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Abstract: Studies on cyanobacteria in Vietnam are limited and mainly restricted to large reservoirs.
Cyanobacterial blooms in small water bodies may pose a health risk to local people. We sampled
17 water bodies in the vicinity of urban settlements throughout the Mekong basin and in southeast
Vietnam. From these, 40 water samples were taken, 24 cyanobacterial strains were isolated and
129 fish, 68 snail, 7 shrimp, 4 clam, and 4 duck samples were analyzed for microcystins (MCs).
MCs were detected up to 11,039 µg/L or to 4033 µg/g DW in water samples. MCs were detected
in the viscera of the animals. MC-LR and MC-RR were most frequently detected, while MC-dmLR,
MC-LW, and MC-LF were first recorded in Vietnam. Microcystis was the main potential toxin producer
and the most common bloom-forming species. A potential health hazard was found in a duck–fish
pond located in the catchment of DauTieng reservoir and in the DongNai river where raw water was
collected for DongNai waterwork. The whole viscera of fish and snails must be completely removed
during food processing. Cyanobacterial monitoring programs should be established to assess and
minimize potential public health risks.

Keywords: cyanobacteria; cyanotoxins; Mekong river; aquaculture

Key Contribution: MCs were detected in water samples and in the viscera of the animals collected
from water bodies in southern Vietnam. A potential health hazard was found in a duck–fish pond
located in the catchment of DauTieng reservoir and in the DongNai river where raw water was
collected for DongNai waterwork.

1. Introduction

When sufficient resources are available, cyanobacteria may proliferate and bloom in reservoirs,
lakes, rivers, estuaries, and coastal systems, where they may cause a multitude of water quality
concerns, such as producing malodor, causing nocturnal oxygen deficiency leading to fish kills,
disrupting the aquatic ecosystem, and posing a health hazard to wildlife, game, and humans, because
of their potential to produce strong toxins (cyanotoxins) [1,2]. Cyanobacteria can cause acute or chronic
toxicity to animals and humans via different exposure routes, such as contaminated drinking water,
fish or shell fish, through crops irrigated with cyanobacteria-infested waters, or through recreational
exposure. Numerous animal poisonings associated with exposure to cyanobacteria have been reported
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by Hudnell et al., 2008 [3]. The potency of the cyanobacterial toxins is underpinned by the death
of 30 kg dogs exposed to anatoxins [4] and microcystins [5]. Three cows and ten calves died in
northwest Queensland in 1997 and 148 people were hospitalized in Palm Island in 1979 after expoxure
to cyanobacteria [6–8]. In total, 458 suspected human illnesses and 175 animal deaths associated with
cyanobacterial bloom events have been reported in the U.S.A. during 2007–2011 [9].

Cyanotoxins are produced by several cyanobacterial species amongst others belonging to
the genera Aphanizomenon, Anabaena (Dolichospermum), Anabaenopsis, Cylindrospermopsis, Microcystis,
Nostoc, Nodularia, and Oscillatoria (Planktothrix) [10]. The most widespread and notorious class
of cyanotoxins are the microcystins (MCs) that are known as non-ribosomal processed cyclic
heptapeptides. The general structure is cyclo(-D-ala1-L-X2-erythro-β-D-methylaspartic acid3-L-Z4-
Adda5-D-isoglutamic acid6-N-methyldehydroalanine7). Adda5 is (2S,3S,8S,9S)-3-amino-9-methoxy-
2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid and X and Z are variable L-amino acids on the 2 and
4 positions, which contribute mostly to the dozens of variants of MCs that have been detected.
The amino acids on the 3 (D-MeAsp) and 7 (D-Glu6-Mdha) positions can also occur as demethylated
variants. MCs are potent inhibitors of protein phosphatases, but the toxicity of different variants
to mice varied substantially, where replacement of the hydrophobic leucine (L) in the first variable
position with a hydrophilic amino acid (e.g., arginine, R) that dramatically reduces toxicity [11].

Southern Vietnam, including the Mekong Delta, is a large area with lakes, ponds, rivers, primary
canals, and reservoirs. It includes large systems such as the Mekong river, DongNai river, TriAn
reservoir (323 km2), DauTieng reservoir (264 km2), and BinhThieng reservoir (192 hectare) and
numerous smaller canals, streams and fish, shrimp, and duck ponds that are all vulnerable to point
source pollution by sewage, ducks, and local fish farming. Consequently, these sites present a high
risk for developing cyanobacterial blooms and as they are often in close vicinity to urban settlements,
citizens might be at high risk of exposure to cyanobacterial toxins. In aquaculture in the Mekong Delta,
cyanobacteria-infested water is commonly treated chemically, i.e., by chlorine or copper sulphate,
which may then lead to high water concentrations of dissolved cyanotoxins from cell lysis [12,13].
Hence, fish and other aquatic animals grown in the aquaculture ponds may contain cyanotoxins posing
a potential risk to consumers (Figure 1a,b). Surface water collected directly from the water bodies
by local water supply stations in the Mekong Delta is generally treated by rock and sand filters in
combination with chlorinated disinfection before supplying the water to the local communities [14].
However, when cyanobacterial blooms occur in these water bodies, the presence of cyanotoxins in
treated drinking water cannot be totally excluded. Local residents in the Mekong Delta use the surface
water for daily bathing and washing (Figure 1c,d). Hence, the presence of cyanobacteria in the water
bodies mentioned above might infer a health risk to the local people. However, up-to-date information
on cyanobacteria and cyanotoxins in southern Vietnam is very limited.

