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Abstract: An intensive consecutive high-volume training camp may induce appetite loss in athletes.
Therefore, this study aimed to investigate the changes in stress and appetite responses in male
power-trained athletes during an intensive training camp. The measurements at Day 2 and at the
end of a 9-day intensive training camp (Camp1 and Camp2, respectively) were compared with those
of the resting period (Rest) and the regular training period (Regular; n = 13). The stress state was
assessed based on plasma cortisol level, salivary immunoglobulin A level, and a profile of mood states
score. The sensation of appetite was assessed using visual analog scale scores, and fasting plasma
acylated ghrelin, insulin, and glucose were measured. The cortisol concentrations were significantly
higher at Camp2 (466.7 ± 60.7 nmol·L−1) than at Rest (356.3 ± 100.9 nmol·L−1; p = 0.002) or Regular
(361.7 ± 111.4 nmol·L−1; p = 0.003). Both prospective and actual food consumption significantly
decreased at Camp2, and acylated ghrelin concentration was significantly lower at Camp1
(34.2 ± 8.0 pg·mL−1) and Camp2 (32.0 ± 8.7 pg·mL−1) than at Rest (47.2 ± 11.2 pg·mL−1) or Regular
(53.4 ± 12.6 pg·mL−1). Furthermore, the change in acylated ghrelin level was negatively correlated
with the change in cortisol concentration. This study’s findings suggest that an early-phase
physiological stress response may decrease the acylated ghrelin level in male power-trained athletes
during an intensive training camp.
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1. Introduction

Competitive athletes often suffer from a loss of appetite when under continual excessive training.
Since loss of appetite is a known symptom of overtraining, prolonged high-volume daily training
seems to induce a physiological disturbance in the appetite regulatory system [1,2]. Depending on
the severity, a loss of appetite in athletes may interfere with adequate energy and nutrient intake,
and result in inadequate recovery [3]. Overtraining is an accumulation of training and/or non-training
stress, which results in a long-term decrease in performance capacity that takes several months to
develop. However, over-reaching (non-functional) induces a short-term decrease in performance
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capacity, and the initial signs of over-reaching may become apparent after only a few weeks of hard
training [4]. This may have important implications for athletes participating in a short-duration
high-volume intensive training camp. To avoid developing over-reaching or overtraining syndrome,
it is important that athletes understand the correlation between change in appetite and early signs of
training stress.

When athletes are under stress from excessive daily training, changes in hormones, immunological
parameters, and mood states are observed [5,6]. Cortisol is a primary stress hormone that is released
from the pituitary gland under sympathetic activation [5]. Increased resting cortisol may indicate
acutely elevated physiological stress, while decreased resting cortisol is a sign of more chronic stress as
seen in overtraining syndrome [6]. Immune function and psychological state are also disturbed by
excessive training stress [1,5]. Several studies have reported that salivary immunoglobulin A (SIgA)
level decreases in intensive training interventions [7,8].

Appetite is known to be influenced by exercise training and different forms of stress in addition
to energy status [9]. Ghrelin is an appetite stimulating hormone that is predominantly released from
the gastric cells within the stomach, and is the only gut hormone known to enhance appetite [10,11].
Acylated ghrelin, the activated form of ghrelin, appears to closely affect appetite sensation since it can
cross the blood–brain barrier [12]. Broom et al. and many others have reported decreases in acylated
ghrelin levels and appetite after higher-intensity endurance and strengthening exercises [13–15].

Many studies have investigated the signs and symptoms of training stress in athletes during
excessive training periods [16–18]. However, only a few studies have assessed appetite changes in
the context of changes in subjective sensations and regulatory hormones during intensive training
periods [19]. Hoffman et al. examined biochemical changes for possible indicators of early-stage
overtraining in elite basketball players during a 4-week training camp [16]. There was a significant
increase in cortisol concentration after 100–145 min of training per day of consecutive training; however,
no significant change in subjective appetite sensation was reported. Unfortunately, appetite regulatory
hormones were not measured in that study. Therefore, the purpose of this study was to investigate the
changes in stress and appetite responses in male power-trained athletes during an intensive training
camp. We hypothesized that male power-trained athletes would accumulate training stress that
would lead to appetite loss, including changes in appetite regulatory hormones, during an intensive
training camp.

2. Materials and Methods

2.1. Participants

The subjects were 13 Japanese college male athletes who were 18–22 years of age. All are members
of the American football team in the East Japan College Football Association division 1. To narrow the
range of body sizes and physical characteristics, subjects were limited to backs and skilled positions
(e.g., wide receivers, linebackers, defensive backs, and quarterbacks). All subjects had >4 years of
training experience playing American football. Athletes were regularly trained at the home field
located on campus. None of the subjects had been taking any medications or smoking habitually.
Subjects were given oral and written descriptions of the study and were free to withdraw at any
time. Informed consent was obtained prior to the study’s initiation. The study was approved by the
Human Research Committee of Waseda University for the inclusion of human subjects according to
the Declaration of Helsinki (ethical approval code: 2013-217; 7 November 2013).

