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Abstract: Eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3) are
important fatty acids for the retina and brain. More than 95% of Americans have suboptimal
EPA + DHA blood concentrations. This cross-sectional employer-based study assessed whole blood
fatty acid levels of volunteers participating in an onsite wellness biometric screening program and
was designed to determine if an incentive, a $5 coupon for a 90-day supply of fish oil supplement
typically costing $18–30, stimulated incremental dietary behavior change relative to nutritional
status assessment alone to increase EPA + DHA concentrations. Volunteers completed a dietary
survey and finger stick blood samples were collected to be analyzed for fatty acid composition.
In addition, 636 individuals participated in the initial onsite biometric screening. Three months later,
and without prior knowledge, all employees were invited to a second screening. At the second
screening, 198 employees volunteered for the first time and 149 employees had a second test (17.9%).
At baseline, the average age (n = 834) was 45 year and omega-3 index was 5.0% with 41% female.
EPA + DHA concentration, i.e., omega-3 index, was significantly lower in men (4.8%) than women
(5.2%), as were DHA and linoleic acid (LA) concentrations (p < 0.05). Baseline omega-3 index was
positively and linearly associated with omega-3 intake. Only 4% of volunteers had an omega-3 index
>8% on initial screening. Among the 149 individuals with two measurements, omega-3 intake from
supplements, but not food, increased significantly from 258 to 445 mg/d (p < 0.01) at the second test
as did the omega-3 index (+0.21, p < 0.02). In this employed population, only 1% redeemed a coupon
for an omega-3 supplement.

Keywords: eicosapentaenoic acid (EPA); docosahexaenoic acid (DHA); arachidonic acid (AA);
omega-3 fatty acids; omega-6 fatty acids; omega-3 index; highly unsaturated fatty acids (HUFA);
EPA:AA

1. Introduction

Fat is a major source of energy. Evidence suggests that human health may be affected by quantity
and types of fatty acids being consumed [1]. Only two fatty acids, α-linolenic acid (ALA, C18:3n-3)
and linoleic acid (LA, C18:2n-6), are known to be essential for physiological and structure functions [2].
ALA and LA are also the principal n-3 and n-6 unsaturated fatty acids found in the western diet.
Adequate Intakes (AI) have been set for ALA (1.6 g/d) and (1.1 g/d) and for LA (17 g/d) and (12 g/d)
in men and women, respectively [3].

Within the body, ALA and LA are desaturated and elongated by shared enzymes to longer chain
highly unsaturated fatty acids (HUFA), including the eicosanoids: prostaglandins, thromboxanes and
leukotrienes [4]. The conversion rate of ALA to eicosapentaenoic acid (EPA, C20:5n-3) and then to
docosahexaenoic acid (DHA, C22:6n-3) is very low [5], influenced by the proportions of ALA and LA
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in the diet [6], and lower in men than women [5]. With increased consumption of vegetable oils high
in LA (corn, soybean, sunflower, safflower, and cottonseed oil), dietary imbalances in n-6 to n-3
content are hypothesized to contribute to chronic overproduction of arachidonic acid (AA, C20:4n-6)
derived eicosanoids [7–9]. EPA:AA imbalances may promote inflammation [10–12] and increase
cardiovascular risk [13–15].

Ingesting greater amounts of dietary EPA and DHA increases concentrations in blood [16,17].
The cytosolic phospholipase A2 (cPLA2) enzyme does not appear to discriminate between AA or
EPA [18]. Therefore, increasing circulating EPA + DHA concentrations by consuming more fatty fish
and/or omega-3 supplements changes the production of bioactive eicosanoids and may provide more
DHA to the brain and eye [16,17,19].

Data from the Food4Me European randomized controlled trial suggests that personalized
interventions may promote larger, more appropriate, and sustained changes in dietary behavior
and health outcomes [20]. Given the suboptimal EPA + DHA status of most Americans [21], objectives
of this cross-sectional employer-based study were: (1) to assess whole blood fatty acid levels of
volunteers participating in an onsite wellness biometric screening program and (2) to determine if
an incentive, a $5 coupon for a 90-day supply of omega-3 supplements, leads to incremental dietary
behavior changes that affect blood EPA + DHA concentrations.