Studies on cyanobacteria in Vietnam have mainly focused on morphological taxonomy [15–20].
Few later studies touched upon microcystins (MCs) producing cyanobacteria in natural lakes and
reservoirs and showed the occurrence of microcystin variants MC-RR, MC-dmRR, MC-YR, MC-LA,
MC-LY, and MC-WR in isolated cyanobacteria and field samples [21–24]. A first report on MC
accumulation in fish and bivalves was recently published by Pham et al. [25], in which MCs
concentrations varying from 0.06 to 3.15 µg MCs/g DW were determined in three fish and two
bivalves collected in Dau Tieng Reservoir. The study areas and cyanobacterial samples in those studies
are limited to a few water bodies, mainly large reservoirs. However, cyanobacteria blooms in small
ponds and canals used for collecting drinking water or to cultivate fish or ducks may also pose a health
risk to local people. We hypothesize that the cyanobacteria blooming in these small water bodies
produce MCs and that MCs are also present in animals living in these water bodies. The aims of the
current study were, therefore, (1) to determine the occurrence of cyanobacterial blooms and MCs; (2) to
measure the MC content in isolated cyanobacteria strains; (3) to quantify the MC content in animals
living in water bodies suffering from cyanobacteria; and (4) to assess health hazards caused by MC
exposure to local people via estimated daily intake (EDI).
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Figure 1. Daily activities of local people potentially exposed to cyanobacterial toxins in the Mekong
Delta: Traditional fisheries in cyanobacteria bloom-water ponds (a,b) and bathing and washing (c,d).

2. Results

2.1. Physical and Chemical Characteristics and Cyanobacterial Blooms

The results of the physical and chemical characteristics of 17 water bodies at the moment of our
sampling in southern Vietnam are summarized in Table 1. The water temperature was high and ranged
from 30 to 37.7 ◦C, which was due to the sampling that mainly took place during the hot season in
Vietnam from January to June in 2015 and 2016. The high temperature was a consequence of the
heatwaves recorded in recent years in the Indochina peninsula [26]. Salinity ranged from 0.5‰ to
7.6‰ at the sampling points. High concentrations of TN and TP indicated that the water bodies were
eutrophic to hyper-eutrophic [27].

Cyanobacterial blooms were observed in ponds, reservoirs, canals, and rivers in southern Vietnam.
The blooms in small ponds, where fish or ducks were cultivated, appeared more dense than the blooms
found in reservoirs and rivers that are the main water supplies for domestic purposes, irrigation, and
aquaculture. High cyanobacteria chlorophyll-a concentrations from 1437 to 5100 µg chl-a/L were
measured in several carp ponds in HCMC, in a duck–fish pond and in extensive catfish ponds (Table 1).
Lower concentrations from 46 to 420 µg chl-a/L were measured in the reservoirs, Tri An, Dau Tieng,
and Binh Thieng (Table 1). The abundance of cyanobacteria in terms of chl-a was strongly correlated
with TN (r = 0.709) and TP (r = 0.676) (Appendix A, Figures A1 and A2). Microcystis, Planktothrix,
Oscillatoria, and Cylindropermopsis were the dominant genera.
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Table 1. Water temperature (◦C), salinity (‰), pH, total nitrogen (TN), total phosphorus (TP), ammonium-N, nitrate-N, and phosphate-P concentrations in 17 sampling
sites as shown in Figure 5. Also indicated are the chlorophyll-a concentrations (Chl-a, µg/L) and the dominant cyanobacteria genera (Domi.), where Mic = Microcystis,
Plank = Planktothrix, Cyl = Cylindrospermopsis, and Osc = Oscillatoria.

Location Water Body Domi. Temp. (◦C) Sal. (‰) pH TN (mg/L) TP (mg/L) N-NH4 (mg/L) N-NO3 (mg/L) P-PO4 (mg/L) Chl-a (µg/L)

TraVinh Duck–fish pond Mic 33.1 0.5 9.58 19.5 1.75 1.14 0.28 0.02 4352
TraVinh Mekong river Mic 33.2 6.7 7.88 2.07 0.05 BLD 0.08 0.02 28.9
TraVinh Shrimp pond Plan 27.5 1.0 8.75 8.19 0.44 0.83 0.08 BLD 300
LongAn Wastewater pond Plan 31.5 0.0 9.22 27.1 2.75 2.12 0.31 0.43 1572
LongAn Duck pond Plan 31.2 0.0 9.17 60.7 1.00 1.06 0.14 0.06 310

BinhChanh Fish pond Mic 37.5 7.4 9.89 9.13 0.25 0.57 BLD BLD 1480
BinhChanh Fish pond Mic 37.4 7.5 9.77 9.00 0.33 0.67 BLD BLD 1520
BinhChanh Fish pond Mic 37.4 7.4 9.79 9.36 0.30 0.46 BLD BLD 1437
BinhChanh Fish pond Mic 37.7 7.6 9.66 16.91 1.52 1.02 0.04 0.19 5100
BinhChanh Wastewater canal Mic 36.0 7.0 9.00 8.62 0.71 0.55 BLD BLD 467

CuChi Rice farm Cyl 34.9 0.0 9.13 6.78 0.43 0.53 0.23 BLD 274
CuChi Fishing pond Plan 34.3 0.0 7.91 3.6 0.09 0.17 0.12 BLD 29.7

An Giang reservoir Osc/Plan 33.6 0.0 7.96 1.77 0.06 0.96 0.18 0.03 45.6
An Giang Catfish pond Plan 30.0 0.1 7.31 9.38 1.60 3.96 0.1 1.04 221
DauTieng Duck–fish pond Mic 33.5 0.0 9.82 3.98 0.59 0.39 0.14 0.10 169
DauTieng reservoir Mic 34.0 0.0 8.12 3.89 0.59 0.39 0.14 0.10 94

TriAn reservoir Mic 34.2 0.0 8.57 15.5 0.84 - 0.4 0.10 420
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2.2. MC Content in Cyanobacterial Field Samples and Isolated Strains

