sequestering iron)
and in enterocytes (preventing the absorption of dietary iron) [143]. This sequestration of iron is
accountable for the condition known as anemia of inflammation, which is also associated with a rise in
ferritin and decreased iron, transferrin, and transferrin saturation.

Evaluating iron status in critically ill children is a challenge due to a combination of factors,
such as varied transfusion protocols, changing iron storage during development, different iron
supplementation regimens and degrees of absorption, as well as the confounding effects of
inflammation. In a study of 46 patients admitted to the neonatal intensive care unit (NICU), extremely
critical infants—defined as those with 10 points or more on the score for neonatal acute physiology
(SNAP)—had significantly lower serum iron levels than those with a lower SNAP [144]. A similar
study in children in the PICU found an inverse correlation between serum iron levels and the pediatric
risk of mortality (PRISM) score, reinforcing the concept of iron sequestration in critical illness [145].
However, no other indices of iron status were assessed in either of these studies.

Although an in-depth discussion on the varying practices of transfusion in children is beyond the
scope of this review, it is well-known that anemia and the associated risks of transfusion continue to be
major problems faced by children in the ICU [146]. In a prospective observational study of 30 PICUs,
74% of patients were found to be anemic and almost half received transfusions with a wide variation in
transfusion-trigger hemoglobin levels [147]. There is an association between transfusion and increased
mortality, as well as prolonged ventilator dependence and ICU stay. Additionally, phlebotomy is the
major contributor to daily blood loss, and aggressive phlebotomy significantly increases the incidence
of transfusion events. Transfusion is also known to significantly increase the levels of non-transferrin
bound iron (NTBI), especially in preterm infants, and thus theoretically contributes to increased
oxidative injuries in this vulnerable population [148–150]. However, this increase in NTBI is transient
and a clear causative relationship between NTBI and actual ROS-induced organ injuries has not
been established.

4.2. Zinc

4.2.1. Introduction

Zinc is an essential element that serves a wide range of bodily functions such as catalyzing
metabolic reactions, providing structural support for important proteins, and regulating gene
expression [151]. The symptoms of zinc deficiency are diverse and have been well documented
due to its many functions in maintaining the body’s homeostasis. Mild to moderate zinc deficiency
can result in poor appetite, lethargy, recurrent infections, or growth retardation while severe deficiency
manifests as bullous dermatitis, alopecia, diarrhea, hypogonadism in males, neurosensory impairment,
depressed immune function, and poor wound healing [152]. The body has developed a remarkable
ability to conserve zinc during times of low dietary intake, perhaps due to its vital roles in overall
metabolism. Urinary and gastrointestinal excretion of zinc significantly reduces in healthy adults
placed on a low-zinc diet, resulting in a loss of less than 5% of the body’s total zinc content [153,154].

4.2.2. Assessment

Despite being a central component of the ubiquitous zinc-finger domain-containing proteins [155],
there is a very small pool of exchangeable zinc that can respond quickly to both dietary restriction or
supplementation [151]. Serum zinc is a component of this small, exchangeable pool and therefore is
very sensitive to changes in dietary intake. In the bloodstream, zinc is transported with albumin (70%)
and α2-macroglobulin (18%), among other proteins [156]. Plasma zinc declines sharply with severe
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restriction, increases with zinc supplementation, and promptly returns to baseline after cessation of
supplementation [157,158]. Plasma zinc is a good indicator of zinc intake in the absence of systemic
inflammation. However, it does not reflect the total zinc content, which mostly participates in metabolic
activities, and is not readily available for exchange with the environment.

Transportation of zinc across the plasma membrane depends on two major classes of transporters
that work in opposite directions. The Zrt-, Irt-like Protein (ZIP) family of transporters shift zinc from the
cell’s exterior to the cytoplasm while the Zn transporter (ZnT) family move zinc out of the cytoplasm
into other cellular organelles or the extracellular environment [159]. In the intracellular compartment,
zinc is temporarily stored in metallothionein proteins, which exist in four different isoforms and
are present throughout the body, especially in the liver, kidney, intestine, and pancreas [160,161].
These proteins are also likely to participate in the regulation of plasma zinc levels in accordance with
dietary intake. The levels of intestinal metallothionein rise with increased zinc intake, resulting in
reduced uptake into the bloodstream, while decreased pancreatic and renal metallothioneins seen
with dietary deficiency may help to limit fecal and urinary losses [161]. Alkaline phosphatase, one of
the earliest zinc-containing enzymes to be identified, also shows sensitivity to dietary intake and has
sometimes been used as a surrogate marker for zinc status [162].

