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Abstract: Recent studies have shown that rambutan peel phenolic (RPP) extract demonstrate
high antioxidant and antiglycation activities in vitro and in vivo. This study further evaluated
the anti-diabetic activity of RPP in a mouse model of Type II diabetes induced by streptozotocin
combined with high-fat diet. Results showed that RPP increased the body weight and reduced the
fasting blood glucose level of the diabetic mice. RPP significantly reduced the serum levels of total
cholesterol, triglyceride, creatinine, and glycated serum protein in diabetic mice in a dose-dependent
manner. Glycogen content in mice liver was recovered by RPP, which further increased the activity of
superoxide dismutase and glutathione peroxidase and reduced lipid peroxidation in diabetic mice.
Histological analysis showed that RPP effectively protected the tissue structure of the liver, kidney,
and pancreas. In addition, RPP decreased the mesangial index and inhibited the expression of TGF-β
in the kidney of diabetic mice.
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1. Introduction

Diabetes mellitus (DM) is currently a major health problem worldwide. DM is the most common
chronic disease characterized by elevated blood glucose levels [1]. Long-term exposure to high
blood glucose levels results in production of reactive oxygen species. Oxidative stress is one of the
main mechanisms of progression of diabetes and actively leads to cellular injury that precedes the
onset of many diabetic complications [2]. Moreover, hyperglycemia is involved in the development
of microvascular and macrovascular complications, which are the major causes of diabetes-related
morbidity and mortality [3].

Researchers are developing a number of oral medicines to treat diabetes. However, these drugs
demonstrate significant side effects, including weight gain and gastrointestinal distress. Therefore,
finding new potential natural products that prevent DM is necessary [4]. Phenolic compounds are
important secondary plant metabolites that determine the sensory and nutritional qualities of fruits,
vegetables, and other plant products. Phenolics have received attention in recent years because of their
antioxidant [5], antimicrobial [6], antimelanogenesis [7], hepatoprotective [8] and anti-inflammatory [9]
effects. Studies suggest that a large number of phenolic extracts from plants, including mulberry
leaf [10], Pistachia lentiscus L. leaves from Algeria [11], Astilboides tabularis [12], mate tea [13], Korean
sorghum [14], Pongamia pinnata Pierreseeds [15], and Pseuduvaria monticola bark [16], demonstrate
anti-diabetic properties.

We previously extracted crude rambutan phenolic peel (RPP) extract through microwave-assisted
extraction, wherein the operating parameters were optimized. Our study showed that RPP possesses
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a potent free radical scavenging activity due to its phenolic contents [17]. Crude RPP extracts were
purified using NKA-9 resin adsorption technology. After purification, phenolic content, along with
some important phenolic compounds, such as geraniin (122.18 mg/g dry weight (dw)), procyanidin
trimers (4.06 mg/g dw), procyanidin dimmers (11.60 mg/g dw), corilagin (7.56 mg/g dw), catechin
(9.80 mg/g dw), and ellagic acid (9.31 mg/g dw), were enriched; additionally, the antioxidant and
antiglycation activity in vitro were increased [18]. Purified RPP exerts high inhibitory oxidative stress
on H2O2-induced HepG2 cells and anti-aging activity induced by D-galactose in vivo. Moreover, RPP
effectively provides protection against D-gal-induced liver and kidney tissue damage in mice [19].

On the basis of the above results, we speculated that purified RPP can reduce blood glucose
levels. However, no study has been conducted to scientifically prove the anti-diabetic activity of RPP.
This study thus aims to demonstrate the anti-diabetic activity of RPP in animal models of diabetes
induced by streptozotocin (STZ) combined with high-fat diet.

2. Materials and Methods

2.1. Materials and Reagents

Purified RPP sample was prepared as previously described [18]. High-fat diets (45% fat) were
purchased from Research Diets Inc. (New Brunswich, NJ, USA). Dimethylbiguanide hydrochloride
(DMBG) was purchased from Sino-American Shanghai Squibb Pharmaceuticals Ltd. (Shanghai, China).
STZ was purchased from Sigma-Aldrich (St. Louis, MO, USA). Commercial assay kits for
creatinine (CRE), glycated serum protein (GSP), total cholesterol (TC), total triglycerides (TG),
total protein (TP), hepatic glycogen (GC), superoxide dismutase (SOD), glutathione peroxidase
(GSH-Px), and malonaldehyde (MDA) were obtained from Nanjing Jiancheng Biological Engineering
Institute Co., Ltd. (Nanjing, China).