There were 41 field samples collected from the 17 water bodies to determine the MC concentrations.
MCs were detected in 28 out of 41 water samples collected in 3 reservoirs, 9 small ponds, 1 canal,
2 lakes, and 2 rivers during bloom events. The MC concentrations of field samples were determined
in µg/L and/or µg/g DW and are shown in Table 2. The MC concentrations ranged from under
the detection level to 11,039 µg/L or to 4033 µg/g DW. The maximum concentrations of total MC
in the water samples were determined in the duck–fish pond in TraVinh province, Mekong delta,
where the fish climbing gouramies (Anabas testudineus) and ducks were cultivated. A higher MC
concentration was detected in 18 samples collected from blooms with Microcystis dominance than in
the three samples with Oscillatoria, Planktothrix dominance. Twenty-four cyanobacterial strains were
isolated from sampled blooms that were also tested for MC concentration in both µg MC/L and µg
MC/g DW and shown in Tables A1 and A2 (Appendix B). MCs were found in only nine Microcystis
strains and was not found in four other Microcystis strains. In the isolated Anabaena, Anabaenopsis and
Planktothrix strains, no MCs were detected (Appendix B).

Table 2. Total microcystin (MC) concentrations (µg/L and/or µg/g DW) of samples collected at sampling
sites where cyanobacteria blooms were found, including the chlorophyll-a concentrations (Chl-a, µg/L)
and the dominant cyanobacteria genera (Domi.), where Mic = Microcystis, Plank = Planktothrix, and
Osc = Oscillatoria. a-indicates not determined, <LOD = below level of detection.

Location Water Body Domi. Genera
Chl-a MC Concentration

µg/L µg/L µg/g DW

TraVinh Duck–fish pond Mic 4352 11,039 4033
LongAn duck pond Osc 310 0.18 <LOD

Mekong-TraVinh river Mic 29 57 2591
TriAn-DongNai reservoir Mic 187 2610 -

DauTieng-TayNinh reservoir Mic 169 30 -
DauTieng-TayNinh reservoir Mic 94 - 485

BinhChanh Fish pond Mic 5100 821 1156
BinhChanh Fish pond Mic 1520 293 1477

CuChi Canal Plank 8 0.03 -
CuChi Fish pond Plank 30 0.08 -

An Giang Reservoir Plank 46 0.31 -
XuanHuong-DaLat Lake Mic - - 6
TuyenLam-DaLat Lake Mic - - 278

DongNai River Mic - - 602–664

Mic: Microcystis sp., Osc: Oscillatoria sp., Plank: Planktothrix sp.

MC-LR and MC-RR variants were most frequently detected in 24 and 20 out of 28 MC-containing
field samples, respectively. They were also the most abundant MC variants in the samples, in which
MC-RR contributed from 44% to 100% of the total MC-pool in 17 samples and MC-LR contributed from
43% to 100% of the total MC-pool in the remaining 11 samples. Our study contributed to the diversity
of MC variants as three MC variants including MC-dmLR, MC-LW, and MC-LF were recorded for the
first time in Vietnam (Table 3).
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Table 3. MC variants and concentration in water bodies in Vietnam.

Location Water
Bodies

Species/Genera
Dominant

MC Variants Dominant
Variants

Microcystin Concentration
Ref.

µg/L µg/g DW

Lake Thanh Cong,
Ha Noi M. aeruginosa

MC-RR, MC-YR, MC-WR,
MC-dmRR, MC-dmWR,

MC-LR
MC-WR 4240 [21]

Pond and rivers
in Hue M. spp. MC-RR, MC-LR MC-RR,

MC-LR 1.02–76.20 [28]

TriAn reservoir M. botrys
M. wesenbergii

MC-LR, MC-RR,
MC-LA, MC-LY,

MC-RR
MC-LR 450–640 [22]

NuiCoc resrvoir
M. aeruginosa,
M. wesenbergii,

M. botrys.

MC-RR
MC-LR

MC-RR
MC-LR 45.4–1699 [24,29]

DauTieng reservoir Microcystis
aeruginosa MC-LR, MC-RR, MC-YR MC-RR 521–669 [30]

Duck–fish pond
TraVinh Microcystis spp. MC-dmRR, MC-RR, YR

and dmLR MC-RR 7771–91,721 407–4033 This study

Mekong river
TraVinh Microcystis spp.

MC-dmRR, MC-RR, YR
and dmLR, MC-LR, MC-LY,

MC-LW, MC-LF
MC-LR 57.26 1575–2591 This study

TriAn reservoir Microcystis spp. MC-RR, dmLR, MC-LR,
MC-YR, MC-LY, MC-LW, MC-LR 425–3619 This study

DauTieng reservoir Microcystis spp. MC-dmRR, MC-RR, dmLR,
MC-LR MC-RR 0.09–30 485 This study

Fish pond
BinhChanh Microcystis spp. dmLR, MC-LR, MC-YR 293–821 1156–1477 This study

XuanHuong Lake Microcystis spp. MC-LR MC-LR 6 This study

TuyenLam Lake Microcystis spp. MC-RR, MC-YR, dmLR,
MC-LR MC-RR 278 This study

DongNai river Microcystis spp.
MC-dmRR, MC-RR,

MC-YR, dmLR, MC-LR,
MC-LY, MC-LW, MC-LF

MC-LR 602–664 This study

2.3. MCs Accumulation in Animals

The MC content was determined in 212 organ and tissue samples of aquatic animals, including
129 fish, 68 snail, 7 shrimp, 4 clam, and 4 duck samples collected in water bodies suffering from
cyanobacterial blooms. MCs were detected in 36 samples (17% of total samples), including 23 snail,
12 fish, and 1 shrimp samples (Table 4, Appendix C).