2. Materials and Methods

This study was approved by the New England Independent Review Board, a WIRB-Copernicus
Group Company, Needham, MA, USA (NEIRB #20160533) and registered at clinicaltrials.gov as
NCT02883764. Employees of Royal DSM company working at one of many sites throughout
the United States can reduce employee-based health insurance costs by having annual biometric
screenings. Approximately 40% of employees at 16 locations typically participate in a worksite
biometric screening program, Healthyroads Wellness®, that includes a finger stick to measure blood
cholesterol concentrations. The date and location of the Healthyroads Wellness® biometric screening
are disseminated by email and signs are posted in common areas. In 2016, the email announcement
(Figure S1) included a copy of this omega-3 fatty acid research proposal and people were encouraged
to have whole blood fatty acid concentrations measured.

Upon arrival for their Healthyroads Wellness® screening, employees volunteering to have
blood fatty acid levels measured signed the Informed Consent (Figure S2), completed the Test
Request (Figure S3) with a validated food-frequency dietary survey for assessing long-chain n-3
polyunsaturated fatty acids [22], and labeled a filter paper (Figure S4) before proceeding to the
biometric screening station.

Based on workplace demographics, number of employees, male/female distribution, and
salaried/hourly proportions, the 16 worksites were categorized so that all employees volunteering at
seven of the 16 worksites would receive a coupon ($5 value) for a 90 day supply of fish oil capsules
(1400 mg fish oil, 900 mg omega-3 fatty acids, 647 mg EPA + 253 mg DHA per capsule) redeemable
from a national retailer (Figure S5). Volunteers from the remaining nine sites were not offered a coupon.

A single drop of scavenged whole blood was collected directly to a filter paper (Ahlstrom 226,
PerkinElmer, Greenville, SC, USA) pretreated with an antioxidant cocktail (FAPS™, OmegaQuant
Analytics, LLC, Sioux Falls, SD, USA) to protect unsaturated fatty acids (FAs) from oxidation.
After collection, the filter paper, Informed Consent, and Test Request form from each volunteer
were stapled together. Materials from each worksite were shipped in bulk at ambient temperature to
OmegaQuant Analytics LLC where blood samples were analyzed by capillary gas chromatography
and the omega-3 index was determined [23]. OmegaQuant Analytics LLC sent an Omega-3 Index
Report to the email address provided by each volunteer (Figure S6).

Three months after the Healthyroads Wellness® screening, all employees received an email,
including a copy of the research protocol, informing them of a second opportunity to have whole
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blood fatty acids measured onsite. Informed consent, test request with validated dietary survey, and
blood samples collected from volunteers were sent to OmegaQuant Analytics LLC as described above.

OmegaQuant Analytics collated and anonymized dietary survey and fatty acid data. The percent
n-6 in HUFA was calculated according to the equation given in citation [9] except that C20:3n-9 was
not measured. Differences between baseline and retest measurements were compared for significance
using t-tests. Simple linear regression was used to assess the linear relationship between variables.
To contrast multiple groups, a one-way ANOVA was performed. The level of significance was set at
0.05, adjusted with the Bonferroni correction for multiple analyses. Statistical analyses were conducted
using SAS (Version 9.3, Durham, NC, USA).

3. Results

The cross-sectional study was designed to test the impact of receiving personalized nutritional
assessment with or without an incentive ($5 coupon for 90-day supply of omega-3 supplements) on
omega-3 fatty acid status three months later in an employed population who was unaware a second
assessment would be available (Figure 1).
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3.1. Cross-Sectional Results

Initially, 636 individuals participated in the first biometrics screening with 302 (47.5%) receiving
coupons. The coupon manufacturer provided coupons with a bar code that are scanned upon
redemption at all retail locations. The vendor tracked the number of coupons redeemed. Only three
coupons were redeemed and data from all worksites have been combined. An additional
198 individuals were tested three months later and 149 participants were retested for the second
time. In total, 834 individuals, with an average age of 45 years and 41% female took part in the baseline
biometrical testing (Table 1).