2.2. Study Design

This study was designed to examine the changes in biochemical and psychological indicators of
stress and appetite during a training camp. The measurements were compared between the start and
end of the training camp with the rest or regular training period. The intensive training camp lasted
for 9 days, and the athletes trained every day without any period of rest. The measurements were
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performed during the summer training camp where the camp is held every year. The first measurement
of the camp (Camp1) was collected in the early morning on the 2nd day of camp, while the second
measurement of the camp (Camp2) was collected at the same time on the 9th day of camp. Most of
the measurements of the regular training period (Regular) were collected for 2 days in the same
week during the off-season, except for exercise volume measurements that were collected for 3 days.
The exercise volume measurements, which were collected for 3 days, were then averaged to reduce
bias due to the difference in training menu by day during the regular training period. In addition,
approximately 2 weeks prior to the training camp, the subjects stopped undergoing daily training for
2 days. The assessments were taken the following morning as rest period measurements (Rest). All of
the parameters except for exercise volume were collected in the early morning; specifically, the blood
samples were collected approximately from 06:00 to 07:00.

During the training camp, there were two training sessions per day from roughly 08:00 to 11:00
and from 14:00 to 17:00. The training flow and approximate time for the morning session were
the following; warming up (10 min), fundamental training (20 min), position-group training
(30 min), team training (120 min), position-group training (20 min), and cooling down (10 min).
The training flow and approximate time for the afternoon session were the following; warming up
(10 min), fundamental training (20 min), position-group training (60 min), team training (60 min),
circuit training (30 min), run training (15 min), and cooling down (10 min). Warming up mainly
consisted of dynamic movements and stretching. Fundamental training included short and repetitive
position-specific movements, such as tackles and ball handlings while wearing protective equipment.
The position-specific training varied according to the task of each position. During team training, a set
of game style movements was repeated, with each set lasting for only 15–30 s. The circuit training was
for improving basic physical fitness, including agility, power, and speed. The run training included
short to middle distance interval training. The training menu of Day 5 was resistance training only
for 2–3 h in the fitness room. Regular daily training was performed 6 days a week for 2–3 h each
day. During a regular training period, different training sets were spread throughout a week due
to time limitation. For example, the resistance training in the fitness room was held 4 days a week
minimum, while the circuit and run trainings were only held twice a week. The fundamental training
was held daily. The combination of position and team training was held for about 60 to 90 min every
day. The team’s coaches created the training plan, and the researchers did not change their training
schedule or its content. During the rest and regular training periods, neither food quality nor quantity
were controlled. All of the subjects ate the same meals, including snacks; however, the quantity of
their diets was not controlled, since they could ask for additional servings during the training camp.
Body weight was monitored in the morning and before and after both training sessions. If there was
more than 2% of weight loss, the consumption of water or other types of liquids was encouraged to
avoid dehydration.

2.3. Anthropometry

On the morning of each test day, body weight was assessed using a digital body weight scale
(UC-321, A&D Co. Ltd., Tokyo, Japan) after urination and under fasting conditions. Body height was
measured once during the resting period to the nearest 0.1 cm using a stadiometer (YL-65, Yamagi, Inc.,
Nagoya, Japan).

2.4. Exercise Training Volume

To quantify the exercise volume of the intensive training camp, the validated session-rated
perceived exertion (RPE) technique was used [20–22]. Intensity was assessed 30 min after each
training session concluded using the RPE scale of Borg et al. [23]. During the regular training period,
the duration and intensity of each training session were measured for 3 days to capture the weekly
exercise training load. The exercise volume for each training day was obtained by multiplying the
duration of training in hours by the intensity of each training session measured by RPE.
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2.5. Dietary Intake

Carbohydrate, protein, and fat intakes were measured using 3-day dietary records. The subjects
were instructed to record all food items and beverages consumed, and to provide detailed descriptions
of each food item, including the location of purchase, weights, and proportions consumed. The subjects
were also asked to provide photos of the food they consumed, including food labeling if available.
Research dietitians interviewed the participants after they had completed the forms and analyzed
the records using nutritional analysis software (Wellness21 Top Business System Co., Ltd., Okayama,
Japan). Energy and nutrition intake were calculated based on the Japanese Standard Food Composition
Table 2010 published by the Ministry of Education, Culture, Sports, Science, and Technology [24].

2.6. Hormonal and Biochemical Indicators

Blood indicators: Venous blood samples were collected in the morning after all other
measurements were taken. Subjects were asked to fast for approximately 10 h, during which time
only water was allowed. The blood samples were collected into ethylenediaminetetraacetic acid
(EDTA)-aprotinin monovettes for acylated ghrelin and EDTA-2Na for the cortisol and insulin analyses.
Whole blood samples were used to analyze glucose measurements, while the plasma was separated
by centrifugation and aliquoted into storage tubes for the rest of the measurements. For the acylated
ghrelin analysis, 100 µL of 1 M hydrochloric acid was added per milliliter of plasma to stabilize
the substrate. The blood samples were kept either frozen or refrigerated appropriately, and were
then analyzed by LSI Medience Corporation in Japan. The plasma cortisol and insulin levels were
measured using a chemiluminescent immunoassay, the acylated ghrelin level was measured using
enzyme-linked immunosorbent assay (ELISA), and the blood glucose level was measured using
an enzymatic method. The inter-assay and intra-assay coefficients of variation for cortisol were
3.9–6.0% and 5.4–6.3%, respectively, for acylated ghrelin they were 4.7–8.1% and 2.1–8.3%, respectively,
for insulin they were 1.9–2.9% and 2.5–3.9%, respectively, and for blood glucose they were 0.8–1.6%
and 0.2–0.5%, respectively.

