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Abstract: This study analyzed the effects of carbohydrate and glutamine supplementation on salivary
immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of
70% of VO2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8%
maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin
(200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest
(basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours
after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were
performed. Statistical significance was set at p < 0.05. SaO2% reduced when comparing baseline
vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction
of SaO2% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in
pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the
three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia +
Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia
+ Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia
+ Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline
vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration
was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline
vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs.
recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of
hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine,
induced anti-inflammatory responses.

Keywords: supplementation; carbohydrate; hypoxia; physical exercise; glutamine; high altitude;
innate immune response; oral mucosal immunity

1. Introduction

Mucosal immunity, particularly in saliva, is considered the first line of defense against pathogens,
because it contains numerous protective proteins. Some of these, such as salivary immunoglobulins
(Igs), are involved in innate and adaptive immune responses [1]. In addition to Igs, there are also
cytokines, such as interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6, that are used to assess
the response to acute stress, stimulating immune cells, and modulating local inflammation [2,3].
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Recent data suggest that exposure to hypoxia may modulate important aspects of innate immune
responses [4], inflammation [5–7], and metabolism [8,9]. However, this issue has not been fully clarified,
and only a few studies have been conducted under hypoxic conditions with the specific objective of
investigating different immune/inflammatory parameters among humans [10].

It is known that exercise influences mucosal immunity, but the nature of this effect has not
reached a consensus yet [11,12]. Some studies show that acute moderate-intensity exercise can result
in a reduction of immunoglobulin A (IgA) concentration post-exercise; some do not describe any
changes, while others report an increased concentration of IgA [13]. IgA is the most abundant protein
in the antibacterial mucosal and it is considered the best indicator of oral mucosal immunity. Intense
exercise causes a reduction in IgA levels [13] and increases inInterleukin-1 ß (IL-1ß), TNF-α, and IL-6
concentrations [2], resulting in poor performance of the immune function of the mucous membranes,
increasing the incidence of upper respiratory tract infections (URTIs), and the emergence of other
opportunistic diseases [14].

Thus, it is observed that exercise may modulate mucosal immunity under normal atmospheric
pressure, but when exercise takes place in high altitude, it becomes a greater challenge for the body,
since hypoxia and exercise are considered stressors that can act together. Evidence suggests that this
combination may result in a more pronounced impact on the immune function of the oral mucosa and
may trigger an intense immunosuppression [15,16].

On the other hand, studies have analyzed nutritional strategies that are efficient at sea level [17–20]
to help mitigate the effects of exercise at altitude, providing better performance and prevention of
infections [21].

When considering the anti-inflammatory effect of glutamine on stress factors, like exercise,
harsh environments [21], and diseases (cancer, sepsis, burns, trauma) [22], this supplement can
regress inflammation even during long-term exercises performed at sea level. Therefore, glutamine
supplements have been shown to decrease the number of URTIs in athletes by promoting the
production of IgA [23] and maintaining the balance of pro/anti-inflammatory markers [24].

On the other hand, carbohydrate supplements are used as a strategy to reduce the effects caused
by the exercise on the immune system [25], and also contribute to improve performance. The intake
of carbohydrate can significantly alter the immune response to intense exercise by attenuating the
proliferation of lymphocytes, and by modulating cytokine pro/anti-inflammatory markers [26].

It has been shown that carbohydrate and glutamine supplements can be used isolated as a strategy
to reverse the deteriorating mucosal immunity after strenuous exercise at sea level [23,27], however,
the combined effect of both supplements is still not clarified.

In this context, we propose that the nutritional strategies used to prevent immune suppression
after strenuous exercise at sea level can also be effective in hypoxic conditions. Thus, the objective of
this study was to analyze the effect of carbohydrate and glutamine supplementation on oral mucosal
immunity after exercise at a simulated altitude of 4500 m.

2. Methods

2.1. Experimental Design

This was a randomized, double-blind, placebo controlled crossover study and the sample size
was determined using a statistics website from the Australian government [28]. After starting the
clinical study, there were no changes in the methodology.