The MC content in the animals varied among fish species, organs, tissues, and seemed to be
influenced by the sampling sites where they had been collected (Table 4). On average, the MC content
was higher in fish than in shrimp and snail with 24.1, 15.2, and 1.1 µg/g DW in fish, shrimp, and
snail, respectively (Table 4). MCs were mainly found in the viscera including the visceral mass, liver,
and gut in apple snails, tilapias, suckermouth catfish, goldfish, common carp, ganges river sprat fish,
snakeskin gourami fish, and white leg shrimp. MCs were also found in 4 flesh samples, in 3 apple
snails, and 1 suckermouth catfish (Table 4). No MCs were found in clam and duck. The highest MC
content of 115.95 µg/g DW was detected in the gut of the omnivorous tilapia collected in a fish pond in
BinhChanh, which was followed by 108.28 µg/g DW found in the gut of suckermouth catfish collected
in the same pond. A lower MC content was found in the gut of goldfish (18.57 µg/g DW) collected in
BinhChanh and in the gut of tilapia collected in TriAn, DauTieng reservoirs (11.55 and 0.76 µg/g DW).
A trace amount of 0.36 µg MC/g DW was found in the gut of common carp (Carassius sp.) collected
in BinhChanh.

MCs were also detected in the livers of tilapia (13.39 µg/g DW) and suckermouth catfish
(18.97 µg/g DW) collected in BinhChanh. In our survey, the visceral mass in small tilapia, snakeskin
gourami fish, ganges river sprat fish, white leg shrimps, and apple snails was collected to determine
the MC content, because it was very hard to separate gut or liver organs from the rest visceral organs
of these small animals. In addition, the animals were eaten whole by local consumers, thus the MC
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content in the visceral mass would be more reliable for warning the local consumers. The MC content
in the visceral mass in snakeskin gourami fish and white leg shrimp was 13. 86 and 15.21 µg/g
DW; those in tilapia, ganges river sprat fish, and apple snail were 2.87, 2.38, and 0.21–2.90 µg/g
DW, respectively.

Table 4. MC concentrations accumulated in various organs in aquatic animals.

Organism/Species Organ MC Concentration
(µg/g DW) Location Ref.

Fish

Common carp
Cyprinus carpio

G, M 0.36; UD BinhChanh This study
M 0.060 Fishponds, Serbia [31]

M, L, K, I, H 0.0317; 0.0295; 0.0323;
0.133; 0.019 Lake Taihu, China [32]

M, L 0.69–3.45; 1.09–2.05 Eğirdir, Turkey [33]

Golden carp
Carassius auratus

VM, M 18.57, UD BinhChanh This study

M, L, K, I, H 0.0267, 0.0454, 0.114, 2.04,
0.0595 Taihu, China [32]

Suckermouth catfish
(Hypostomus punctatus) G, L, M 108.38; 18.97; 3.73 BinhChanh This study

Tilapia
(Oreochromis sp.)

G; L, M 115.95; 13.39; UD BinhChanh This study
G, VM, L, M 11.55; 2.87; UD; UD TriAn reservoir This study

G, M 0.76; UD DauTieng reservoir This study
L, I, M 2.1; 2.6; UD DauTieng reservoir [25]
L, M 0.0562; 0.0134–0.0168 Fish pond, Southeast Asian [34]

L 6.752 *–8.682 * Funil and Furnas Reservoirs, Brazil [35]
G, L, M 4.756 *; 0.154 *; 0.029 * Lake Victoria, Uganda [36]
G, L, M 4.219 *; 0.235 *; 0.672 * Lake Mburo, Uganda [36]

Snakeskin gourami
(Trichogaster pectoralis) VM, M 13.86; UD BinhChanh This study

Ganges river sprat
(Corica soborna) VM, M 2.38, UD TriAn reservoir This study

Snails

Apple snail
(Pomacea canaliculata)

VM, M 0.21–3.21; 0.15–0.30 TriAn reservoir This study
VM 1.61–2.90 BinhChanh This study

Shrimp

White leg shrimp
(Litopenaeus vannamei) VM, M 15.21; UD TraVinh This study

G = gut; L = Liver; VM = visceral mass; M = muscle; H = heart; I = intestine; K = kidney; UD = undetectable;
conversted to DW by WW * a conversation factor of 0.311 [34,37,38].

MC-LW and MC-LF seem to be more toxic than MC-LR that is currently used for risk calculations
and assessments [39,40]. These MC variants were found for the first time in Vietnam, in TriAn reservoir
and Mekong, DongNai rivers. Since different MC-variants have different toxicity as determined by
bioassays [11,39,40], the contribution of each variant to the overall MC toxicity of the samples was
estimated by multiplying its concentration by a toxicity factor as mentioned in Table 1 in Faassen and
Lürling 2013 [41]. As a consequence of the lower toxicity factor of MC-RR in comparison with MC-LR
(see Table 1 in Faassen and Lürling 2013 [41]), the overall toxicity of MC-RR-dominated samples
became less. For instance, the MC concentration in the sample collected in a duck–fish pond in Travinh
was 11,039 µg/L, but the overall estimated toxicity of the sample was equal to only 963 µg/L MC-LR
equivalents. Samples containing MC-LW and MC-LF were estimated to increase in toxicity when
expressed as MC-LR equivalents, because these two variants have higher toxicity factor in comparison
with MC-LR.

MC-LR occupied, on average, 81% of total toxicity in 13 out of 18 samples containing high MC
concentrations (Figure 2). MC-RR and MC-LF contributed 81% and 44%, respectively, to the total
toxicity in two other samples.
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water samples with cyanobacterial bloom in southern Vietnam.