Salivary indicators: For the SIgA measurements, the subjects were asked to rinse out their mouths
with sterilized water three times for 30 s and then wait for at least 5 min. Subjects chewed sterilized
cotton (Salivette; Saersted, Vümbrecht, Germany) for 1 min at a frequency of 1 chew per second to
stimulate saliva production. The SIgA concentration was measured using an ELISA. The SIgA secretion
rate (µg·min−1) was calculated by multiplying the SIgA concentration (µg·mL−1) by the saliva flow
rate (mL·min−1), which was calculated by dividing the total volume of saliva in each sample (mL) by
the time taken to produce the sample (min).

2.7. Appetite and Fatigue Sensation

A paper and pen–based visual analog scale (VAS) was used to assess sensations of hunger,
fullness, and prospective food consumption, as well as fatigue, by asking the following questions:
(1) How hungry do you feel? (2) How full do you feel? (3) How much do you think you can eat?
(4) How tired are you? A 100 mm long VAS was created with words anchored at each end indicating
the most positive and negative ratings. The subjects were not allowed to discuss or compare their
ratings with each other, nor could they refer to their previous ratings. A translated and validated
appetite sensation questionnaire was used in this study [25,26]. The VAS questionnaire of fatigue
was also 100 mm in length, with the left end stating not tired at all and the right end marked as
extreme exhaustion.

2.8. Mood States

The profile of mood states (POMS) scale is used to monitor changes in a negative psychological
state as a stress reaction [2,27]. A validated Japanese translated POMS questionnaire (brief version) was
administered in the early morning at the same time the appetite VAS questionnaire was conducted [28].
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POMS provides measures of tension, depression, anger, vigor, fatigue, and confusion. The total mood
score of the POMS was calculated by subtracting the vigor (positive) score from the sum of the five
other (negative) measures and then adding 100 [29]. A higher global score means a more negative
mood profile.

2.9. Statistical Analysis

The data are presented as the mean ± standard deviation (SD). The statistical analyses were
performed with SPSS version 23.0 (SPSS, Inc., Chicago, IL, USA). A one-way analysis of variance
(ANOVA) with repeated measures across time was used for the statistical evaluation of the data.
When ANOVA revealed a significant main effect, post hoc analyses were performed using the Tukey
procedure for equal variance and the Games–Howell procedure for unequal variance. Statistical
significance was set at p < 0.05.

3. Results

3.1. Anthropometric Measures

The mean body height was 177.0 ± 4.7 cm. The mean body weights were 78.7 ± 6.8 kg,
77.9 ± 6.2 kg, 79.0 ± 7.0 kg, and 79.6 ± 7.1 kg for Rest, Regular training, Camp1, and Camp2,
respectively. Body weight was lowest during a regular training period, and differed significantly from
those of Camp1 (p = 0.012) and Camp2 (p = 0.001). There was no significant difference in body weight
between Camp1 and Camp2.

3.2. Training Volume and Nutritional Intake

The ranges of temperature and humidity during the regular training period were 25–27 ◦C
and 43–68%, respectively, while those of the training camp were 21–24 ◦C and 68–84%, respectively.
The one-way ANOVA test revealed a significant difference in average perceived intensity between
regular training at home and the start of training camp (Table 1). Moreover, the training duration
at camp was approximately three times longer than during the regular training period. Therefore,
the overall training volume per day during the training camp period was more than three times greater
than that of the regular training period. There were no significant changes in training volume during
the training camp.

Table 1. Training intensity, duration, and volume of power-trained athletes at regular training
(average of 3 training days) and the start and end of training camp.

n = 13 Regular Camp1 Camp2

RPE per training session 13.9 ± 0.9 15.0 ± 1.2 a 14.8 ± 2.9
Total training duration (hours/day) 2.2 ± 0.4 7.1 ± 0.1 a 6.8 ± 0.8 a

Total training volume (RPE hour/day) 31.1 ± 5.9 106.9 ± 8.5 a 99.5 ± 20.1 a

a Significant difference (p < 0.05) compared to Regular. RPE, rated perceived exertion.

Energy, carbohydrate, and fat intake were higher throughout the training camp period than during
Rest or Regular training (Table 2). The overall intake of energy and all three nutrients significantly
decreased toward the end of the training camp compared to at the start of the camp. The protein intake
at the end of the training camp was approximately the same as that during the regular training period.



Nutrients 2017, 9, 912 6 of 13

Table 2. Daily intake of energy and major nutrients of power-trained athletes at rest, regular training,
and intensive training camp periods.

n = 13 Rest Regular Camp1 Camp2

Energy (kcal) 3373 ± 769 3398 ± 739 6175 ± 513 a,b 4752 ± 915 a,b,c

Carbohydrate (g) 531 ± 128 485 ± 108 926 ± 108 a,b 747 ± 196 a,b,c

Protein (g) 105 ± 22 125 ± 27 180 ± 24 a,b 134 ± 23 a,c

Fat (g) 83 ± 31 97 ± 30 184 ± 26 a,b 131 ± 32 a,b,c

a Significant difference (p < 0.05) compared to Rest; b Significant difference (p < 0.05) compared to Regular;
c Significant difference (p < 0.05) compared to Camp1.