2.2. Participants

The sample of this study included 15 healthy male volunteers (women were not included in
the sample to avoid the possible influences of female sex hormones) that were physically active
(performing physical activity at least 3x/week for 90 min each session) with the following physiological
and anthropometric characteristics: age: 26.4 ± 3.9 years old; body mass: 73.7 ± 8.7 kg; height:
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1.76 ± 0.02 m; Body Mass Index (BMI): 23.7 ± 2.5 kg/m2; VO2peak: 50.6 ± 5.4 mL/kg/min; maximum
heart rate: 189.9 ± 8.2 beats per minute. Exclusion criteria were defined as: health problems; alterations
in the electrocardiogram (ECG) at rest, stress and clinical evaluations, smoking, use of drugs, alcohol
abuse, use of any medication that could interfere with the study results, and exposure to hypoxia
during the previous six months. Figure 1 is a CONSORT flow diagram [29], explaining the stages
of the randomized study. Initially, 60 volunteers were recruited to take part in the study, however
37 were eliminated based on the exclusion criteria. Of the 23 volunteers remaining, only 15 completed
all the requirements.
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Figure 1. CONSORT flow diagram 2010.

Data were collected at the Interdisciplinary Laboratory for Exercise Physiology (LAIFE), Federal
University of São Paulo (UNIFESP), São Paulo, between December 2014 and July 2015. The study
procedures were approved by the Research Ethics Committee of the Federal University of São Paulo
(Ethical approval code: 69 839/2014) on 4 March 2015 and are in accordance with the guidelines
established by Resolution #466 of the Ministry of Health and the International Declaration of Helsinki.
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2.3. Intervention

The participants came to the laboratory four times, with an interval of six days between each
visit. During the first session, relevant information was presented, which consisted of objectives,
procedures, guidelines for not taking supplements, and only low-intensity exercise. The participants
were randomized into three groups [30] and were asked to sign a consent form. Next, they performed
resting ECG, stress and cardiopulmonary exercise tests. The blinding process occurred in order to
offer supplements and placebos that had the same characteristics of color, consistency, smell, taste,
and presentation. An individual, oblivious of the study, was responsible for delivering the supplements
to the participants every week, so the researches had no contact with the supplements. During the
next three visits, the participants performed three random, blinded exercise sessions:

1. Group Hypoxia (Exercise + Altitude + Placebo): Participants consumed glutamine placebo
supplements during the six days prior to the test (10 g corn starch + 10 g lactose), taken in the
evening. During test day, they performed an exercise session at 70% of VO2peak at a simulated
altitude of 4500 m and were given a carbohydrate placebo supplement (Crystal Light®—Kraft
Foods, Inc. strawberry, Chicago, IL, USA), 200 mL every 20 min during exercise and during
recovery for two hours.

2. Group Hypoxia + CHO (Exercise + Altitude + Carbohydrate): Participants consumed glutamine
placebo supplements during the six days prior to the test (10 g corn starch + 10 g lactose)
taken in the evening. During test day, they performed an exercise session at 70% of VO2peak
at a simulated altitude of 4500 m, and were given carbohydrate supplements (Maltodextrin
strawberry flavor—Probiótica®—Laboratories, Embu das Artes, São Paulo, Brazil), 200 mL at a
concentration of 8% every 20 min during exercise and during recovery for two hours.

3. Group Hypoxia + GLN (Exercise + Altitude + Carbohydrate + Glutamine): Participants consumed
20 g of glutamine (Probiótica®—Laboratories, Embu das Artes, São Paulo, Brazil) in the six days
prior to the test, between 8:00–10:00 p.m. During test day, they performed an exercise session
at 70% of VO2peak at a simulated altitude of 4500 m, and were given carbohydrate supplements
(Maltodextrin strawberry flavor—Probiótica®—Laboratories, Embu das Artes, São Paulo, Brazil),
200 mL at a concentration of 8% every 20 min during exercise and during recovery for two hours.

For all exercise sessions, water intake was ad libitum. However, there was no control of the
ingested volume.