2.2. Experimental Animals

Male Institute of Cancer Research (ICR) mice (weighing 18–22 g) were provided by the Kunming
Medical University Animal Research Center (Kunming, China). All mice were acclimatized for 7 days
to the conditions of the animal room (ambient temperature of 20–25 ◦C and a 12 h-dark/12 h-light
cycle) and provided with free access to standard pellet diets and water. All animal experiments were
performed in strict accordance with the animal experimentation guidelines approved by the Animal
Care and Use Committee of our Institute.

2.3. Experimental Design

2.3.1. Modeling Method

After a week-long adaptive fitness program, all mice were fasted for 6 h, and eight mice were
randomly selected as members of the normal group (NG). The NG mice were injected with 0.06 mL
of saline, whereas the other mice were intraperitoneally injected with 0.06 mL of STZ at a dose of
50 mg/kg body weight (bw). This treatment was repeated at same time for 3 days. Afterward, the
ordinary feed was changed into high-fat diet. The mice fed with high-fat diet were followed up for
14 days. The fasting blood glucose level of these mice was measured, and those showing a fasting
blood glucose level higher than 11.1 mmol/L were considered hyperglycemic.

The hyperglycemic mice were randomly divided into five groups, each group consisting of eight
animals; these groups were the positive control group (PG, 10 mg/kg bw DMBG taken orally daily),
Model group (MG, saline taken orally daily), low-dose group (RPP-L, 50 mg/kg bw RPP taken orally
daily), middle-dose group (RPP-M, 100 mg/kg bw RPP taken orally daily), and high-dose group
(RPP-H, 200 mg/kg bw RPP taken orally daily). The mice were weighed to adjust the oral doses
according to changes in their weight. The fasting blood glucose level of the mice was measured from
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the tail veins by using a glucometer (Bayer HealthCare LLC, Bayer, IN, USA), and the readings were
recorded weekly for 5 weeks.

2.3.2. Biochemical Assays

Serum was collected from blood via centrifugation at 2000 r/min for 15 min at a temperature
below 5 ◦C. Livers, kidneys, and pancreas were collected, and floating blood was washed out with
ice-cold physiological saline.

Serum concentrations of CRE, GSP, TC, and TG were measured on an automatic biochemical
analyzer (RaytoChemray 240, Shenzhen Rayto Co., Ltd., Shenzhen, China) by using commercial kits.

HG concentration was measured using a colorimetric method, whereas TP of liver was measured
using the Bradford method. The levels of hepatic SOD, GSH-Px, and MDA were determined using
commercial assay kits. All of the experimental procedures were performed strictly in accordance with
the kit instructions.

2.3.3. Histopathological and Immunohistochemical Analyses of Tissues

Histopathological Analysis of Tissues

Tissues samples were obtained from liver, kidney, and pancreas, fixed in 10% buffered formalin,
dehydrated in alcohol, and embedded in paraffin. Paraffin sections (2–3 µm thick) were cut and
stained with hematoxylin-eosin (HE). Histopathological changes in the liver, kidney, and pancreas
were visualized using an Olympus DP70 Digital Camera System at 200× magnification.

The 2–3 µm-thick paraffin sections of the kidney were cut and stained with Periodic Acid-Schiff
(PAS). The condition of the lesion in glomeruli and interstitial tubules was observed under an Olympus
DP70 Digital Camera System at 200× magnification.

Immunohistochemical Analysis of Tissues

Paraffin sections (2–3 µm thick) of kidney were blocked with 5% BSA solution after the process
of microwave repair antigen. Subsequently, 100 µL of transforming growth factor-β1 (TGF-β1, 1:100)
antibody was added into each slice at 4 ◦C overnight. After washing with tap water several times,
100 µL of sheep anti-mouse/rabbit IgG polymer was dropped on each slice, which was placed at
room temperature for 15 min and then washed with phosphate buffer saline three times for 3 min
each round. After being stained with diaminobenzidine, the slices were encapsulated in neutral resin
film following conventional dewatering. The integral optical density of TGF-β1expression region was
visualized with an Olympus DP70 Digital Camera System at 200× magnification and then measured
using an image-pro Insight analysis software (Media cybernetics Inc., Rockville, MD, USA).