3.3. Measurements Related to Stress

As a biochemical measure, the plasma cortisol concentrations were significantly higher at
Camp2 (466.7 ± 60.7 nmol·L−1) than at Rest (356.3 ± 100.9 nmol·L-1; p = 0.002) or Regular training
(361.7 ± 111.4 nmol·L−1; p = 0.003; Figure 1). There was a significant decrease in saliva flow rate and a
significant increase in SIgA concentration from Camp2 compared to Rest (saliva flow rate, p = 0.029;
SIgA concentration, p = 0.039) or Regular training (saliva flow rate, p = 0.012; SIgA concentration,
p = 0.024; Table 3). A correlation was found between the change in saliva flow rate and SIgA
concentration from Regular training to Camp2 (r = −0.658, p = 0.028). Thus, the SIgA secretion rate
did not differ significantly among the training or resting periods. None of the POMS measurements
were significantly different between any of the periods (Table 4). During the training camp, whole
body fatigue measured by VAS significantly increased from Rest or Regular (Table 5). There were no
significant correlations between plasma resting cortisol and salivary indicators.
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Figure 1. Plasma cortisol of power-trained athletes measured in the early morning during the rest,
regular training, and intensive training camp periods. Data were analyzed using one-way analysis of
variance with repeated measures. Values are shown as the mean ± standard deviation (SD) (n = 13).
** Significant difference at p < 0.01.
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Table 3. Saliva flow rate, SIgA concentration, and SIgA secretion rate of power-trained athletes at rest,
regular training (average 2 days), and intensive training camp periods.

n = 13 Rest Regular Camp1 Camp2

Saliva flow rate (mL/min) 1.1 ± 0.5 1.2 ± 0.5 1.1 ± 0.6 0.8 ± 0.6 a,b

SIgA concentration (µg/mL) 24.6 ± 11.1 24.0 ± 13.8 26.6 ± 6.2 32.1 ± 9.0 a,b

SIgA secretion rate (µg/min) 27.2 ± 16.1 25.9 ± 12.0 28.1 ± 13.3 24.3 ± 14.6
a Significant difference (p < 0.05) compared to Rest; b Significant difference (p < 0.05) compared to Regular.

Table 4. The profile of mood states (POMS) scores of power-trained athletes at rest, regular training
(average 2 days), and intensive training camp periods.

n = 13 Rest Regular Camp1 Camp2

Tension 1.5 ± 4.4 1.3 ± 2.2 1.4 ± 1.7 2.2 ± 3.2
Depression 1.5 ± 3.2 1.0 ± 1.6 0.8 ± 1.4 1.2 ± 2.1

Anger 0.6 ± 1.6 0.8 ± 1.3 0.8 ± 1.5 0.7 ± 1.3
Vigor 1.0 ± 1.7 2.4 ± 2.0 1.4 ± 2.7 1.6 ± 3.6

Fatigue 3.1 ± 4.3 4.2 ± 4.7 4.6 ± 3.6 6.5 ± 5.2
Confusion 1.5 ± 3.0 1.1 ± 1.6 0.5 ± 1.0 1.2 ± 2.2

Total mood score 107.2 ± 14.9 105.9 ± 9.6 106.8 ± 5.6 110.2 ± 10.6

3.4. Measurements Related to Appetite

According to a one-way ANOVA, a significant decrease in prospective food consumption
was observed at Camp2 than at Rest (p = 0.014; Table 5). The acylated ghrelin level was
significantly lower at both Camp1 (34.2 ± 8.0 pg·mL−1) and Camp2 (32.0 ± 8.7 pg·mL−1) than at
Rest (47.2 ± 11.2 pg·mL−1) or Regular training (53.4 ± 12.6 pg·mL−1; Camp1 vs. Rest, p = 0.002;
Figure 2a). The plasma insulin level significantly decreased from Rest (6.0 ± 1.7 µU·mg−1) to Regular
training (4.7 ± 2.3 µU·mg−1, p = 0.04) and to training camp (Camp1: 1.3 ± 1.1 µU·mg−1, p = 0.005;
Camp2: 4.5 ± 1.6 µU·mg−1, p = 0.015; Figure 2b). There were significant increases in blood glucose
at the end of camp (Camp1: 84.2 ± 2.9 mg·dL−1; Camp2: 85.8 ± 4.6 mg·dL−1) compared with Rest
(81.2 ± 5.7 mg·dL−1, p = 0.028) and Regular training (81.2 ± 5.6 mg·dL−1, p = 0.028; Figure 2c). There
was no correlation between acylated ghrelin level and appetite sensations. Plasma acylated ghrelin
level was negatively correlated with the change in cortisol concentrations from Regular training to
Camp2 (p = 0.007) and from Camp1 to Camp2 (p = 0.04; Table 6).

Table 5. Appetite and fatigue sensation scores of power-trained athletes at rest, regular training
(average 2 days), and intensive training camp periods.

n = 13 Rest Regular Camp1 Camp2

How hungry do you feel? 67 ± 20 60 ± 18 50 ± 18 60 ± 17
How full do you feel? 31 ± 22 29 ± 19 42 ± 22 40 ± 21

How much do you think you can eat? 62 ± 15 55 ± 15 51 ± 14 47 ± 15 a

How tired are you? 42 ± 14 49 ± 16 66 ± 11 a,b 77 ± 15 a,b

a Significant difference (p < 0.05) compared to Rest; b Significant difference (p < 0.05) compared to Regular.
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Figure 2. Hormonal and biochemical indicators of power-trained athletes at rest, regular training,
and intensive training camp periods. (a) Acylated ghrelin; (b) Plasma insulin; (c) Glucose. Data are
analyzed using a one-way analysis of variance (ANOVA) with repeated measures. Values are shown
as the mean ± SD (n = 13). * Significant difference at p < 0.05; ** Significant difference at p < 0.01;
*** Significant difference at p < 0.001.