Determination of VO2peak

To determine the VO2peak in normoxic conditions, a test was performed with progressive intensity
on a treadmill (LifeFitness®- 9700HR, Rosemont, IL, USA) with an initial speed of 7 km/h and increase
of 1 km/h every minute until exhaustion (defined as the incapacity to keep up with the speed of
the treadmill for 15 s or until the volunteer requested to stop the test after being encouraged to
continue [31]) The encouragement for the volunteers was similar in all tests and carried out by the
same person. During the test, we used a fixed inclination of 1% to simulate the physical stress of
field tests [32].

Heart rate was monitored with a Polar Vantage NV watch (Polar®, Sark Products, Waltham, MA,
USA), blood pressure was monitored by sphygmomanometer and stethoscope, and perceived exertion
by the Borg scale (6 to 20) [33]. The respiratory parameters were measured by a gas analyzer (Cosmed
Quark PFT model, Albano Laziale, Rome, Italy), pulmonary function (FRC & DLCO, Albano Laziale,
Rome, Italy) was analyzed using a facemask (Hans Rudolph Inc., Shawnee, KS, USA). All calibration
procedures were performed according to the manufacturer’s recommendations.

2.4. Altitude Simulation

A normobaric chamber was used (normobaric chamber CAT—Colorado Altitude
Training™/CAT-12 Air Unit®, Lousiville, CO, USA) to simulate an altitude of 4500 m (changing
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carbon dioxide and oxygen concentrations (equivalent to a barometric pressure of 433 mmHg and a
fraction of inspired oxygen of 13.5% O2)).

2.5. Sessions of Exercise and Recovery

The participants spent the first two hours in the hypoxic chamber at rest and then began to exercise
on a treadmill (LifeFitness®- 9700HR, Rosemont, IL, USA) with a fixed inclination of 1% and intensity
of 70% of VO2peak until exhaustion or up to one hour. After exercising, they remained in the chamber
for two more hours for recovery. Each test was followed by six days of rest, which was considered
long enough to eliminate the effects of hypoxia [34] and supplementation [24]. All exercise session
were performed after an overnight of fasting to avoid possible influences of diet and to maintain a
standardized metabolic condition. Testing began at 7:30 a.m. to avoid circadian influences.

2.6. Hemoglobin O2 Saturation (SaO2%)

During all tests, the SaO2% was monitored by a pulse oximeter on the finger (FingerPulse®,
MD300C202 model, Beijing, China) and assessed during four stages with saliva collection.

2.7. Saliva Collection

The saliva samples were collected using the Salivet method (cylindrical roller bearings that
absorb saliva during the period of a minute) during four moments: immediately before entering the
chamber (baseline), immediately before starting exercise (pre-exercise), immediately after exercise
(post-exercise), and after two hours of recovery (after 2:00). After collection, the sample was put into a
tube and centrifuged at a speed of 600× g for 20 min. Then, a clear fluid specimen was obtained and
stored frozen (−80 ◦C) for analysis.

2.8. Determinants in Saliva

IgA was determined by immunoturbidimetric method using Kits from Labtest® (Lagoa Santa,
MG, Brazil) and cytokines (TNF-α, IL-6, and IL-10) were determined using Milliplex Kits®

(Darmstadt, Germany).
The flow rates of IgA, TNF-α, IL-6, and IL-10 were calculated by multiplying the concentration of

each parameter by salivary flow (mL/min) as described by Usui et al. (2011) [2].

2.9. Statistical Analysis

Data normality was verified by the Shapiro-Wilk test. Descriptive analysis consisted of mean and
standard error. ANOVA for repeated measures followed by post hoc Tukey test verified the interactions
between groups and time, and Cohen’s d was calculated to estimate effect size: 0.20–0.30 = small
effect size; 0.40–0.70 = medium effect size, and ≥0.80 = large effect size. The software Statistics® 7.0
(StatSoft, Inc., Tulsa, OK, USA) was used for the statistical analyzes and the level of significance was
set at p < 0.05.