4.2.3. Zinc in Critical Illness

Acute inflammation induces redistribution of zinc and is responsible for a shift from blood to the
liver, where zinc is utilized for hepatic production of acute phase reactants [163,164]. This results in the
depressed serum zinc levels that accompany conditions such as cancer, infection, post-bone marrow
transplant, or endotoxin challenge [151,165]. In addition to systemic inflammation, failure to meet the
recommendations for dietary intake also contributes to low serum zinc levels seen in PICU patients [21].
Microarray analyses revealed the dysregulation of many genes involved in zinc homeostasis in
children with septic shock [166]. Non-survivors of septic shock display significantly higher levels of
metallothionein and correspondingly lower levels of serum zinc compared to survivors. Plasma zinc
levels showed an inverse correlation with CRP and interleukin (IL)-6, as well as with the degree of
organ failure in another study of critically ill children [167]. Analyses of baseline zinc levels revealed
hypozincemia in more than 80% of the children enrolled in the multicenter Critical Illness Stress
Induced Immune Suppression (CRISIS) Prevention Trial [168]. There was also a correlation between low
serum zinc levels and lymphopenia, defined as lymphocyte count <1000 cells/mm3. This correlation
between zinc levels and lymphocyte count was confirmed in another study of critically ill Brazilian
children, where more than a third of the patients also showed evidence of malnutrition [169].

Plasma zinc levels in VLBW premature infants display a marked decrease during the first 8 weeks
of life, a trend parallel to term infants [170,171]. This most likely is a result of increased metabolic
demands coupled with low tissue reserves, and is evident by the development of symptoms of zinc
deficiency in parenteral nutrition (PN)-dependent premature infants despite being supplemented
with 146% to 195% of the recommended daily zinc intake [172]. Severe deficiency, with zinc
levels <7.65 µmol/L, is still discovered in 6.6% of VLBW infants meeting the European Society for
Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) guidelines for zinc intake [173].
Low birthweight and history of NEC have been associated with an increased risk of developing zinc
deficiency in this vulnerable population.

Zinc supplementation has been extensively studied with the goal of improving immune
modulation and outcomes, especially in serious infection. Although serum zinc levels consistently
increase with various forms of supplementation, these studies and trials have been met with mixed
results. In one of the largest of these trials to date, supplementation with a mixture of zinc, selenium,
glutamine, and metoclopramide (CRISIS prevention trial) showed no reduction in the rate of
nosocomial infections in immunocompetent patients but a possible effect in the small number
of immunocompromised children [174]. Intravenous zinc supplementation in PICU patients is
feasible and increases plasma zinc levels but shows no effect on lymphocyte count [175]. Oral zinc
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supplementation has been attempted in many studies in developing countries with the goal of
shortening the duration of severe pneumonia. Although zinc supplementation at the dose of 20 mg/day
may be beneficial in cases of very severe pneumonia [176], the current evidence does not support this
therapy as an effective adjunct treatment for pediatric lower respiratory tract infections [177–181].

4.3. Selenium

4.3.1. Introduction

Selenium was initially identified as a critical factor in the pathogenesis of Keshan disease, a form
of juvenile cardiomyopathy. It is now recognized to play a key role in regulating immune, reproductive,
neurological, cardiovascular, and endocrine functions [182]. Its main function is to serve as the co-factor
for enzymes involved in protection against oxidative damage, most notably glutathione peroxidase
(GSHpx) [182]. Assessment of selenium functional status therefore usually involves the measurement
of GSHpx activity. Diet provides the most important source of selenium in humans. Its content in soil
significantly impacts the levels of selenium intake across different geographic regions in the world.
Low soil levels of selenium are found in South America, parts of Europe, and a large area across
mainland China, where diseases associated with selenium deficiency were first characterized [183].