Table 6. Correlation coefficients (r) and probability values (p) related to the ∆ plasma resting cortisol
concentration and ∆ Acylated ghrelin, ∆ Insulin, and ∆ Glucose levels with a combination of Rest or
Regular training periods between training camp periods.

∆ Acylated Ghrelin ∆ Insulin ∆ Glucose

∆ Cortisol r p r p r p

∆ Rest to Camp2 −0.365 0.220 −0.510 0.075 0.147 0.631
∆ Regular to Camp2 −0.705 0.007 * −0.136 0.657 0.109 0.722
∆ Camp1 to Camp2 −0.575 0.040 * −0.213 0.485 0.289 0.339

* Significant difference at p < 0.05.

4. Discussion

The current study was designed to investigate the early signs of changes in stress and appetite
responses in male power-trained athletes during an intensive training camp. The primary finding of
this study was that acute physiological training stress was observed at the end of the training camp, as
evidenced by an increase in plasma resting cortisol concentration. In addition, the prospective and
actual food consumption as well as the acylated ghrelin concentration decreased during the training
camp. Moreover, due to decreased plasma resting cortisol and acylated ghrelin levels toward the end
of the training camp, physiological training stress may have contributed to decreased acylated ghrelin
secretion. We believe that this is the first study to observe the correlation between changes in appetite
with acute physiological training stress in athletes during a shorter-duration training camp.

Since the training volume during training camp was more than three times as large as the regular
training period, we speculated that the consecutive high-volume training placed a significant physical
strain on the athletes. In fact, the fatigue sensation measured by VAS significantly increased during the
training camp. Cortisol is the hormone secreted from the adrenal cortex in response to physiological
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stress, and it is commonly used as an early sign of training stress [30]. During prolonged excessive
training, sympathetic activity is increased and cortisol secretion is stimulated at the acute phase of the
stress responses [31]. Interestingly, we found that cortisol level significantly increased only at Day 9.
It is possible that only one day of whole-day training before the Camp1 measurement did not cause
enough physical strain to increase the cortisol level. In a study by Kirwan et al., cortisol concentrations
at days 5 and 11 during intensive training were significantly increased [32]. Therefore, it is most
likely that consecutive, high-volume training increased plasma resting cortisol levels at the end of
training camp in this study. Immune function decreases with overtraining in athletes, as evidenced
by a decrease in SIgA secretion rate [7,33]. However, no changes in SIgA secretion rate or mood
state were observed in this study. Moreover, the POMS scores were stable and stayed relatively low
compared to other consecutive intensive training studies [27,29]. Therefore, these findings suggest
that the consecutive high-volume training during the 9-day camp induced acute physiological training
stress, as seen in the increased resting plasma cortisol levels; however, the training stress severity was
not high, as the immune function and psychological state were not influenced.

In this study, the subjective appetite sensation observed in the questions that assessed prospective
food consumption decreased at the end of the training camp. Actual food intake was also
significantly decreased from the beginning of the camp to the end of the training camp. Not only
that, the concentration of acylated ghrelin declined during the training camp. There was no
correlation between acylated ghrelin level and appetite sensations in the current study as seen
in other studies [13]. Interestingly, there was a negative correlation between changes in cortisol
and resting acylated ghrelin levels in the current analysis. Schmid et al. showed that a single
intravenous injection of ghrelin stimulated hunger and increased cortisol concentration [34]. However,
it was also reported that the sympathetic nervous system contributes to controlling ghrelin secretion.
Hosoda and Kanagawa demonstrated that plasma acylated ghrelin concentration was influenced
by alpha-adrenergic antagonists and beta-adrenergic agonists, which indicates that stomach ghrelin
secretion is directly regulated by the sympathetic nervous system [35]. Increases in sympathetic activity
are also known to decrease insulin secretion and increase glucose availability for the central nervous
system, a finding that agrees with the results of this study [30]. Furthermore, an increase in sympathetic
stimulation also reportedly decreases salivary flow rate [36]. Therefore, increased cortisol, increased
blood glucose, and decreased insulin levels as well as salivary changes support the hypothesis that
sympathetic nervous system activity increased during training camp, particularly toward the end.
Thus, it is possible that increased sympathetic nervous activity contributed to the decreased acylated
ghrelin level during the intensive training camp. Espelund et al. observed an inverse association
between serum total ghrelin and serum cortisol levels during 48 h of fasting, although the underlying
mechanisms are not clearly understood [37]. Unfortunately, since many factors may be involved in
a change of appetite in this field study, further research is necessary to elucidate the physiological
mechanisms behind the changes in an appetite regulatory hormone during an intensive training period
in relation with stress reactions.

The limitation of this study is that there were no objective measures of training volume, such
as % maximum oxygen uptake, % repetition maximum, or using an activity tracking device. Since
American Football is a collision-based team sport, it is challenging to assess the influence of violent
impact forces on training monitoring. Furthermore, it puts athletes at risk of injury to wear a hard
device. Clarke et al. showed significant correlation between session-RPE and heart rate-based training
load measures in another collision-based team sport [38]. Therefore, in this study, the exercise volume
was measured using the session RPE technique to confirm that the exercise volume during training
camp was significantly higher than that in the regular training period. The second limitation is that
dietary intake was not controlled in this study. During the training camp, these athletes consumed
large amounts of food to compensate for the energy demands of the prolonged training as well as
to increase their muscle mass. Therefore, nutritional intake during training camp was quite high,
particularly at the beginning. However, nutritional intake significantly decreased toward the end
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of training camp despite the training volume remaining the same. There was no change in acylated
ghrelin concentration between Camp1 and Camp2. For these reasons, it is likely that changes in ghrelin
were unrelated to hunger and food intake, but instead were probably associated with physiological
training stress.