3. Discussions

3.1. Occurrence of Cyanobacterial Blooms

There are few reports on cyanobacterial blooms and MCs in southern Vietnam, such as in TriAn
and DauTieng reservoirs [22,25,30,42,43]. In addition to these relatively large water bodies, our study
also points out that MC-producing cyanobacterial blooms occur in small ponds, small reservoirs
and rivers in southern Vietnam. In fact, this is the first report on cyanobacterial blooms and MCs
in the Vietnamese Mekong delta (Table 3). There are thousands of small ponds or water bodies in
southern Vietnam, which are cultivating fish and ducks in a combination model to provide daily food
for local markets. Pellet feeds containing high levels of nitrogen and phosphorus are used as food
for fish and ducks leading to high concentrations of nitrogen and phosphorus from uneaten pellet
feeds and feces of fish and ducks. Additionally, chicken manure is often applied to enhance primary
productivity during the initial phase of fish cultivation. Our monitoring indicated that the ponds were
highly eutrophic or hyper-eutrophic, as TN and TP ranged from 3.98 to 60.7 mg/L and from 0.25 to
1.75 mg/L, respectively (Table 1). The excessive nutrients, high water temperature, and rather stable
water column resulted in cyanobacterial blooms in the ponds. These blooms were evidently linked to
TN and TP concentrations as the higher the TN and TP concentrations, the higher the cyanobacteria
biomass in water (Appendix A). Microcystis strains isolated from the ponds expressed better growth
rates under warming temperature [44]. Hence, excessive nutrients and high temperature may support
the cyanobacterial blooms observed during the dry, hot seasons in 2015 and 2016 in southern Vietnam.

3.2. MC Content in Cyanobacterial Field Samples and Isolated Strains

Our study confirmed that Microcystis was the main potential toxin producer and the most
common bloom-forming species in southern Vietnam, which is in accordance with previous
studies [21,22,24,28–30,41,43]. The other bloom-forming species, such as Oscillatoria and Planktothrix,
can also accumulate high biomass in the water bodies, but the MC concentrations were below
the detection level or found at trace levels (<0.5 µg/L). This finding is supported by the study of
Nguyen et al. [28] in several water bodies in Hue, middle Vietnam, where the MC concentrations were
high (47.8 µg/L) in bloom samples with Microcystis dominance, while the MC concentrations were
much lower ranging from below the detection level to 0.05 µg/L in bloom samples with Arthrospira,
Merismopedia dominance, or 1.31 µg/L in bloom samples with Jaaginema, Oscillatoria dominance [28].

3.3. MC Accumulation In Animals

In general, the MC content detected in the gut, liver and visceral mass of fish in our study was high
when compared to other studies (Table 4). For instance, the MC content in the visceral mass of golden
carp collected in BinhChanh was nine times higher than that found in the intestine of golden carp
collected in lake Taihu, China [32]. The MC content in the liver of tilapia collected in BinhChanh was
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almost double that measured in the liver of tilapia collected in Funil and Furnas reservoirs, Brazil [35]
and 57 and 87 times higher than the MC content found in the liver of tilapia collected in lake Mburo
and lake Victoria, Uganda [36]. Both carp and tilapia are omnivorous fish; when living in ponds with a
high biomass of toxic Microcystis, they likely consume Microcystis via their daily food and consequently
may accumulate MCs. Fecal pellets of the fish in BinhChanh fish pond were collected during our
sampling and microscopy revealed that the fecal pellets contained undigested Microcystis and empty
rotifer (Figure 3). Although we cannot estimate how much Microcystis was ingested and digested by
the fish, the microscopy indicated that Microcystis was ingested by the fish.
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Figure 3. Microscopy revealed that fecal pellets of fish in a fish pond in BinhChanh contained
undigested Microcystis and rotifer.

Nevertheless, the MCs were under the level of detection in muscle tissues in most of the samples
except for suckermouth catfish and snails. The MCs in the muscle tissue of tilapia collected in DauTieng
reservoir were under the level of detection (Table 4), which was also found by Pham et al. [25]. However,
covalently bound MCs were found in the muscle tissue of tilapia collected in DauTieng reservoir [25].
The hot methanol extraction applied in our study was not able to detect the bound MCs, which may
be one of the reasons why MCs were undetected in muscle tissue in the fish in our study.

3.4. Public Health Risk Assessment

3.4.1. Risk Assessment for Drinking Water Supplies

DongNai, SaiGon rivers and DauTieng reservoir are the main water supplies for HoChiMinh city
(hereafter HCMC) [45,46]—a megacity with 10 million inhabitants. Our monitoring indicated that MC
concentrations ranged from 0.09 to 2.22 µg/L—equivalent to 0.01–0.78 µg MC-LR equivalent/L in raw
water collected at five sampling points in DauTieng reservoir, which is below the WHO guideline value
of 1.0 µg MC-LR/L for drinking water [1]. Additionally, extracellular MCs in raw water in DauTieng
reservoir were lower than the level of detection. DauTieng reservoir was a safe source of drinking
water at the time of our monitoring, in accordance with WHO guidelines. However, the occurrence
of MCs in this reservoir should be paid attention due to their potential health risks. In addition,
concentrations of 30 µg/L or 8.55 µg MC-LR equivalent/L and 485 µg/g DW or 47.73 MC-LR
equivalent/g DW were detected in samples of a duck–fish pond located in the catchment of DauTieng
reservoir. These concentrations were much higher than the WHO guideline value for drinking water.
As these duck and fish cultivations occurred in the catchment of DauTieng reservoir, discharged water
from these ponds could not only inoculate or increase blooms of cyanobacteria, but also imply a
potential health hazard for drinking water supply.