2.4. Statistical Analysis

Experimental data were presented as means ± SD (n = 8). Statistical significance of the difference
between groups was detected using SPSS19.0 software (SPSS Inc., Chicago, IL, USA). p Values of <0.05
indicated statistical significance.

3. Results and Discussion

STZ produces oxygen free radicals in the body, resulting in selective pancreatic islet β-cell
cytotoxicity and increased blood glucose level. Low-dose STZ induced metabolic characteristics of the
human Type II diabetic mellitus (T2DM) [10]. Researchers have developed an animal model fed with
low-dose STZ combined with high-fat diet to evaluate the effects of natural products on T2DM [20].
This model is potentially useful in studying the anti-diabetic properties of natural compounds of plant
origin. In this study, mice with T2DM induced by high-fat diet combined with low-dose STZ injection
were used to evaluate the anti-diabetic activity of RPP.
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3.1. Body Weight

STZ-induced diabetes is characterized by a severe loss in body weight resulting from increased
muscle destruction or degradation of structural proteins [21]. Compared with the body weight of
NG mice, that of MG mice significantly decreased by 19.17% (Figure 1). When the diabetic mice
were treated with RPP, their body weights improved. The body weight of RPP-M mice did not differ
from that of PG mice (p > 0.05), the body weight of which was significantly higher than that of MG
mice (p < 0.05). The body weight of RPP-H group did not differ with that of NG group (p < 0.05).
These results indicated that RPP prevents body weight loss by controlling muscle wasting. Our results
are consistent with those of a previous study [21].
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Figure 1. Effect of rambutan peel phenolic (RPP) on body weight of mice after 5 weeks. NG: Normal
group; MG: streptozotocin (STZ), Model group; PG: STZ, DMBG 10 mg/kg; RPP-L: STZ, 50 mg/kg
RPP; RPP-M: STZ, 100 mg/kg RPP; RPP-H: STZ, 200 mg/kg RPP. Different lower-case letters indicate
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3.2. Fasting Blood Glucose (FBG)

High FBG is a key indicator in diabetic mice. After STZ injection, FBG levels in MG mice were
significantly higher than those in NG mice (p < 0.05) (Figure 2), indicating that a T2DM model was
successfully built through STZ injection. These results suggest that RPP effectively inhibited the
increase in FBG in T2DM, and the inhibitory activity increased with increased RPP concentration.
RPP-H had stronger inhibitory ability than PG, indicating that RPP noticeably inhibited FBG in diabetic
mice. Studies have shown that the products demonstrating antioxidant and antiglycation activities
effectively inhibit the increase in FBG. Mehenni et al. studied that gallic acid, catechin and ellagic
acid in Pistacia lentiscus were key compositions to regulate glucose in diabetic rat [22]. Thus, as we
previously reported [17–19], RPP were rich in catechin and ellagic acid, so the FBG inhibitory activity
of RPP was due to the phenolic compounds with high antioxidant and antiglycation activities.
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Figure 2. Effect of RPP on fast blood glucose level of mice. NG: Normal group; MG: STZ, Model group;
PG: STZ, DMBG 10 mg/kg; RPP-L: STZ, 50 mg/kg RPP; RPP-M: STZ, 100 mg/kg RPP; RPP-H: STZ,
200 mg/kg RPP.

3.3. Serum Biochemical Indicators

TC refers to the sum of all lipoprotein cholesterols in the blood and is an important indicator in
analysis of blood lipid in clinical practice. The high level of cholesterol can lead to atherosclerosis,
diabetes, and symptoms of kidney disease. TG is a type of fatty acid molecule consisting of long-chain
fatty acids and glycerol [23]. Part of the sugar can be converted into TG by the liver in vivo. Moreover,
high levels of TG can lead to high blood pressure, pancreatitis, in aggravated hepatitis, or other injuries.
As shown in Table 1, TC and TG levels in STZ-induced MG mice considerably increased compared
with the NG level (p < 0.05). The serum TC and TG levels in RPP groups significantly decreased in
a dose-dependent manner. The TC and TG levels in RPP-H mice did not significantly differ from those
in NG mice (p > 0.05).

Table 1. Effect of RPP on biochemical indicators of mice serum.