5. Conclusions

This study aimed to investigate appetite changes in relation to training stress in male
power-trained athletes during a training camp to understand the cause of loss of appetite during
strenuous training periods. As a result, although both acylated ghrelin and prospective food
consumption decreased at the end of the training camp, no relationship was found between ghrelin and
loss of appetite. Instead, this physiological training stress from the intensive training camp may have
contributed to the decreased acylated ghrelin level. In conclusion, this study’s findings suggested that
even the earlier phase of a physiological stress response to consecutive high-volume training during
an intensive training camp might decrease the acylated ghrelin level in male power-trained athletes.

Acknowledgments: This work was supported in part by Ajinomoto Co., Inc (Kanagawa, Japan). The authors
thank the subjects who participated in this study and the laboratory members for their assistance.

Author Contributions: The study was designed by Satomi Oshima, Motoko Taguchi, and Takao Akama; data were
collected and analyzed by Satomi Oshima, Chisato Takehata, Ikuko Sasahara, Eunjae Lee, and Motoko Taguchi;
and data interpretation and manuscript preparation were performed by Satomi Oshima, Chisato Takehata,
Ikuko Sasahara, and Motoko Taguchi. All authors approved the final version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Budgett, R. Overtraining syndrome. Br. J. Sports Med. 1990, 24, 231–236. [CrossRef] [PubMed]
2. Fry, R.W.; Grove, J.R.; Morton, A.R.; Zeroni, P.M.; Gaudieri, S.; Keast, D. Psychological and immunological

correlates of acute overtraining. Br. J. Sports Med 1994, 28, 241–246. [CrossRef] [PubMed]
3. Parker, B.A.; Sturm, K.; MacIntosh, C.; Feinle, C.; Horowitz, M.; Chapman, I.M. Relation between food intake

and visual analogue scale ratings of appetite and other sensations in healthy older and young subjects. Eur. J.
Clin. Nutr. 2004, 58, 212–218. [CrossRef] [PubMed]

4. Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.;
Urhausen, A. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement
of the european college of sport science and the american college of sports medicine. Med. Sci. Sports Exerc.
2013, 45, 186–205. [CrossRef] [PubMed]

5. Perna, F.M.; Schneiderman, N.; LaPerriere, A. Psychological stress, exercise and immunity. Int. J. Sports Med.
1997, 18, S78–S83. [CrossRef] [PubMed]

6. Urhausen, A.; Kindermann, W. Diagnosis of overtraining: What tools do we have? Sports Med. 2002, 32,
95–102. [CrossRef] [PubMed]

7. Gleeson, M.; McDonald, W.A.; Cripps, A.W.; Pyne, D.B.; Clancy, R.L.; Fricker, P.A. The effect on immunity of
long-term intensive training in elite swimmers. Clin. Exp. Immunol. 1995, 102, 210–216. [CrossRef] [PubMed]

8. Yamauchi, R.; Shimizu, K.; Furukawa, T.; Watanabe, K.; Takemura, M.; Akama, T.; Akimoto, T.; Kono, I.
Alterations of salivary siga during training camp in collegiate rugby football players. Jpn. J. Phys. Fit.
Sports Med. 2009, 58, 131–142. [CrossRef]

9. Stensel, D. Exercise, appetite and appetite-regulating hormones: Implications for food intake and weight
control. Ann. Nutr. Metab. 2010, 57, 36–42. [CrossRef] [PubMed]

10. Wren, A.M.; Seal, L.J.; Cohen, M.A.; Brynes, A.E.; Frost, G.S.; Murphy, K.G.; Dhillo, W.S.; Ghatei, M.A.;
Bloom, S.R. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 2001,
86, 5992. [CrossRef] [PubMed]

11. Druce, M.R.; Wren, A.M.; Park, A.J.; Milton, J.E.; Patterson, M.; Frost, G.; Ghatei, M.A.; Small, C.; Bloom, S.R.
Ghrelin increases food intake in obese as well as lean subjects. Int. J. Obes. 2005, 29, 1130–1136. [CrossRef]
[PubMed]

http://dx.doi.org/10.1136/bjsm.24.4.231
http://www.ncbi.nlm.nih.gov/pubmed/2097018
http://dx.doi.org/10.1136/bjsm.28.4.241
http://www.ncbi.nlm.nih.gov/pubmed/7894955
http://dx.doi.org/10.1038/sj.ejcn.1601768
http://www.ncbi.nlm.nih.gov/pubmed/14749739
http://dx.doi.org/10.1080/17461391.2012.730061
http://www.ncbi.nlm.nih.gov/pubmed/23247672
http://dx.doi.org/10.1055/s-2007-972703
http://www.ncbi.nlm.nih.gov/pubmed/9129266
http://dx.doi.org/10.2165/00007256-200232020-00002
http://www.ncbi.nlm.nih.gov/pubmed/11817995
http://dx.doi.org/10.1111/j.1365-2249.1995.tb06658.x
http://www.ncbi.nlm.nih.gov/pubmed/7554392
http://dx.doi.org/10.7600/jspfsm.58.131
http://dx.doi.org/10.1159/000322702
http://www.ncbi.nlm.nih.gov/pubmed/21346335
http://dx.doi.org/10.1210/jcem.86.12.8111
http://www.ncbi.nlm.nih.gov/pubmed/11739476
http://dx.doi.org/10.1038/sj.ijo.0803001
http://www.ncbi.nlm.nih.gov/pubmed/15917842