The average omega-3 intake from food was 254 ± 9 mg/day (Table 2). Omega-3 supplement users
(24% of the study population) had higher total omega-3 intakes (965 ± 53 mg/day) than non-users
(248 ± 12 mg/day).
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Only 37% of subjects were consuming ≥250 mg EPA + DHA from food sources daily. The average
baseline omega-3 index was 5.0% (Table 3) and 95.8% of participants were below the recommended
8% [24]. The omega-3 index was significantly lower in men (4.8% ± 0.07) than women (5.2% ± 0.10,
p < 0.0005), as were LA and DHA concentrations (Table 3).

Table 1. Characteristics of participants at baseline.

Parameter All Participants Participants
Undergoing Retest

Participants Not
Undergoing Retest

N 834 149 685
Sex (male), N (%) 490 (59%) 81 (54%) 409 (59%)

Age (year), mean (SE) 45 (0.4) 45 (0.4) 45 (0.9)
Omega-3 index, mean (SE) 5.0% (0.1%) 5.2% (0.1%) 4.9% (0.1%)

Percent n-6 in HUFA, mean (SE) 77.2% (0.2%) 76.1% (0.3%) 77.5% (0.5%)
EPA to AA ratio 0.054 (0.001) 0.060 (0.004) 0.053 (0.002)

Baseline omega-3 index category, N (%)

<4% 223 (27%) 32 (21%) 191 (28%)
4–8% 576 (69%) 109 (73%) 467 (68%)
>8% 35 (4.2%) 8 (5.4%) 27 (3.9%)

Dietary supplement use, N (%) 205 (25%) 53 (36%) 152 (22%)

Table 2. Mean omega-3 intake (mg/day) at baseline.

All Participants Dietary Supplement Users Non-Users Male Female

N 834 205 628 490 344
Food 254 ± 9.4 271 ± 14 248 ± 12 256 ± 13 250 ± 14

Supplement 180 ± 17 867 ± 56 0 ± 0 187 ± 21 170 ± 29
Total 424 ± 19 965 * ± 53 248 ± 12 434 ± 23 410 ± 31

* For some Dietary Supplement Users, the dose taken was unreadable, therefore the total omega-3 intake does not
equal food and supplement sum.

Table 3. Participant whole blood fatty acid values at the baseline.

Fatty Acid All Participants Men Women p-Value *

N 834 490 344 -

Omega-3 index 5.0 ± 0.06 4.8 ± 0.07 5.2 ± 0.10 0.0005
EPA:AA ratio 0.054 ± 0.00 0.052 ± 0.00 0.057 ± 0.00 0.13

n-6 in HUFA (%) 77 ± 0.2 78 ± 0.3 77 ± 0.4 0.03
C14:0 (%) 0.63 ± 0.01 0.66 ± 0.01 0.60 ± 0.01 0.0025
C16:0 (%) 21.9 ± 0.1 22.0 ± 0.07 21.8 ± 0.1 0.09

C16:1n7t (%) 0.12 ± 0.00 0.12 ± 0.00 0.12 ± 0.00 0.8
C16:1n7 (%) 0.94 ± 0.02 0.90 ± 0.02 0.98 ± 0.03 0.029

C18:0 (%) 11.7 ± 0.04 11.7 ± 0.05 11.5 ± 0.06 0.027
C18:1t (%) 0.61 ± 0.01 0.62 ± 0.01 0.58 ± 0.01 0.0091

C18:1n9 (%) 18.6 ± 0.1 19.0 ± 0.1 18.1 ± 0.1 0.0001
C18:2n6t (%) 0.24 ± 0.00 0.23 ± 0.01 0.25 ± 0.01 0.0305
C18:2n6 (%) 22.9 ± 0.1 22.6 ± 0.1 23.4 ± 0.1 0.0001

C20:0 (%) 0.22 ± 0.00 0.21 ± 0.00 0.23 ± 0.00 0.0001
C18:3n6 (%) 0.29 ± 0.00 0.30 ± 0.01 0.28 ± 0.01 0.019
C20:1n9 (%) 0.28 ± 0.00 0.28 ± 0.01 0.29 ± 0.01 0.14
C18:3n3 (%) 0.40 ± 0.01 0.41 ± 0.01 0.39 ± 0.01 0.23
C20:2n6 (%) 0.24 ± 0.00 0.23 ± 0.00 0.26 ± 0.00 0.0001