3. Results

The results are presented in tables and figures. There was no significant difference between groups
Hypoxia, Hypoxia + Carbohydrate, and Hypoxia + Glutamine for SaO2% (F = 2.2, p = 0.119), as shown
in Table 1. However, significant differences were observed regarding time (F = 248.5, p < 0.001). When
comparing the moment of measurement, we found reduction of SaO2% at baseline versus pre-exercise
(p < 0.001) and baseline versus post-exercise (p < 0.001). Additionally, there was reduction at baseline
in relation to after recovery for all three groups (p < 0.01). There was also a reduction of SaO2% in
pre-exercise versus post-exercise (p < 0.001) for the hypoxia group. However, an increase was observed
in pre-exercise compared to recovery for both groups with supplements (p < 0.001), and between
post-exercise and recovery for all groups (p < 0.001). There was significant difference in the interaction
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between the groups and time (F = 5.5, p < 0.001), with an increase in Hypoxia group compared to
Hypoxia + Glutamine group in recovery (p = 0.02).

Table 1. O2 saturation percent (SaO2%).

Condition

Hypoxia Hypoxia + CHO Hypoxia + GLN

SaO2%

Basal 97.13 ± 0.27 97.13 ± 0.21 96.87 ± 0.24

Pre-exercise 85.47 ± 1.35 A 82.40 ± 1.23 A 84.33 ± 1.01 A

Post-exercise 79.67 ± 1.37 AB 81.47 ± 1.02 A 81.53 ± 1.43 A

2 h after 85.40 ± 1.00 AC 89.33 ± 0.46 ABC 90.27 ± 0.55 ABC*

The results of SaO2 (%) were described by mean ± Standard Error (SE). The interactions of group versus time was
Analysis of Variance (ANOVA) for repeated measures followed by Post hoc of Tukey test. The level of significance
was set at p < 0.05. n = 15 volunteers. A statistically significant in relation to basal. B statistically significant in
relation to pre-exercise. C statistically significant in relation to post-exercise. * Statistically significant in relation to
hypoxia condition. Hypoxia + CHO = Hypoxia + carbohydrate and hypoxia + GLN = hypoxia + glutamine.

Figure 2 shows results of time to exhaustion. There were no statistical differences regarding time
to exhaustion between Hypoxia group (27.6 ± 5.46), Hypoxia + Carbohydrate group (29.2 ± 6.49),
and Hypoxia + Glutamine group (23.66 ± 4.95).
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Figure 2. The results of time of exhaustion (min) was described by mean ± Standard Error (SE).
The interaction of group versus time was analyzed by Analysis of Variance (ANOVA) for repeated
measures followed by post hoc of Tukey test. The level of significance was set at p < 0.05. n = 15
volunteers. Hypoxia + CHO = Hypoxia + carbohydrate and hypoxia + GLN = hypoxia + glutamine.

Salivary flow (mL/min) results are presented in Table 2. No differences were observed between
groups (F = 0.78, p = 0.925), but significant difference was found regarding time (F = 7.927, p < 0.001).
There was an increase of salivary flow post-exercise versus recovery (p < 0.001) for the Hypoxia +
Carbohydrate group. In the interaction of groups versus time, there was no significant difference
(F = 0.863, p = 0.524).
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Table 2. Salivary Flow.

Condition

Hypoxia Hypoxia + CHO Hypoxia + GLN

SaO2%

Basal 0.90 ± 0.11 0.89 ± 0.12 0.89 ± 0.09

Pre-exercise 0.88 ± 0.11 0.81 ± 0.10 0.76 ± 0.08

Post-exercise 0.75 ± 0.10 0.76 ± 0.11 0.79 ± 0.13

2 h after 0.92 ± 0.11 1.04 ± 0.14 C 0.85 ± 0.10

The results of Salivary Flow (mL/min) were described by mean ± Standard Errros (SE). The interactions of group
versus time was Analays of Variance (ANOVA) for repeated measures followed by Post hoc of Tukey test. The level
of significance was set at p < 0.05. n = 15 volunteers. C statistically significant in relation to post-exercise. Hypoxia +
CHO = Hypoxia + carbohydrate and hypoxia + GLN = hypoxia + glutamine.