4.3.2. Assessment

Selenium in blood is mostly associated with selenoprotein P (40–70%), GSHpx (20–40%),
and albumin (6–10%) [182]. Serum levels reflect short-term storage and represent less than 1% of the
total body selenium content. However, it is the most commonly used parameter to assess selenium
status [184]. Erythrocyte, hair, and nail selenium levels might be more useful indicators of long-term
status, despite certain limitations [183]. GSHpx activity has been commonly measured as an adjunct
assessment of selenium functional status. Studies in adults have found it to be most useful in the
selenium-depleted population, as there is a good correlation between whole blood GSHpx activity
and selenium levels up to 1.27 µmol/L, beyond which selenium concentration continues to rise while
GSHpx activity plateaus [185]. In neonates, serum selenium decreases from birth to 1 year of age,
then steadily increases thereafter, which reflects increased requirements during the neonatal period,
and possible dietary deficiency [186]. Breastfeeding has been shown to consistently result in higher
selenium levels as compared to formula feeding or PN [171,187]. GSHpx activity, however, can be
influenced by oxygen exposure and shows a very weak correlation with serum selenium in newborn
infants, which limits its applicability, especially in premature neonates on supplemental oxygen [188].

4.3.3. Selenium in Critical Illness

Serum selenium levels are known to decrease with systemic inflammation, most likely as a result
of tissue redistribution rather than true deficiency [182]. Assessment of selenium status in critically ill
children, therefore, has to take into account both the degree of inflammation and the nutritional status.
An inverse correlation between CRP and serum selenium is only accurate in well-nourished children,
while the relationship between nutritional status and serum selenium is best assessed in the absence
of severe inflammation [189]. An examination of children enrolled in the CRISIS prevention trial also
revealed that chronically ill children and those suffering from infection or sepsis are more likely to
have depressed serum selenium levels [168]. Low serum selenium or an increased fraction of reduced
GSHpx has also been associated with increased incidence of multi-organ failure in children admitted
to the PICU [190]. Vice versa, an increase in serum selenium during critical illness has been associated
with decreased ventilator dependence, ICU length of stay, and even mortality [191]. Low serum
selenium and depressed GSHpx are associated with an increased incidence of infections in children
with burn injuries [192]. However, it remains unclear whether low serum selenium directly impacts
clinical outcomes, or whether it is secondary to a higher requirement for selenium and protection
against oxidative stress in more severe illnesses.
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Premature infants, especially those with VLBW, are especially at risk for selenium deficiency.
In Japanese low-birthweight premature infants, the lack of selenium supplementation in formula led to
a steep decline in serum selenium levels, and especially erythrocyte selenium levels, indicating a state
of true deficiency [170]. Furthermore, baseline serum selenium and GSHpx activity both correlate
with birthweight in preterm neonates admitted to the ICU, which highlights the relationship between
selenium status and intrauterine growth [193]. Serum selenium levels measured at 6 weeks were
severely low, and almost half dropped below the detection limit in those who were dependent on PN
and not being given selenium supplementation. Breastmilk proves to be the best source of selenium
for preterm infants compared to formula or PN. However, breastfed preterm infants still fail to match
the serum selenium concentration of term infants at 6 weeks, possibly as a result of lower total
selenium storage at birth due to shorter gestation and lower selenium transfer from the mother [187].
There is also evidence that serum selenium concentrations at 1 month of age inversely correlate with
oxygen-dependent days as well as the incidence of chronic lung disease in VLBW infants admitted to
the ICU [194]. In this population, GSHpx activity shows a poor correlation with selenium levels and is
less useful in the assessment of selenium status.

Selenium supplementation has been extensively studied in critically ill adults with mixed
results [182]. Supplementation of critically ill children with selenium as a part of the CRISIS prevention
trial has not found an advantage in reducing the rate of nosocomial infection [174]. In neonates,
selenium supplementation has gained attention mostly in preterm infants due to the lack of selenium
in PN and their poor selenium storage as mentioned above. Parenteral selenium supplementation
at the dose of 1.34 µg/kg per day is insufficient to raise the serum selenium levels in PN-dependent
low-birthweight infants [195]. Parenteral selenium supplementation at the dose of 3 µg/kg per day
maintains the serum levels but still fails to reach the levels seen in breastfed term infants [196].
It is interesting to note that there is a trend toward earlier recovery from bronchopulmonary dysplasia
(BPD) and a lower incidence of sepsis in these two studies, although the low numbers of participants
were insufficient to power these analyses. Alternatively, oral selenium supplementation with 5 or
10 µg daily can also raise serum selenium levels in VLBW premature infants [197,198]. Selenium
supplementation at the dose of 10 µg/day results in a lower incidence of sepsis, but no difference
in all-cause mortality. Selenium supplementation, therefore, might be useful in selenium-depleted
VLBW neonates in the prevention of severe infection. However, its utility beyond this clinical scenario
remains unproven.