C22:0 (%) 0.49 ± 0.01 0.47 ± 0.01 0.51 ± 0.01 0.0001
C20:3n6 (%) 1.6 ± 0.01 1.5 ± 0.01 1.6 ± 0.02 0.068
C20:4n6 (%) 11.0 ± 0.1 11.0 ± 0.08 11.0 ± 0.1 0.71

C24:0 (%) 0.7 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.61
C20:5n3 (%) 0.58 ± 0.02 0.55 ± 0.02 0.61 ± 0.03 0.11
C24:1n9 (%) 0.61 ± 0.01 0.58 ± 0.01 0.65 ± 0.02 0.0004
C22:4n6 (%) 1.6 ± 0.01 1.6 ± 0.02 1.5 ± 0.02 0.004
C22:5n6 (%) 0.36 ± 0.01 0.36 ± 0.01 0.37 ± 0.01 0.27
C22:5n3 (%) 1.2 ± 0.01 1.2 ± 0.01 1.1 ± 0.01 0.0001
C22:6n3 (%) 2.6 ± 0.04 2.5 ± 0.04 2.8 ± 0.06 0.0001

* p-value for the difference between sexes, bold if less than 0.0017 (p = 0.05 with Bonferroni correction for 28 tests).
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The omega-3 index and EPA:AA ratio showed a positive, linear relationship whereas the percent
n-6 in HUFA was inversely related to omega-3 intake (Figure 2).
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3.2. Subgroup Analysis of Baseline and Second Test Results

Baseline and second test results were obtained for 149 individuals (17.9%). In this subset, total
omega-3 intake increased from 508 ± 45 mg/d at baseline to 650 ± 65 mg/d (p < 0.02) at the second
test, primarily because of a significant change in omega-3 supplement intake (Table 4).
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Table 4. Omega-3 intake (mg/day) at the baseline and second test for individuals undergoing two
screenings three months apart.

N Food Dietary Supplements Total

All

Baseline 149 263 ± 17 258 ± 42 508 ± 45
Retest 149 253 ± 15 445 ± 69 650 ± 65

p-value 1 >0.05 0.0136 0.0185

Men

Baseline 81 276 ± 195 385 ± 609 638 ± 611
Retest 81 273 ± 199 640 ± 965 850 ± 946

p-value 2 >0.05 0.039 0.039

Women

Baseline 68 248 ± 222 110 ± 275 354 ± 408
Retest 68 228 ± 164 208 ± 434 412 ± 481

p-value 2 >0.05 >0.05 >0.05
1 Dietary intake, baseline vs. retest, for all participants; 2 Dietary intake, baseline vs. retest, within a sex.

Food omega-3 intake did not change between tests. Men, but not women, reported significantly
greater total omega-3 intake at the second test with this difference attributable to omega-3
supplementation. As a result, there was a significant positive change in the omega-3 index and
EPA:AA ratio and a decrease in the percent n-6 in HUFA (Table 5).

Table 5. Change in fatty acid status between baseline and second test for individuals undergoing two
screenings 3 months apart.

All p-Value 1 Men Women p-Value 2

N 149 - 81 68 -
Omega-3 index 0.21 ± 0.11 0.02 0.26 ± 0.13 0.15 ± 0.12 >0.05
EPA:AA ratio 0.002 ± 0.003 >0.05 0.007 ± 0.005 −0.004 ± 0.005 >0.05
Percent n-6 in

HUFA −0.884 ± 0.301 <0.004 −0.012 ± 0.004 0.009 ± 0.003 >0.05

1 Change calculated as baseline value minus retest value; 2 Change calculated as baseline value minus retest value
for men and for women.

3.3. Subgroup Analysis Categorized by Omega-3 Supplement Use

With two assessments, the baseline and second test, individuals could be categorized according
to omega-3 supplement usage at the baseline and second test: No-No (Non-users), No-Yes (Adopters),
Yes-No (Discontinuers) and Yes-Yes (Users). Omega-3 index values increased with omega-3 supplement
use (Adopters and Users) between the baseline and the second test (Table 6) as expected from
intervention trials [17,25]. A statistically significant increase was observed among Users (p < 0.05).
At the second test, omega-3 index values were lowest for Non-users (4.5%), then Discontinuers (5.4%),
Adopters (5.6%) and Users (6.7%) (p < 0.05). Adopters had significantly higher omega-3 index (4.8% at
baseline vs. 5.6% at the second test, p = 0.02). EPA:AA ratios increased among Adopters and Users
(Table 6) whereas percent n-6 in HUFA decreased.
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Table 6. Fatty acid values at baseline and second test according to dietary supplementation practices in 149 volunteers who were retested.