Group TC (mmol/L) TG (mmol/L) CRE (µmol/L) GSP (mmol/L)

NG 5.90 ± 0.31d 1.43 ± 0.11c 10.62 ± 1.53d 7.14 ± 0.43d
MG 8.57 ± 0.43a 2.27 ± 0.13a 22.78 ± 1.96a 14.08 ± 1.12a
PG 6.28 ± 0.26c 1.53 ± 0.09c 13.93 ± 0.98c 7.93 ± 0.62d

RPP-L 7.12 ± 0.11bc 1.74 ± 0.11b 20.50 ± 2.04a 13.14 ± 0.86b
RPP-M 6.37 ± 0.35c 1.54 ± 0.10c 16.60 ± 1.14b 10.65 ± 0.91bc
RPP-H 6.01 ± 0.26cd 1.46 ± 0.12c 12.09 ± 0.85c 8.72 ± 0.78c

NG: Normal group; MG: STZ, Model group; PG: STZ, DMBG 10 mg/kg; RPP-L: STZ, 50 mg/kg RPP; RPP-M: STZ,
100 mg/kg RPP; RPP-H: STZ, 200 mg/kg RPP; TC: total cholesterol, TG: total triglycerides; CRE: creatinine; GSP:
glycated serum protein. Different lower-case letters indicate significant differences (p < 0.05).

CRE is an indicator of the toxin content of the blood and an important indicator of diabetic
nephropathy [24]. As shown in Table 1, CRE content significantly increased (p < 0.05) in MG group
and approximately twice that in NG mice. RPP obviously dose-dependently inhibited the increase in
CRE content in diabetic mice. Relative to the CRE level in MG mice, that in RPP-M and RPP-H mice
decreased by 27.13% and 46.93%, respectively.

GSP is produced during plasma protein and glucose enzyme saccharification. High levels of
blood glucose lead to the production of high GSP levels in a positive correlated manner. GSP levels
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reflect the average blood glucose levels within 1–3 weeks before [25]. Table 1 shows that the GSP
contents in MG mice were significantly higher than those in NG mice (p < 0.05), which proved high
blood glucose increased the production of GSP in mice. RPP and DMBG significantly reduced the
GSP level in STZ-induced diabetic mice (p < 0.05) in a dose-dependent manner. Compared with
that in MG mice, the GSP levels in RPP-M, RPP-L, and RPP-H mice decreased by 6.68%, 24.36%,
and 38.07%, respectively. The change of GSP content in the serum of diabetic mice after treatment with
RPP was same to the change of FBG (Figure 2). The activity of RPP was due to the high antioxidant
and antiglycation activities [17–19]. Our results were similar to the previous study [24].

3.4. Biochemical Indicators in the Liver

TP level decreased in the liver of diabetic mice (Table 2). Compared with that in NG mice,
the protein level in MG mice decreased by 23.53% (p < 0.05). Protein level in the liver of diabetic
mice improved after treatment with RPP. The protein levels in RPP-M, RPP-H, and PG mice did
not significantly differ from that in NG mice (p > 0.05). This result was obtained due to the distinct
metabolic alterations that led to a negative nitrogen balance, enhancing proteolysis and reducing
protein synthesis [26].

Table 2. Effect of RPP on biochemical indicators in mice liver.

Group TP (g/g Liver) GC (mg/g Liver) SOD (U/mg) GSH-Px (U/mg) MDA (nmol/mg)

NG 0.17 ± 0.01a 32.37 ± 6.15a 316.19 ± 24.06a 105.11 ± 9.02a 1.18 ± 0.18c
MG 0.13 ± 0.02b 16.58 ± 4.76c 214.26 ± 17.10d 67.13 ± 7.00b 1.74 ± 0.37a
PG 0.16 ± 0.01a 27.70 ± 3.92b 305.60 ± 31.74a 101.58 ± 12.10a 1.36 ± 0.07b

RPP-L 0.13 ± 0.01b 19.62 ± 4.11bc 256.82 ± 31.63c 85.18 ± 13.64ab 1.70 ± 0.16a
RPP-M 0.16 ± 0.01a 22.22 ± 5.26b 263.69 ± 25.11bc 97.76 ± 6.30a 1.45 ± 0.24b
RPP-H 0.16 ± 0.01a 25.05 ± 4.71b 297.65 ± 23.29b 101.83 ± 10.60a 1.17 ± 0.16c

NG: Normal group; MG: STZ, Model group; PG: STZ, DMBG 10 mg/kg; RPP-L: STZ, 50 mg/kg RPP; RPP-M: STZ,
100 mg/kg RPP; RPP-H: STZ, 200 mg/kg RPP; TP: total protein; GC: hepatic glycogen; SOD: superoxide dismutase;
GSH-Px: glutathione peroxidase; MDA: malonaldehyde. Different lower-case letters indicate significant differences
(p < 0.05).