Nutrients 2017, 9, 912 12 of 13

12. Murphy, K.G.; Bloom, S.R. Gut hormones and the regulation of energy homeostasis. Nature 2006, 444,
854–859. [CrossRef] [PubMed]

13. Broom, D.R.; Stensel, D.J.; Bishop, N.C.; Burns, S.F.; Miyashita, M. Exercise-induced suppression of acylated
ghrelin in humans. J. Appl. Physiol. 2007, 102, 2165–2171. [CrossRef] [PubMed]

14. Broom, D.R.; Batterham, R.L.; King, J.A.; Stensel, D.J. Influence of resistance and aerobic exercise on hunger,
circulating levels of acylated ghrelin, and peptide yy in healthy males. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 2009, 296, R29–R35. [CrossRef] [PubMed]

15. King, J.A.; Miyashita, M.; Wasse, L.K.; Stensel, D.J. Influence of prolonged treadmill running on appetite,
energy intake and circulating concentrations of acylated ghrelin. Appetite 2010, 54, 492–498. [CrossRef]
[PubMed]

16. Hoffman, J.R.; Epstein, S.; Yarom, Y.; Zigel, L.; Einbinder, M. Hormonal and biochemical changes in elite
basketball players during a 4-week training camp. J. Strength Cond. Res. 1999, 13, 280–285.

17. Jurimae, J.; Maestu, J.; Purge, P.; Jurimae, T.; Soot, T. Relations among heavy training stress, mood state, and
performance for male junior rowers. Percept. Mot. Skills 2002, 95, 520–526. [CrossRef] [PubMed]

18. Jurimae, J.; Maestu, J.; Purge, P.; Jurimae, T. Changes in stress and recovery after heavy training in rowers.
J. Sci. Med. Sport 2004, 7, 335–339. [CrossRef]

19. Goto, K.; Shioda, K.; Uchida, S. Effect of 2days of intensive resistance training on appetite-related hormone
and anabolic hormone responses. Clin. Physiol. Funct. Imaging 2013, 33, 131–136. [CrossRef] [PubMed]

20. Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new
approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [PubMed]

21. Impellizzeri, F.M.; Rampinini, E.; Coutts, A.J.; Sassi, A.; Marcora, S.M. Use of rpe-based training load in
soccer. Med. Sci. Sports Exerc. 2004, 36, 1042–1047. [CrossRef] [PubMed]

22. Day, M.L.; McGuigan, M.R.; Brice, G.; Foster, C. Monitoring exercise intensity during resistance training
using the session rpe scale. J. Strength Cond. Res. 2004, 18, 353–358. [PubMed]

23. Borg, G.; Ljunggren, G.; Ceci, R. The increase of perceived exertion, aches and pain in the legs, heart-rate and
blood lactate during exercise on a bicycle ergometer. Eur. J. Appl. Physiol. Occup. Physiol. 1985, 54, 343–349.
[CrossRef] [PubMed]

24. Science and Technology Agency. Standard Tables of Food cComposition in Japan, 2010; Printing Bureau of the
Ministry of Education, Culture, Sports, Science and Technology: Tokyo, Japan, 2010. (In Japanese)

25. Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales
in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24,
38–48. [CrossRef] [PubMed]

26. Nagai, N.; Hibi, M.; Yamaguchi, T.; Kameo, Y.; Kobayashi, S.; Katashima, M. Development of the japanese
version of appetite sensations questionnaire using visual analogue scales (VAS), and assessment of its
reproducibility and validity. J. Jpn. Soc. Study Obes. 2012, 18, 39–51.

27. Morgan, W.P.; Costill, D.L.; Flynn, M.G.; Raglin, J.S.; O’Connor, P.J. Mood disturbance following increased
training in swimmers. Med. Sci. Sports Exerc. 1988, 20, 408–414. [CrossRef] [PubMed]

28. Yokoyama, K.; Araki, S.; Kawakami, N.; Tkakeshita, T. Production of the Japanese edition of profile of mood
states (POMS): Assessment of reliability and validity. Jpn. J. Public Health 1990, 37, 913–918.