Baseline Second Test

Fatty Acid Non-Users Adopters Discontinuers Users p-Value 1 Non-Users Adopters Discontinuers Users p-Value 2

N 66 30 13 40 - 66 30 13 40

Omega-3 index 4.6 ± 0.2 4.8 ± 0.2 5.7 ± −0.4 6.3 ± 0.2 0.0005 4.5 ± −0.1 5.6 ± 0.2 5.4 ± 0.4 6.7 ± 0.2 <0.0001
EPA:AA ratio 0.05 ± 0.01 0.05 ± 0.00 0.07 ± 0.01 0.09 ± 0.01 0.79 0.04 ± 0.00 0.07 ± 0.01 0.05 ± 0.01 0.10 ± 0.01 <0.0001

n-6 in HUFA (%) 79 ± 0.7 79 ± 0.8 73 ± 1.6 71 ± 0.9 0.03 79 ± 0.5 74 ± 0.9 76 ± 1.7 69 ± 1.0 <0.0001
C14:0 (%) 0.64 ± 0.03 0.70 ± 0.06 0.60 ± 0.08 0.62 ± 0.04 0.0025 0.60 ± 0.04 0.66 ± 0.09 0.52 ± 0.06 0.65 ± 0.05 0.54
C16:0 (%) 22.0 ± 0.2 22.1 ± 0.3 22.1 ± 0.5 21.7 ± 0.2 0.09 22.0 ± 0.2 22.0 ± 0.4 21.6 ± 0.4 21.8 ± 0.3 0.84

C16:1n7t (%) 0.13 ± 0.01 0.13 ± 0.01 0.09 ± 0.01 0.12 ± 0.01 0.8 0.12 ± 0.00 0.11 ± 0.01 0.10 ± 0.00 0.12 ± 0.01 0.28
C16:1n7 (%) 0.98 ± 0.1 1.10 ± 0.1 0.89 ± 0.1 0.92 ± −0.1 0.029 0.93 ± 0.1 0.92 ± 0.1 0.81 ± 0.1 0.87 ± 0.1 0.90

C18:0 (%) 11.5 ± 0.1 11.4 ± 0.2 11.4 ± 0.4 11.5 ± 0.1 0.027 12.2 ± 0.2 11.9 ± 0.3 12.2 ± 0.4 12.2 ± 0.2 0.82
C18:1t (%) 0.64 ± 0.02 0.53 ± 0.03 0.49 ± 0.06 0.56 ± 0.02 0.0091 0.59 ± 0.03 0.59 ± 0.04 0.49 ± 0.06 0.55 ± 0.03 0.29

C18:1n9 (%) 18.4 ± 0.3 19.1 ± 0.3 18.7 ± 0.6 18.4 ± 0.4 <0.0001 18.5 ± 0.3 19.3 ± 0.5 19.5 ± 0.6 18.9 ± 0.4 0.42
C18:2n6t (%) 0.26 ± 0.02 0.26 ± 0.03 0.22 ± 0.02 0.21 ± 0.01 0.0305 0.21 ± 0.01 0.19 ± 0.01 0.21 ± 0.02 0.18 ± 0.01 0.22
C18:2n6 (%) 23.3 ± 0.3 22.9 ± 0.5 24.1 ± 0.6 23.1 ± 0.4 <0.0001 22.3 ± 0.3 22.4 ± 0.5 22.2 ± 1.1 22.4 ± 0.5 0.99