GC is a type of macromolecular polysaccharide composed of glucose units and is mainly stored in
the liver and muscles as standby energy. GC level in various tissues directly reflects insulin activity [27].
In this study, the GC content of the liver of the diabetic mice was markedly reduced. As shown in
Table 2, the GC level in MG mice significantly decreased by 48.78% (p < 0.05) compared with that in
NG mice. RPP dose-dependently increased the GC level in the liver of diabetic rats. The increase in
GC levels under the three RPP doses did not significant differ (p > 0.05). RPP-M and RPP-H had no
significant difference with PG mice (p > 0.05).

Oxidative stress is one of the main mechanisms of progression of diabetes and actively leads to
cellular injury that can precede the onset of many diabetic complications [28]. Long-term exposure
to high glucose levels results in increased production of reactive oxygen species. Oxidative stress
is generally considered a causative factor in the development of insulin resistance and diabetic
complications .This study further evaluated the protective effect of RPP on antioxidant enzyme and
liver lipid peroxide in mice.

SOD and GSH-Px enzymes are important in enzymatic defense system in vivo. SOD converts
superoxide radicals into hydrogen peroxide, whereas GSH-Px converts hydrogen peroxide into other
compounds in the presence of glutathione [29]. Excessive production of reactive oxygen in the serum of
diabetic animals is possibly due to the observed marked reduction in SOD and GSH-Px concentrations.
As shown in Table 2, SOD activity in MG mice decreased by 32.24% compared with that in NG mice.
This result suggests that SOD activity is disrupted in diabetic mice. The SOD activity in PG mice did
not significantly differ with that in NG mice (p > 0.05). RPP increased the SOD activity, which was
significantly higher in RPP-H mice than in MG mice (p < 0.05), reaching 94.14% that of NG. The GSH-Px
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activity in MG mice decreased significantly compared with that in NG mice (p < 0.05). RPP recovered the
GSH-Px activity. At the low dose of RPP, the GSH-Px activity in RPP-L did not significantly differ with
that in NG (p > 0.05). Our previous studies showed RPP had high antioxidant activities and protected
antioxidant enzymes of D-gal-induced aging mice in vivo [17–19]. Therefore, the high antioxidant
activity of RPP was a mechanism to protect the antioxidant enzyme activity from diabetic animals.

STZ induces severe oxidative stress in diabetic animals and possibly induces the peroxidation
of polyunsaturated fatty acids, leading to the formation of MDA, which is a by-product of lipid
peroxidation [30]. In this study, MDA content of MG mice significantly increased by 47.46% compared
with that in NG mice. RPP inhibited the increase in MDA content in a dose-dependent manner.
The MDA levels in RPP-H did not significantly differ from that in NG (p > 0.05). The result was similar
to previous study [22]. It indicated that the antioxidant activity of RPP inhibited lipid peroxide in the
liver of diabetic animals.

Regarding the literature available, catechin [31], geraniin [31], procyanidin [32] and ellagic
acid [33] have been related to anti-diabetic activity, both in vivo and in vitro, and with the involvement
of different action mechanisms. Our previous studies showed geraniin, procyanidin, catechin,
and ellagic acid had high concentrations in RPP [19]. Therefore, anti-diabetic activity of RPP was due
to its phenolic compounds.