An MC concentration of 664 µg/g DW was detected at HoaAn in the Dongnai river, where
raw water was collected for DongNai waterwork. This raw water is treated two times with chlorine
1–2 mg/L and 2–4 mg/L to kill algae and moss as in the typical process scheme of a water drinking
plant in Vietnam (Figure 4) [47]. Chlorine is known as an algaecide and chlorination has a strong action
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on membrane disruption, which can induce cyanobacterial cell lysis. For instance, 97% of M. aeruginosa
cells was lysed within the first minute when exposed to 3 mg/L chlorine [12]. Chlorine application of
2–4 mg/L during pre-chlorination in many drinking water plants in Vietnam can result in cell lysis and
consequently cyanotoxins can be liberated into drinking water. Although there was no information on
cyanobacteria concentration in bloom events in HoaAn in January 2016, the greenish appearance and
Microcystis dominance in water with an MC content of 664 µg/g DW or 554 µg MC-LR equivalent/g
DW should be considered as a potential health hazard for water consumers.
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Figure 4. The typical process scheme of a water drinking plant in Vietnam. Modified from
Nha Trang et al., 2012 [47]. RW: Raw water; WI: Effluent of pre-chlorination; MT: Effluent of mixing
tank; ST: Effluent of the sedimentation tank; SF: Effluent of rapid sand filter; RI: The inlet of the clean
water reservoir; PS: The outlet of the clean water reservoir.

Rivers, lakes, and ponds in the Mekong delta are among the main water supplies for household
daily use. These water supplies provided 36% for households’ daily demands (besides drinking
and cooking) and 25% for the demands of drinking and cooking [48,49] for 17.4 million people.
The available surface water from these water supplies can be directly used for domestic purposes,
especially in the dry season and cyanobacteria accumulation in the surface water has not been
recognized as a potential health risk to local people who settle in villages and cities along and above
the rivers, lakes and ponds. Additionally, raw water for local water supply stations in the Mekong
delta collected from the rivers and canals in this area is treated via a simple process—rock and sand
filters in combination with chlorinated disinfection—prior to reaching the local communities [14].
The piped-water provided by these local water supply stations may be contaminated by MCs liberated
from cyanobacterial cell lysis due to the chlorination in the water process. Therefore, additional studies
should examine the processed drinking water in the presence of MCs.

3.4.2. Risk Assessment for MC-Contaminated Foods

We assessed public health risk for the MC-contaminated apple snails and fish by calculating the
estimated daily intake (EDT) for digestion of apple snails and fish (Table 5). The estimated daily intake
(EDI) of MC-LR equivalents (µg/kg/day) is based on the tolerable daily intake (TDI) of 0.04 µg MC-LR
per kg of body weight per day over the lifetime of an individual weighing 60 kg and eating 300 g snail
or 100 g fish per day, as recommended by the WHO [1]. DW of fish in our study was converted to WW
by a conversation factor of 0.311 [34,37,38]. WW of apple snails was estimated by DW and 83% water
content in live apple snails [50].
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Table 5. Estimated daily intake (EDI) of MC-LR equivalents (µg/kg/day) in snails and fish collected at
different locations in southern Vietnam.

EDI Muscle Tissue Visceral Mass Gut Liver Egg Head

Snails-TriAn 0.039 0.107 - - 0.038 -
Snails BinhChanh 0 1.997 - - 0 -

Ganges river sprat-TriAn 0 0.618 - - - -
Sknakskin gourami

fish-BinhChanh 0 7.155 - - - 0

Tilapia-TriAn 0 0.119 1.111 - - -
Tilapia-DauTieng 0 0.393 - - - -

Tilapia-BinhChanh 0 - 57.61 6.819 - -
Suckermouth

catfish-BinhChanh 1.903 - 52.19 9.441 - -

TDI recommended by WHO 0.04 0.04 0.04 0.04 0.04 0.04

The golden apple snails, Pomacea canaliculata and Pomacea maculata, are invasive freshwater snails
in Vietnam. The snails were introduced for culture as a food source in 1988, but the snails then spread
in rice fields, canals, and rivers, becoming a harmful pest in wetland rice culture and other crops [51,52].
The apple snails are rich protein and mineral sources, hence, they are promoted for use as food for
humans and as live-food in aquaculture and agriculture. For example, the apple snails are applied as
food for striped catfish (Pangasianodon hypophthalmus) fingerlings [53] or as a protein supplement to
replace soya bean meal in the diets of ducks in the Mekong delta [54]. The apple snails are being sold
on many markets throughout Vietnam and have become a common food for the Vietnamese. Our study
indicated that apple snails collected from water bodies with a cyanobacterial bloom contained MC
both in their visceral and muscle tissue. The calculated EDI indicated that the viscera of apple snails
had accumulated MCs (as MC-LR equivalent) 3 to 50 times higher than the TDI value recommended
by the WHO. Therefore, it is important to test the viscera of apple snails collected in water bodies with
toxic cyanobacteria on accumulated MCs, since evidently apple snails may pose a health hazard for
human consumption in southern Vietnam. MC-LR equivalents found in the muscle tissues of apple
snails collected in TriAn reservoir were almost equal to the TDI value. Hence, the consumption of
apple snails in southern Vietnam is safer for humans if their viscera is completely removed and no
more than 300 g flesh of the snails is consumed.

Ganges river sprat, sknakskin gourami fish, and tilapia are common food for local people in
southern Vietnam. Ganges river sprat and sknakskin gourami fish are small-sized, high-value fish
and well known as delicious specialties in the Mekong Delta and TriAn reservoir. The whole body
of fresh and dried Ganges river sprat and sknakskin gourami fish are eaten by consumers, because
time-consuming and labour-intensive actions are required to remove the viscera of these small fish.
Moreover, the lipids accumulated in the viscera of these fish also contribute to its delicious flavour.
However, the EDI calculated from MC-LR equivalents found in the viscera of Ganges river sprat and
sknakskin gourami fish were 16 and 179 times higher than the recommended TDI value, respectively.
The EDI values of the visceral mass in tilapia collected in DauTieng and TriAn reservoir were also 3
and 10 times higher than the recommended TDI value, respectively. The EDI value of the gut in tilapia
collected in BinhChanh fish pond was 1440 times higher than the recommended TDI value.