C20:0 (%) 0.22 ± 0.01 0.24 ± 0.01 0.22 ± 0.02 0.23 ± 0.01 <0.0001 0.21 ± 0.01 0.20 ± 0.01 0.21 ± 0.02 0.19 ± 0.01 0.50
C18:3n6 (%) 0.32 ± 0.02 0.34 ± 0.02 0.27 ± 0.03 0.29 ± 0.01 0.0191 0.31 ± 0.02 0.26 ± 0.02 0.27 ± 0.04 0.25 ± 0.02 0.13
C20:1n9 (%) 0.34 ± 0.02 0.33 ± 0.03 0.25 ± 0.02 0.29 ± 0.02 0.14 0.25 ± 0.01 0.24 ± 0.01 0.28 ± 0.02 0.23 ± 0.01 0.10
C18:3n3 (%) 0.41 ± 0.02 0.39 ± 0.03 0.39 ± 0.03 0.39 ± 0.02 0.23 0.37 ± 0.02 0.41 ± 0.03 0.36 ± 0.05 0.41 ± 0.04 0.62
C20:2n6 (%) 0.24 ± 0.01 0.26 ± 0.01 0.26 ± 0.02 0.23 ± 0.01 <0.0001 0.25 ± 0.01 0.22 ± 0.01 0.24 ± 0.01 0.22 ± 0.01 0.037

C22:0 (%) 0.49 ± 0.02 0.50 ± 0.03 0.49 ± 0.04 0.53 ± 0.02 <0.0001 0.49 ± 0.02 0.44 ± 0.03 0.48 ± 0.04 0.42 ± 0.02 0.19
C20:3n6 (%) 1.6 ± 0.05 1.6 ± 0.06 1.5 ± 0.08 1.5 ± 0.06 0.068 1.6 ± 0.04 1.5 ± 0.06 1.5 ± 0.07 1.5 ± 0.06 0.15
C20:4n6 (%) 11.4 ± 0.2 10.8 ± 0.4 10.5 ± 0.5 10.8 ± 0.3 0.71 11.7 ± 0.2 10.9 ± 0.4 11.4 ± 0.6 10.7 ± 0.3 0.06

C24:0 (%) 0.63 ± 0.03 0.64 ± 0.05 0.66 ± 0.08 0.76 ± 0.05 0.61 0.68 ± 0.05 0.53 ± 0.05 0.59 ± 0.07 0.52 ± 0.04 0.06
C20:5n3 (%) 0.519 ± 0.1 0.53 ± 0.0 0.72 ± 0.1 0.91 ± 0.1 0.11 0.46 ± 0.0 0.73 ± 0.1 0.52 ± 0.1 1.04 ± 0.1 <0.0001
C24:1n9 (%) 0.58 ± 0.03 0.61 ± 0.06 0.61 ± 0.09 0.69 ± 0.04 0.0004 0.59 ± 0.04 0.47 ± 0.04 0.55 ± 0.04 0.46 ± 0.03 0.0377
C22:4n6 (%) 1.63 ± 0.05 1.49 ± 0.06 1.21 ± 0.08 1.26 ± 0.06 0.0038 1.75 ± 0.05 1.48 ± 0.08 1.45 ± 0.09 1.27 ± 0.07 <0.0001
C22:5n6 (%) 0.37 ± 0.01 0.35 ± 0.02 0.30 ± 0.02 0.35 ± 0.03 0.27 0.37 ± 0.01 0.31 ± 0.02 0.30 ± 0.02 0.29 ± 0.03 0.008
C22:5n3 (%) 1.13 ± 0.03 1.11 ± 0.04 1.13 ± 0.09 1.29 ± 0.04 <0.0001 1.20 ± 0.04 1.26 ± 0.06 1.22 ± 0.10 1.36 ± 0.06 0.09
C22:6n3 (%) 2.32 ± 0.1 2.54 ± 0.2 3.12 ± 0.3 3.48 ± 0.1 <0.0001 2.37 ± 0.1 3.01 ± 0.2 3.07 ± 0.3 3.65 ± 0.2 <0.0001

1 Difference between groups at baseline, bold if less than 0.0017 (p = 0.05 with Bonferroni correction for 28 tests); 2 Difference among groups at second test, bold if less than 0.0017 (p = 0.05
with Bonferroni correction for 28 tests).
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Average baseline omega-3 index values were significantly higher with omega-3 supplement
use at baseline (Discontinuers and Users at 6.3% vs. Non-users and Adopters at 4.6% (p < 0.05,
Figure 3A). Baseline omega-3 supplement use was associated with higher EPA:AA ratios when
omega-3 supplements were being used (Figure 3B, p < 0.05). As expected, percent n-6 in HUFA was
highest among those who do not use omega-3 supplements at baseline (Figure 3C, p < 0.05).
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Figure 3. Blood fatty acid measures versus omega-3 intake according to omega-3 supplement use at
baseline and three months (n = 149) for (A) omega-3 index or (B) EPA:AA ratio or (C) percent n6 in
highly unsaturated fatty acids (HUFA). Statistical differences (p < 0.05) among means for Non-Users,
Adopters, Discontinuers, and Users within a blood fatty acid measurement (A, B, or C) at baseline are
denoted by a, b, c and at three months by x, y, z. * denotes a significant difference within an omega-3
use category between baseline and three months.
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4. Discussion