Regarding immunity, we measured IgA and cytokines. The salivary concentration of IgA showed
no difference between groups (F = 0.080, p = 0.923), time (F = 2.578, p = 0.057), and interaction (F = 1.133,
p = 0.347). However, Cohen’s effect size d for the concentration of salivary IgA of pre-exercise versus
post-exercise was 0.9 and pre-exercise versus recovery was 2.27 for the Hypoxia group; for the Hypoxia
+ Carbohydrate group, pre-exercise versus recovery showed effect size d = 1.06, and baseline versus
post-exercise d = 1.9. The Hypoxia + Glutamine group showed effect size d = 2.6 for baseline versus
recovery (Table 3). The Cohen’s effect size d > 0.08 is considered a high effect. IgA secretion rate
presented no differences between groups (F = 0.074, p = 0.929). However, a significant difference was
observed for time (F = 6.462, p < 0.001), and a reduction was found from baseline versus post-exercise
(p < 0.001) for the group Hypoxia + Glutamine. The Hypoxia group showed a reduction of 22.5%
post-exercise compared to baseline, with no statistical difference, but Cohen’s effect size d of 1.58.
There was no interaction of groups versus time (F = 1.262, p = 0.280) (Figure 3).

Table 3. IgA, IL-10, TNF-α e IL-6 Concentration

Condition

Hypoxia Hypoxia + CHO Hypoxia + GLN

IgA

Basal 48.40 ± 2.07 46.47 ± 1.6 49.80 ± 2.27

Pre-exercise 49.93 ± 2.21 50.47 ± 3.30 48.40 ± 1.67

Post-exercise 47.33 ± 3.34 50.80 ± 3.88 45.60 ± 2.02

2 h after 45.07 ± 1.25 46.73 ± 3.70 47.00 ± 2.60

IL-10

Basal 1.11 ± 0.15 1.22 ± 0.16 1.13 ± 0.17

Pre-exercise 1.14 ± 0.17 1.27 ± 0.19 1.25 ± 0.20

Post-exercise 1.08 ± 0.12 1.01 ± 0.13 1.02 ± 0.17

2 h after 1.11 ± 0.16 1.22 ± 0.15 1.24 ± 0.15

TNF-α

Basal 2.06 ± 0.80 2.07 ± 0.69 3.69 ± 1.79

Pre-exercise 2.18 ± 0.67 2.30 ± 0.80 2.74 ± 0.75

Post-exercise 2.02 ± 0.98 1.54 ± 0.62 AB 3.06 ± 2.25

2 h after 1.34 ± 0.44 1.12 ± 0.39 AB 2.03 ± 0.73

IL-6

Basal 1.05 ± 0.26 1.50 ± 0.68 1.42 ± 0.58

Pre-exercise 0.93 ± 0.22 1.57 ± 0.51 1.92 ± 0.63

Post-exercise 0.97 ± 0.30 1.15 ± 0.36 1.26 ± 0.48

2 h after 0.82 ± 0.22 1.12 ± 0.37 1.06 ± 0.37

The results of concentration of Immunoglobulin A (IgA) (mg/dL), Interleukin-10 (IL-10), Tumoral Necrosis Factor-α
(TNF-α) e Interleukin-6 (IL-6), in pg/mL were described by mean ± Standard Error (SE). The interactions of group
versus time was Analaysis of Variance (ANOVA) for repeated measures followed by Post hoc of Tukey test. The level
of significance was set at p < 0.05. n = 15 volunteers. A statistically significant in relation to basal. B statistically
significant in relation to pre-exercise. Hypoxia + CHO = Hypoxia + carbohydrate and hypoxia + GLN = hypoxia
+ glutamine.
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Results related to pro- and anti-inflammatory cytokines are presented in Table 3. Regarding
IL-10 concentration, there was no significant differences between groups (F = 0.148, p = 0.863), time
(F = 0.893, p = 0.447), and interaction (F = 0.487, p = 0.817). Cohen’s effect size d for all comparisons
related to IL-10 was below 0.2. This is considered a small effect size.