The viscera of the fish can account for 10–18% of the whole body weight [55]. Although MCs
were not detected in the flesh, the high MC concentrations in the viscera of the fish could possibly
pose a health risk to consumers eating the whole fish. It is highly recommended that the viscera and
especially, the gut of ganges river sprat, sknakskin gourami fish, and tilapia are removed before the
fish is consumed.

The suckermouth catfish is an ornamental fish, but it is also known as an invasive species in fresh
and brackish water systems in Vietnam. The invasion of suckermouth catfish in the Mekong Delta
has been reported by public media since 2004 [56]. The suckermouth catfish has been sold on local
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markets as food since 2011 [57]. In particular, the suckermouth catfish was recently used as food for
patients with diabetes due to local people believing that the flesh of the fish can reduce diabetic signs;
this resulted in more serious diabetes, as reported by Faculty of Endocrinology at Hospital of 115 in
HCMC [58]. The MC concentration found in the gut of suckermouth catfish was very high, leading
to an EDI that was 1305 times higher than the recommended TDI value. Nevertheless, the gut of
suckermouth catfish is completely removed during processing and thus no health hazard is expected
from ingesting it. However, the flesh and liver of the catfish showed an EDI 48 and 236 times higher
than the recommended TDI value and thus it could be considered a high potential hazardous food.

3.4.3. Cyanobacteria Control in Southern Vietnam

There is currently no management strategy to control cyanobacteria in southern Vietnam.
This is due to the fact that cyanobacterial blooms have been considered as harmless phenomena.
No information on the acute and long-term impacts of MCs on the health of the local public has
been reported in this area. However, this and other studies [22,25,30] show that MCs were found in
water and in aquatic animals with concentrations and contents that could be assessed as potentially
hazardous to the health of the local public. Therefore, we suggest that cyanobacteria-monitoring
programs should be established to identify the spatial and temporal variability of cyanobacterial
contamination, to assess the potential hazards to the health of the local public and to warn local people
who are at significant potential risk of exposure to cyanobacterial toxins. With predicted climatic
changes in southern Vietnam, this becomes even more important, especially as warming temperature
can boost the high accumulation of cyanobacterial biomass in water bodies in southern Vietnam.

4. Conclusions

Eutrophication and hyper-eutrophication with the accumulation of high cyanobacterial biomass
were observed in several water bodies (reservoirs, rivers and small ponds) in southern Vietnam.
Eutrophication and cyanobacterial blooms in small ponds, where fish and/or ducks were cultivated,
were more serious than those in reservoirs and rivers. Microcystis was the main potential toxin
producer and the most common bloom-forming species in southern Vietnam. The MC concentrations
ranged from <LOD to 11,039 µg/L or to 4033 µg/g DW in field samples. MCs were only found in
isolated Microcystis strains and were <LOD in other isolates, including Anabaena, Anabaenopsis, and
Planktothrix strains

MC-LR and MC-RR variants were most frequently found and the most abundant MC variants in
MC-containing field samples. Three MC variants—MC-dmLR, MC-LW, and MC-LF—were recorded
in Vietnam for the first time. MC-LR, MC-RR, and MC-LF significantly contributed to the total toxicity
of MC-containing samples.

The MC content in fish was higher than in shrimp and snail. MC was mainly found in the visceral
mass, liver, and gut, so consuming whole MC-containing fish and snails is not safe. It is strongly
recommended that the whole viscera of fish and snails must be completely removed during food
processing, especially when the animals are collected from water bodies with a high cyanobacteria
biomass. The suckermouth catfish should be considered as an ornamental fish, while it is not a safe
food source.

Cyanobacterial monitoring programs should be established to assess and minimize potential
public health risks.

5. Materials and Methods

5.1. Sampling

Seventeen water bodies including rivers, lakes, ponds, canals, and reservoirs in the vicinity of
urban settlements throughout the Mekong basin, and in Southeast Vietnam (Figure 5) were sampled
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once during the dry season (December–May/June) to assess blooms, potential eutrophication effects
and resulting cyanobacteria and MCs.Toxins 2018, 10, x FOR PEER REVIEW  13 of 21 
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Figure 5. Locations of the sampling sites in South Vietnam. Black dots indicate positions where
cyanobacterial blooms occur and the samples were collected.

At each collecting site, temperature, salinity, and pH were measured by pH/Cond 340i meter
(WTW, Weilheim, Germany). Cyanobacterial-chlorophyll-a was measured with the bbe AlgaeTorch
which is a lightweight instrument for the simultaneous quantification of the chlorophyll-a content
of cyanobacteria and the total chlorophyll content of microalgae in water. (bbe Moldaenke GmbH,
Schwentinental, Germany). Samples from sampling sites where Chl-a was higher than 200 µg/L
were measured in a bucket after the dilution of collected scum material with tap water to maintain
the advised measuring range for the AlgaeTorch. Cyanobacterial scum samples were also collected
for isolation and filtration; sub-samples were preserved (in Lugol’s iodine) for microscopic analysis
(dominant cyanobacterial species). In addition, 1 to 300 mL of surface water from water-bloom sites
was filtered through GF/C filters. The filters and filtrates were stored at −20 ◦C upon MC analysis.
Animals in infested water bodies with cyanobacterial bloom were collected to determine MCs in
their tissues.

Samples for nutrient analysis were kept on ice and transported within 24 h to the laboratory of
Water Quality, Institute for Environment and Resources where nutrients were analyzed colorimetrically
with a spectrophotometer (DR/2010, Hach, Loveland, CO, USA) using the following APHA (2005) [59]
methods: Nitrate 4500NO3

−, ammonium 4500NH4
+, total nitrogen (TN) Kjeldahl 4500N, phosphate,

and total phosphorus (TP) 4500P. The detection limits of the equipment for these parameters were
0.02 mg/L (nitrate), 0.04 mg/L (ammonium), 0.06 mg/L (TN Kjeldahl), and 0.05 mg/L for both TP
and phosphate.