Low omega-3 intakes (<250 mg/day) are estimated to contribute to 55,000 coronary heart disease
deaths in the United States annually [26]. We observed an average EPA + DHA intake from food of
~250 mg/d. Similar to nationally representative U.S. [21] and Canadian data [27], <5% of the study
population had an omega-3 index above 8%, the level recommended for cardiovascular health [24].
Based on published data [28], an additional 850–900 mg/d of EPA + DHA is needed to raise the
omega-3 index from the 5.0% group average to 8.0%.

Omega-3 index values were significantly higher in women than men, 5.2 ± 0.1 vs. 4.8 ± 0.1,
respectively (p < 0.005), as has been reported by some [17,25] but not others [29,30]. Women of
reproductive age convert ALA to EPA and then DHA at higher rates than men [5]. Most (80.2% ± 1.9%)
participants had percent n-6 in HUFA values below the 61% recommendation of Bibus and Lands [8].
An EPA:AA ratio above 0.3 is associated with reduced risk of cardiovascular disease [13] yet 99% ± 1%
were below this target.

In the 149 subjects with two blood tests, baseline measurement of omega-3 index had a positive
dietary behavior impact on 70 individuals (Adopters and Users representing 47% of the 149 tested
twice). Sixty-six Non-users (44%) with a baseline omega-3 index of 4.6% continued to avoid
supplements. It would be interesting to know if providing additional educational materials on
health benefits of higher omega-3 index values might stimulate this cohort to change their dietary
behavior. In the 53 Users (27%) using supplements at baseline and the second test, the mean omega-3
index increased from 6.3% to 6.7%, suggesting they increased their commitment to consuming sources
of long chain omega-3 fatty acids. Adopters (30%) changed dietary behavior by starting to use omega-3
supplements and had the largest increase in omega-3 index with a 17% increase (4.8% to 5.6%) between
tests. Increased omega-3 supplement use is expected to raise EPA + DHA concentrations [17,25].
Higher concentrations of DHA have been reported to slow the release of both AA and EPA [31] by
cPLA2, possibly explaining the smaller reduction in red blood cell AA concentrations of AA observed
in this study among Users and reported with high-dose DHA vs. high-dose EPA supplementation [32].

This study is limited because it is a cross-sectional workplace study. A primary goal, measuring
the impact of a financial incentive, failed because coupon redemption was almost non-existent. It was
surprising to us that many participants refused to take a coupon at baseline testing. The financial
value, choice of retailer, and consumer-brand preference could have been factors. It is also possible
that coupons may have been lost or discarded in the 7–10 day period between testing and receipt of
omega-3 index results by email.

5. Conclusions

This study corroborates national surveys [21,27] of the poor omega-3 status of Americans. In this
employed group of volunteers, being handed a $5 coupon 7–10 day prior to receiving nutritional
assessments was not a motivator. Only 1% of coupons were redeemed. Based upon repeat measures in
149 participants, we observed that personalized nutrition assessment, i.e., knowing your omega-3 index,
motivated ~50% of people (Users and Adopters) to make dietary changes and increase their average
omega-3 index. Unfortunately, as reported elsewhere [33], those with the lowest nutritional status, i.e.,
Non-Users representing 44% of the participants, did not change their dietary behaviors after baseline
nutritional assessment and their blood fatty acid concentrations corroborate this. More research is
needed to understand if different financial incentives and/or additional education and guidance at
baseline testing or personalized guidance included with the omega-3 index report might have a greater
impact on subsequent dietary behavior, nutritional status and health outcome.
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for blood spot, Figure S5: Coupon incentive, Figure S6: Sample report.
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