4. Histopathology

4.1. HE staining of Liver

Figure 3a shows the normal hepatic architecture of the mice. The hepatocytes showed distinct cell
borders, and the central vein showed a round nucleus, which is surrounded by abundant cytoplasm.
In MG mice (Figure 3b), the STZ-induced diabetic mice showed mussy hepatic cords. The hepatic
nucleus presented serious pathological damage. The intercellular space increased, and deterioration
in terms of size and shape were serious. Other damages, including focal necrosis, congestion in
central vein, and infiltration of lymphocytes, were also observed. The PG group (Figure 3c) showed
a normal hepatic architecture, and changes in size and shape of the hepatic cells were not evident.
RPP treatment alleviated the pathological damage in the experimental groups compared with that in
MG mice. In RPP groups (Figure 3d–f), RPP demonstrated a dose-dependent protective effect on the
STZ-induced diabetic mice. RPP-H apparently effectively alleviated the symptoms of focal necrosis,
congestion in central vein, and infiltration of lymphocytes.
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4.2. HE Staining of Kidney

As shown in Figure 4a, the pathological tissue section of kidney revealed the distinct structure
of both cortex and medulla in NG mice. The regular shape of glomeruli, renal tubule, and collecting
duct was distinguished easily. The medulla displayed a distinctly ordered and packed arrangement.
Moreover, symptoms of hemangiectasis, congestion, and inflammatory cell infiltration were not
observed in the interstitial part. As presented in Figure 4b, the renal cortex and medulla of the
STZ-induced diabetic MG mice showed varying degrees of atrophy. The cortex and medulla
showed an architecture characterized by irregular distribution. The number of glomeruli declined
obviously, and very serious glomerular sclerosis and expansion of kidney tubules were observed.
The symptoms of inflammatory cell infiltration and congestion in central vein indicated a serious
condition. Massive inflammatory cells infiltrated the glomeruli. The STZ-induced diabetic PG
mice were treated with DMBG (Figure 4c). Glomerular degradation was alleviated to some degree.
However, inflammatory cells still infiltrated the glomerular cells. Moreover, the medulla area is closely
packed. In RPP experimental groups, diabetic nephropathy was relieved in different degrees after
treatment with different RPP concentrations, especially the symptoms of congestion in central vein
and inflammatory cell infiltration. This protective effect was dose dependent. RPP-H demonstrated
the best effect on STZ-induced diabetic mice and restored the condition of the mice to nearly normal
condition. This result indicated that RPP provided protection against STZ-induced kidney damage in
diabetic mice.

Nutrients 2017, 9, 801 8 of 12 

 

4.2. HE Staining of Kidney 

As shown in Figure 4a, the pathological tissue section of kidney revealed the distinct structure 
of both cortex and medulla in NG mice. The regular shape of glomeruli, renal tubule, and collecting 
duct was distinguished easily. The medulla displayed a distinctly ordered and packed arrangement. 
Moreover, symptoms of hemangiectasis, congestion, and inflammatory cell infiltration were not 
observed in the interstitial part. As presented in Figure 4b, the renal cortex and medulla of the STZ-
induced diabetic MG mice showed varying degrees of atrophy. The cortex and medulla showed an 
architecture characterized by irregular distribution. The number of glomeruli declined obviously, 
and very serious glomerular sclerosis and expansion of kidney tubules were observed. The symptoms 
of inflammatory cell infiltration and congestion in central vein indicated a serious condition. Massive 
inflammatory cells infiltrated the glomeruli. The STZ-induced diabetic PG mice were treated with 
DMBG (Figure 4c). Glomerular degradation was alleviated to some degree. However, inflammatory 
cells still infiltrated the glomerular cells. Moreover, the medulla area is closely packed. In RPP 
experimental groups, diabetic nephropathy was relieved in different degrees after treatment with 
different RPP concentrations, especially the symptoms of congestion in central vein and 
inflammatory cell infiltration. This protective effect was dose dependent. RPP-H demonstrated the 
best effect on STZ-induced diabetic mice and restored the condition of the mice to nearly normal 
condition. This result indicated that RPP provided protection against STZ-induced kidney damage 
in diabetic mice. 

 

Figure 4. Effect of RPP on kidney histology (H&E stain, 200×). (a) NG (Normal group); (b) MG (STZ, 
Model group); (c) PG (STZ, DMBG 10 mg/kg); (d) RPP-L(STZ, 50 mg/kg RPP); (e) RPP-M (STZ, 100 
mg/kg RPP); (f) RPP-H (STZ, 200 mg/kg RPP). 