Regarding the rate of saliva secretion with IL-10 (Figure 4), there were no significant differences
between the three groups (F = 0.170, p = 0.844), but there was a significant difference in time (F = 6.119,
p < 0.001). Among these differences, there was an increase between post-exercise versus recovery
(p < 0.001) for Hypoxia + Carbohydrate group. There was no interaction for this parameter (F = 0.589,
p = 0.739).

The salivary concentrations of TNF-α (Table 3) showed no difference between the three groups
(F = 0.48, p = 0.624). Regarding time, a reduction was observed (F = 15.88, p < 0.001) from baseline
versus post-exercise (p = 0.001) and after recovery (p < 0.001) for the Hypoxia + Carbohydrate group.
Similarly, a lower concentration was observed in pre-exercise time versus post-exercise (p < 0.001) and
recovery (p < 0.001). There was no interaction of groups versus time (F = 1.61, p = 0.148).

When considering the rate of saliva secretion of TNF-α (Figure 5), there was no significant
difference between the three groups (F = 0.33, p = 0.723). However, there were differences in time
for TNF-α secretion rate (F = 14.63, p < 0.001). Among these differences, we observed a reduction
from baseline versus post-exercise (p < 0.001) for both supplemented groups, and a lower secretion of
baseline compared to recovery (p < 0.001), and pre-exercise versus post-exercise (p < 0.001) for Hypoxia
+ Carbohydrate group. There was no interaction for this parameter (F = 3.01, p = 0.408).

Table 3 shows the salivary concentration of IL-6 and Figure 6 shows the salivary secretion rate
of IL-6. Table 3 and Figure 4 showed no significant differences between groups (F = 0.213, p = 0.809)
and (F = 0.138, p = 0.872), time (F = 3.200, p = 0.02) and (F = 2.555, p = 0.05), and interaction (F = 0.726,
p = 0.629) and (F = 0.600, p = 0.730), respectively.

The ratio of salivary secretion rate of TNF-α/IL-10 is presented in Figure 7 and showed differences
between groups (F = 5.2, p < 0.001), with an elevation of Hypoxia + Carbohydrate versus Hypoxia +
Glutamine (p = 0.01). A significant difference was observed for time (F = 608.0, p < 0.001), and the
reduction was found at baseline versus pre-exercise (p < 0.001), post-exercise (p < 0.001), and recovery
(p < 0.001) in the group Hypoxia + Carbohydrate and Hypoxia + Glutamine. There was interaction
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of groups versus time (F = 4.6, p = 0.001), including an elevation between baseline in Hypoxia group
compared to Hypoxia + Glutamine group (p = 0.01), and baseline in Hypoxia + Carbohydrate group
compared to Hypoxia and Hypoxia + Glutamine group (p = 0.01).
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Figure 7. The results of salivary secretion rate of Tumor necrosis factor- α/Interleukin-10 (TNF-α/IL-10)
was described by mean ± Standard Error (SE). The interaction of group versus time was analyzed by
Analysis of Variance (ANOVA) for repeated measures followed by post hoc of Tukey test. The level of
significance was set at p < 0.05. n = 15 volunteers. # Different in relation to Basal. Hypoxia + CHO =
Hypoxia + carbohydrate and hypoxia + GLN = hypoxia + glutamine.

4. Discussion

The aim of this study was to analyze the effect of carbohydrate and glutamine supplementation
on oral mucosal immunity after exercise at a simulated altitude of 4500 m. The main finding of this
study was that strenuous exercise associated with hypoxia, with or without supplementation, did not
change salivary IgA. Despite the decrease in the pro/anti-inflammatory balance, an anti-inflammatory
response was found in the group with carbohydrate supplementation because of changes in IL-10 and
TNF-α concentrations.