4.4. Copper

4.4.1. Introduction

Copper is the essential co-factor for enzymes involved in the electron transport chain,
neurotransmitter synthesis, protection against oxidative injuries, and iron transportation [199].
As a result, copper deficiency results in a series of characteristic hematologic and neurologic
disorders. In infants, symptoms of copper deficiency include psychomotor retardation, neutropenia,
iron therapy-resistant sideroblastic anemia, hepatosplenomegaly, and osteopathic changes among
others [199].

4.4.2. Assessment

Copper is mostly stored in the liver, which accounts for almost 50% of the total copper content in
the newborn [199]. More than 95% of the copper in circulation is carried in ceruloplasmin, a ferroxidase
enzyme that is synthesized in the liver and also plays a key role in iron metabolism [200]. Measurement
of serum copper and ceruloplasmin is the most common method to assess for copper status, despite
ceruloplasmin being a positive acute phase reactant. Additional assessment of copper status can
also be achieved by measuring the activity of erythrocyte copper-zinc superoxide dismutase (SOD),
which has been shown to be a sensitive indicator of copper functional status [201]. In infants, serum
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concentrations of copper and ceruloplasmin gradually increase in the postnatal period, reaching adult
levels between 1 and 6 years of age [199,202]. Interestingly, there seems to be no correlation between
the type of enteral feeding and serum copper levels [171]. There is, however, an inverse relationship
between enteral zinc supplementation and serum markers of copper status, possibly as a result of the
inhibitory effects of enteral zinc on copper absorption [203–205].

4.4.3. Copper in Critical Illness

Copper levels are expected to rise in the face of systemic inflammation or infection since
ceruloplasmin is a positive acute phase reactant. However, the increase in serum copper levels
did not achieve statistical significance as compared to healthy controls in retrospective reviews of
critically ill children and neonates admitted to a PICU and NICU, respectively [144,145]. Premature
infants have significantly lower cord blood ceruloplasmin levels compared to term infants due to
a marked acceleration in copper deposition in the fetus during the third trimester of pregnancy [198].
The ceruloplasmin levels continue to rise through the postnatal period and bear no relationship
with the type of enteral feeding, or whether the infant was fed breastmilk or formula [206].
Interestingly, the erythrocyte SOD in VLBW infants does show a correlation with dietary copper
intake and thus could be a more sensitive method to assess for functional copper status in this
population [207]. The reduction in hepatobiliary flow, which constitutes the main route for copper
excretion, results in a further increase in the serum concentrations of copper and ceruloplasmin in
critically ill or PN-dependent VLBW infants [208]. Copper supplementation in premature infants
remains controversial, as oral supplementation is an ineffective method to raise serum copper levels
and the benefits of such therapy are still unproven [209,210].

5. Conclusions

Assessment of the micronutrient status in children presents a diagnostic challenge due to various
reasons, including age-dependent metabolic demands, susceptibility to environmental influences,
and changes in feeding methods and dietary intake among others. Plasma or serum levels of
micronutrients are commonly measured, although they rarely reflect the total body storage and are
strongly affected by tissue redistribution, especially in the setting of systemic inflammation or infection.
Even though well-defined reference ranges exist for micronutrients, careful interpretation in the setting
of critical illness is strongly advised. Micronutrient status in critically ill children should take into
consideration both the presence of other inflammatory biomarkers, and the duration of inflammation.
In addition, functional assessments of micronutrients by measuring their associated enzymes’ activities
can provide a more accurate tool to evaluate their true status in children with critical illness. However,
with the exception of certain micronutrients such as vitamin D, iron, and zinc, there remains a paucity of
data on their status in infants or children admitted to the ICU. As long-term micronutrient deficiencies
can lead to serious consequences later in life, recommendations on micronutrient supplements in
neonatal and pediatric critical illness should be pursued based on large-cohort, longitudinal studies.
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