4.3. HE Staining of Pancreas 

As shown in Figure 5a, the pancreatic cells in NG mice showed a compact and ordered 
arrangement, as well as displayed a regular shape. Moreover, intercellular spaces were distributed 
uniformly, and congestion in central vein was not obvious. In MG mice (Figure 4b), serious 
pathological damages, such as focal necrosis, congestion in central vein, and infiltration of 
lymphocytes, were observed. In addition, the pancreatic cells showed a seriously altered shape, and 
they showed very irregular distribution. The pathology of pancreatic tissue generally demonstrates 
the varying degrees of damages in STZ-induced diabetic mice. In PG mice, the shape and size of the 
pancreatic cells was relatively homogeneous and are orderly packed. Moreover, the conditions of 
focal necrosis and infiltration of lymphocytes improved obviously (Figure 5c). The alleviation of 
pancreatic pathological damages varied in a dose-dependent manner in RPP-treated groups. As 
shown in Figure 4d–f, the protective effect of RPP-H was significantly better than that of RPP-L and 

Figure 4. Effect of RPP on kidney histology (H&E stain, 200×). (a) NG (Normal group); (b) MG
(STZ, Model group); (c) PG (STZ, DMBG 10 mg/kg); (d) RPP-L(STZ, 50 mg/kg RPP); (e) RPP-M (STZ,
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4.3. HE Staining of Pancreas

As shown in Figure 5a, the pancreatic cells in NG mice showed a compact and ordered
arrangement, as well as displayed a regular shape. Moreover, intercellular spaces were distributed
uniformly, and congestion in central vein was not obvious. In MG mice (Figure 4b), serious
pathological damages, such as focal necrosis, congestion in central vein, and infiltration of lymphocytes,
were observed. In addition, the pancreatic cells showed a seriously altered shape, and they showed
very irregular distribution. The pathology of pancreatic tissue generally demonstrates the varying
degrees of damages in STZ-induced diabetic mice. In PG mice, the shape and size of the pancreatic cells
was relatively homogeneous and are orderly packed. Moreover, the conditions of focal necrosis and
infiltration of lymphocytes improved obviously (Figure 5c). The alleviation of pancreatic pathological
damages varied in a dose-dependent manner in RPP-treated groups. As shown in Figure 4d–f,



Nutrients 2017, 9, 801 9 of 12

the protective effect of RPP-H was significantly better than that of RPP-L and RPP-M. In RPP-H mice,
histological damage was notably mitigated and the conditions were restored to nearly the normal state.
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4.4. PAS Staining of Kidney

After PAS staining, the cross-sectional area of glomeruli and glomeruli mesangial were analyzed
by the Image-pro Insight analysis software (Media cybernetics Inc., Rockville, MD, USA). Mesangial
matrix index, expressed as the ratio of the mesangial area to glomerular area, is an important indicator
in evaluating kidney damage in diabetic mice. The kidney of STZ-induced diabetic mice showed
glomerular enlargement and increased mesangial proliferation and mesangial index. As shown in
Figure 6, the index in MG mice is obviously higher than that in NG mice. RPP treatment in each group
mitigated histological damage and restored the mesangial index, thereby alleviating the symptoms of
diabetes in mice. This protective effect was dose dependent. These results suggested that the effect
of RPP on mesangial matrixis one of the key mechanisms in protecting the exterior of the kidney of
STZ-induced diabetic mice.
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4.5. TGF-β1 Staining of Kidney

TGF-β1 is an immunosuppressant that inhibits the growth of T cells and B cells.TGF-β1 plays
an important role in regulating cell growth, differentiation, and immune function [34]. In this study,
immunohistochemical staining of mice kidney with TGF-β1were evaluated by Image-pro insight
analysis software (Media cybernetics Inc., Rockville, MD, USA). The results in Figure 7 show that
TGF-β1 expression in MG mice increased markedly compared with that in NG mice. The RPP-treated
groups showed reduced TGF-β1 expression. As RPP dose increases, the effect of RPP on TGF-β1
expression of mice kidney also increases. TGF-β1 expression in RPP-H did not significantly differ
with that in NG. TGF-β1 expression is possibly another protective mechanism of RPP in STZ-induced
diabetic mice.
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5. Conclusions

In this study, T2DMmice model was successfully developed through feeding with low-dose
STZ combined with high-fat diet. The effect of RPP on biochemical indicators of serum and
liver in mice were determined. Furthermore, histopathology of liver, kidney, and pancreas and
immunohistochemistry of kidney were evaluated. The results indicated that RPP effectively reduced
the damage in STZ-induced diabetic mice. This study introduced methods and provided data as basis
for the potential applications of RPP as pharmaceutical and food ingredient.
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