According to several studies conducted at sea level, carbohydrate and/or glutamine
supplementation have shown to be effective on mitigating the stress effects of vigorous exercise
on the immune system. Taking into consideration that the number of people that travel to places of
high altitudes for tourism, work, and sports increases each year, it becomes of great importance to
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elucidate the effects of carbohydrate and/or glutamine supplementation in hypoxic environments on
the oral mucosal immunity, which is considered a practical method to indicate stress. Therefore, in the
future, new interventions may be proposed and designed to minimize the effects of hypoxia among
athletes, travelers, workers, and people chronically exposed to high altitudes.

Regarding results involving SaO2%, the values at baseline were not significantly different for the
groups, since they are in normal oxygen concentration. However, a reduction in SaO2% was found
after two hours of exposure for all groups, proving the efficiency of the hypoxia model used in this
study and confirming the results found in the studies conducted by Tannheimer et al. [35], Mazzeo [14],
and Pomidori et al. [36]. However, after two hours of recovery in hypoxia, SaO2% increased almost
immediately post-exercise, suggesting recovery. However, this was not enough time to restore the
values to baseline levels.

The SaO2% results of the Hypoxia + Carbohydrate group were similar to the group with no
supplementation at baseline, but different after two hours of recovery with an increase in SaO2%
compared to pre-exercise and post-exercise. Such modifications are related to carbohydrate intake,
increasing the concentration of CO2 to a level that stimulates ventilation, thus enhancing blood
oxygenation and reducing the desaturation of hypoxia [37,38]. The Hypoxia + Glutamine group
showed similar changes compared to the Hypoxia group at baseline, although the results were different
after two hours of recovery, showing an increase at pre-exercise, post-exercise, and hypoxic condition.
The reasons for the restoration of SaO2% in the Hypoxia + Glutamine group are not known, but it is
suggested that the increased availability of plasma glutamine may interfere with the central synthesis
of glutamate, an excitatory neurotransmitter that stimulates ventilation [39], and thus contribute to
SaO2% recovery.

Despite not evaluating plasma concentration of glutamine, a previous study with a similar
protocol showed a 65.8% increase of glutamine post-exercise when compared to pre-exercise [24],
reinforcing our hypothesis. Another fact to consider in the Hypoxia + Glutamine group is the combined
action of the two supplements [40], contributing to increased ventilation in different pathways [37,39].

Pilardeau et al. [41] were the first to describe salivary flow in hypoxia; today it is known that
salivary secretion can be affected by neural control of the autonomic nervous system, which indirectly
regulates salivary flow and saliva composition [13]. The stress of intense exercise added to hypoxic
environment stimulates the sympathetic nervous system, contracting blood vessels in salivary glands,
which leads to a reduction in flow rate [27]. Our results are partly explained by these mechanisms,
showing that salivary flow in hypoxic condition reduced 17% from baseline. However, the intake of
both supplements appears to alleviate this effect, since the Hypoxia + Carbohydrate group showed
a reduction of only 14% in salivary flow post-exercise compared to baseline. Interestingly, after two
hours of recovery, supplementation with carbohydrates was able to promote a significant increase of
27% in flow compared to the end of the exercise. Bishop et al. [27] analyzed participants in normoxic
conditions after two hours of riding a bicycle at 60% of VO2max and found that consumption of
carbohydrates (60 gL) increased salivary flow one hour after exercise, probably due to a reduction of
sympathetic/parasympathetic balance [1].

The changes in salivary flow during and after exercise directly affect the concentration of salivary
IgA [13,42], however, our results showed that the stimulation of salivary flow followed by the stress
of exercise and hypoxia was not able to promote changes of total IgA concentration in any of the
conditions. These results are similar to a study by Svendsen et al. [43] that analyzed participants
exposed to hypobaric hypoxia conditions equivalent to 2000 m during 75 min of cycling at 70% VO2peak.
This finding may have occurred due to the high intensity of exercise and its immunosuppressive
function, preventing the elevation of IgA [44], or because the reduced time of exposure to hypoxia was
not enough to modify secretion of IgA [1].