29. Berglund, B.; Safstrom, H. Psychological monitoring and modulation of training load of world-class canoeists.
Med. Sci. Sports Exerc. 1994, 26, 1036–1040. [CrossRef] [PubMed]

30. Urhausen, A.; Gabriel, H.; Kindermann, W. Blood hormones as markers of training stress and overtraining.
Sports Med. 1995, 20, 251–276. [CrossRef] [PubMed]

31. Lehmann, M.; Foster, C.; Dickhuth, H.H.; Gastmann, U. Autonomic imbalance hypothesis and overtraining
syndrome. Med. Sci. Sports Exerc. 1998, 30, 1140–1145. [CrossRef] [PubMed]

32. Kirwan, J.P.; Costill, D.L.; Flynn, M.G.; Mitchell, J.B.; Fink, W.J.; Neufer, P.D.; Houmard, J.A. Physiological
responses to successive days of intense training in competitive swimmers. Med. Sci. Sports Exerc. 1988, 20,
255–259. [CrossRef] [PubMed]

33. Moreira, A.; Arsati, F.; Cury, P.R.; Franciscon, C.; Simoes, A.C.; de Oliveira, P.R.; de Araujo, V.C. The impact
of a 17-day training period for an international championship on mucosal immune parameters in top-level
basketball players and staff members. Eur. J. Oral Sci. 2008, 116, 431–437. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature05484
http://www.ncbi.nlm.nih.gov/pubmed/17167473
http://dx.doi.org/10.1152/japplphysiol.00759.2006
http://www.ncbi.nlm.nih.gov/pubmed/17347386
http://dx.doi.org/10.1152/ajpregu.90706.2008
http://www.ncbi.nlm.nih.gov/pubmed/18987287
http://dx.doi.org/10.1016/j.appet.2010.02.002
http://www.ncbi.nlm.nih.gov/pubmed/20152871
http://dx.doi.org/10.2466/pms.2002.95.2.520
http://www.ncbi.nlm.nih.gov/pubmed/12434845
http://dx.doi.org/10.1016/S1440-2440(04)80028-8
http://dx.doi.org/10.1111/cpf.12005
http://www.ncbi.nlm.nih.gov/pubmed/23383691
http://www.ncbi.nlm.nih.gov/pubmed/11708692
http://dx.doi.org/10.1249/01.MSS.0000128199.23901.2F
http://www.ncbi.nlm.nih.gov/pubmed/15179175
http://www.ncbi.nlm.nih.gov/pubmed/15142026
http://dx.doi.org/10.1007/BF02337176
http://www.ncbi.nlm.nih.gov/pubmed/4065121
http://dx.doi.org/10.1038/sj.ijo.0801083
http://www.ncbi.nlm.nih.gov/pubmed/10702749
http://dx.doi.org/10.1249/00005768-198808000-00014
http://www.ncbi.nlm.nih.gov/pubmed/3173050
http://dx.doi.org/10.1249/00005768-199408000-00016
http://www.ncbi.nlm.nih.gov/pubmed/7968421
http://dx.doi.org/10.2165/00007256-199520040-00004
http://www.ncbi.nlm.nih.gov/pubmed/8584849
http://dx.doi.org/10.1097/00005768-199807000-00019
http://www.ncbi.nlm.nih.gov/pubmed/9662686
http://dx.doi.org/10.1249/00005768-198806000-00007
http://www.ncbi.nlm.nih.gov/pubmed/3386504
http://dx.doi.org/10.1111/j.1600-0722.2008.00558.x
http://www.ncbi.nlm.nih.gov/pubmed/18821985


Nutrients 2017, 9, 912 13 of 13

34. Schmid, D.A.; Held, K.; Ising, M.; Uhr, M.; Weikel, J.C.; Steiger, A. Ghrelin stimulates appetite, imagination
of food, gh, acth, and cortisol, but does not affect leptin in normal controls. Neuropsychopharmacology 2005,
30, 1187–1192. [CrossRef] [PubMed]

35. Hosoda, H.; Kangawa, K. The autonomic nervous system regulates gastric ghrelin secretion in rats.
Regul. Pept. 2008, 146, 12–18. [CrossRef] [PubMed]

36. Chicharro, J.L.; Lucia, A.; Perez, M.; Vaquero, A.F.; Urena, R. Saliva composition and exercise. Sports Med.
1998, 26, 17–27. [CrossRef] [PubMed]

37. Espelund, U.; Hansen, T.K.; Hojlund, K.; Beck-Nielsen, H.; Clausen, J.T.; Hansen, B.S.; Orskov, H.;
Jorgensen, J.O.L.; Frystyk, J. Fasting unmasks a strong inverse association between ghrelin and cortisol in
serum: Studies in obese and normal-weight subjects. J. Clin. Endocrinol. Metab. 2005, 90, 741–746. [CrossRef]
[PubMed]

38. Clarke, N.; Farthing, J.P.; Norris, S.R.; Arnold, B.E.; Lanovaz, J.L. Quantification of training load in canadian
football: Application of session-RPE in collision-based team sports. J. Strength Cond. Res. 2013, 27, 2198–2205.
[CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/sj.npp.1300670
http://www.ncbi.nlm.nih.gov/pubmed/15688086
http://dx.doi.org/10.1016/j.regpep.2007.07.005
http://www.ncbi.nlm.nih.gov/pubmed/17720259
http://dx.doi.org/10.2165/00007256-199826010-00002
http://www.ncbi.nlm.nih.gov/pubmed/9739538
http://dx.doi.org/10.1210/jc.2004-0604
http://www.ncbi.nlm.nih.gov/pubmed/15522942
http://dx.doi.org/10.1519/JSC.0b013e31827e1334
http://www.ncbi.nlm.nih.gov/pubmed/23222076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Participants 
	Study Design 
	Anthropometry 
	Exercise Training Volume 
	Dietary Intake 
	Hormonal and Biochemical Indicators 
	Appetite and Fatigue Sensation 
	Mood States 
	Statistical Analysis 

	Results 
	Anthropometric Measures 
	Training Volume and Nutritional Intake 
	Measurements Related to Stress 
	Measurements Related to Appetite 

	Discussion 
	Conclusions 