The IgA secretion rate in the Hypoxic group was reduced by 22.5% post-exercise compared
to baseline; statistically this reduction was not significant, but it can be physiologically important,
since IgA is the most abundant protection protein in saliva [1]. The lower level of IgA secretion
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indicates a specific reduction in the synthesis and/or secretion of salivary IgA in response to stress
created by intense exercise [18,45] coupled with hypoxia. When supplements were taken by the
participants, this reduction was slightly smaller (i.e., 10.6% in the Hypoxia + Carbohydrate group
and 15.5% in the Hypoxia + Glutamine group). Our findings are similar to the study conducted by
Krzywkowski et al. [45], involving normoxia with glutamine supplementation (17.5 g), which showed
the same tendency of exercise (two hours of bicycle exercise at 75% VO2max) to reduce salivary IgA
during and up to two hours after exercise.

The production of IgA in saliva may be mediated by several factors, such as stress hormones,
nutritional factors, circadian cycle, hydration, alcohol intake, and also cytokines [1,2,13,46]. The effects
of exercise on the production of cytokines in saliva are not well understood [2], especially in
hypoxia [21]. Therefore, the present study was the first to investigate the effect of carbohydrate
and glutamine supplementation on concentration of cytokines after exercise in hypoxic condition.

The concentration of IL-10 and its secretion rates were not different when comparing time for
any of the groups. However, despite the secretion rate being slightly lower in post-exercise when
compared to baseline, we found that supplementation with carbohydrates was able to increase IL-10
after two hours of recovery, showing that the anti-inflammatory role of carbohydrate [46] can also be
observed in saliva, thereby contributing to the maintenance of homeostasis at this site and helping
to preserve mucosal immune responses [47]. We found similar results in the Hypoxia + Glutamine
group, suggesting that, despite the increase of IL-10 by approximately 25% post-exercise compared to
baseline, glutamine supplementation was not able to modulate the pro/anti-inflammatory balance by
modification of IL-10.

The concentration and rate of secretion of TNF-α did not change in the Hypoxia group, however,
in normoxic conditions, an increase of TNF-α was found in saliva during and after intense exercise [2],
and a reduction after one-hour of recovery [48]. When assessing the Hypoxia + Carbohydrate group,
TNF-α decreased after exercise and recovery, suggesting that the increase of IL-10 in saliva, mediated
by supplementation with carbohydrates, may be responsible for a decrease in TNF-α secretion rate,
similar to what occurs in other tissues, and enhancing the anti-inflammatory role of carbohydrates.
In fact, supplementation with carbohydrates was able to attenuate the inflammatory process promoted
by exercise and hypoxia, and modulated the balance between pro- and anti-inflammatory cytokines in
saliva, as in normoxic conditions [49].

Regarding glutamine supplementation, we observed a decrease in TNF-α secretion rate
immediately after exercise, and the reduction was more evident at the end of the second hour of
recovery. These results demonstrated the anti-inflammatory role of glutamine in saliva, which has
been observed in other tissues, directing the pro-inflammatory/anti-inflammatory balance toward an
anti-inflammatory response [21,22].

The salivary concentration and secretion rate of IL-6 did not change in any of the groups. There
are no results in the literature showing the effect of exercise on salivary IL-6 in hypoxia. Our results
contradict the findings of Usui et al. [2], who observed an increase of IL-6 levels in saliva in normoxic
conditions during and after exercise at 75% of VO2max, including 80 min post-exercise. Thus, we cannot
suggest what mechanisms are responsible for regulating IL-6 in hypoxia, but they are probably different
from those in normoxic condition (i.e., maintaining homeostasis of blood and hepatic glucose and
stimulating the release of C Reactive Protein (CRP). We believe this finding is a reflection of the
increased use of IL-6 in its hematopoietic purpose [50,51] because it causes almost immediate reduction
of SaO2% and deterioration of O2 due to hypoxia.

5. Conclusions

We conclude that five hours in hypoxia associated with strenuous exercise was not enough to
promote a change in salivary IgA. Supplementation with carbohydrates and glutamine produced
changes in the pro/anti-inflammatory balance, stimulating an inflammatory response in oral mucosa.
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However, our results should be interpreted with caution in regards to their generalizability because
we only assessed male subjects.
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