5.2. Strains Isolation

In the laboratory, single Microcystis, Planktothrix, Anabaenopsis, Anabeana cells or colonies were
picked out of the collected scum material by the micropipette-washing method [60]. These isolates
were grown in small glass tubes with a few mL modified WC medium (Woods Hole modified
CHU10-medium) [61] for several months at 25 ◦C, under a 14:10 h light/dark cycle at a light intensity
of 70 µmol photon/m/s. When isolates reached a greenish appearance, they were transferred into
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50 mL Erlenmeyer flasks and subsequently into 250 mL flasks. In total, there were 24 isolated strains
(Tables A1 and A2, Appendix B).

5.3. MC Analysis

The frozen filters stored at −20 ◦C were transferred to 8 mL glass tubes and dried for two hours
in a freeze-drier (Alpha 1-2 LD, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz,
Germany). Tissue and scum samples were also dried for several hours in the freeze-drier and 5 to 8 mg
freeze-dried material was then transferred to 2 mL Eppendorf vials.

The filters, the tissue and scum samples were extracted three times at 60 ◦C in 2.5 and 0.5 mL
75% methanol and 25% Millipore water (v/v). The extracts were then dried in the Speedvac
(Savant SPD121P, Thermo Scientific, Waltham, MA, USA) and subsequently reconstituted in 900 µL
100% methanol. The reconstituted samples were transferred to 2 mL Eppendorf vials with a
cellulose-acetate filter (0.2 µm, Grace Davison Discovery Sciences, Deerfield, IL, USA) and centrifuged
for 5 min at 16,000× g (VWR Galaxy 16DH, VWR International, Buffalo Grove, IL, USA). Filtrates were
then transferred to amber glass vials for LC-MS/MS analysis. If needed, samples with high MC
concentrations were diluted in methanol before re-analysis.

Concentrations of eight MC variants (dm-7-MC-RR, MC-RR, MC-YR, dm-7-MC-LR, MC-LR,
MC-LY, MC-LW, and MC-LF) and nodularin (NOD) were determined by LC-MS/MS as described
in [5,62]. LC-MS/MS analysis was performed on an Agilent 1200 LC and an Agilent 6410A QQQ
(Agilent Technologies, Santa Clara, CA, USA). The MCs were separated on an Agilent Eclipse
4.6 × 150 mm, 5-µm column. Hereto, a 10 µL sample was injected; the flow rate was 0.5 mL/min; the
column temperature was 40 ◦C. Eluents were Millipore water with 0.1% formic acid (v/v, Eluent A)
and acetonitrile with 0.1% formic acid (v/v, Eluent B) that were run using an elution program of
0–2 min 30% B, 6–12 min 90% B, with a linear increase of B between 2 and 6 min and a 5-min post
run at 30% B. Detailed information on MS/MS settings for each MC can be found in [41]; information
on the recovery, repeatability, limit of detection, and limit of quantification of the analysis is given
in [5]. MCs were quantified against certified standards that were obtained from DHI LAB Products
(Hørsholm, Denmark).
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Appendix B

Table A1. Microcystin concentration (µg/L) in isolated cyanobacteria.

No. Name dmRR RR NOD YR dmLR LR LY LW LF Total

1 Microcystis sp.1 UDL UDL UDL 0 19.62 2255.31 UDL UDL UDL 2274.94
2 Microcystis sp.2 UDL UDL UDL 5.87 6.55 67.08 UDL UDL UDL 79.50
3 Microcystis sp.3 UDL UDL UDL 0 6.12 1693.98 UDL UDL UDL 1700.10
4 Microcystis sp.4 UDL UDL UDL 539.80 4.93 336.06 UDL UDL UDL 880.79
5 Microcystis sp.5 UDL UDL UDL UDL 0.66 1368.22 UDL UDL UDL 1368.88
6 Microcystis sp.6 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
7 Microcystis sp.7 UDL UDL UDL UDL UDL 1.22 UDL UDL UDL 1.22
8 Microcystis sp.8 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
9 Microcystis sp.9 5.10 19.03 0.03 0.21 1.32 9.67 UDL UDL UDL 35.36

10 Microcystis sp.10 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
11 Microcystis sp.11 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
12 Microcystis sp.12 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
13 Microcystis sp.13 18.41 123.66 UDL 2.057 UDL UDL UDL UDL UDL 144.13
14 Anabaenopsis sp.1 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
15 Anabaenopsis sp.2 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
16 Anabaenopsis sp.3 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
17 Anabaenopsis sp.4 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
18 Anabaenopsis sp.5 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
19 Anabaenopsis sp.6 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
20 Anabaena sp. 1 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
21 Anabaena sp. 2 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
22 Anabaena sp. 3 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
23 Anabaena sp. 4 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
24 Planktothrix sp.1 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL

UDL: under detection level.

Table A2. Microcystin concentration (µg/g DW) in isolated cyanobacteria.

No. Cyanobacteria dmRR RR NOD YR dmLR LR LY LW LF Total

1 Microcystis sp.1 UDL UDL UDL 0 65.68 6773.68 UDL UDL UDL 6839.35
2 Microcystis sp.2 UDL UDL UDL 33.65 30.26 257.98 UDL UDL UDL 321.90
3 Microcystis sp.3 UDL UDL UDL 0 23.03 4418.81 UDL UDL UDL 4441.84
4 Microcystis sp.4 UDL UDL UDL 1377.87 12.74 901.75 UDL UDL UDL 2292.36
5 Microcystis sp.5 UDL UDL UDL UDL 21.27 9203.45 UDL UDL UDL 9224.72
6 Microcystis sp.6 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
7 Microcystis sp.7 UDL UDL UDL UDL UDL 4.66 UDL UDL UDL 4.66
8 Microcystis sp.8 UDL UDL UDL UDL UDL 2.04 UDL UDL UDL 2.036
9 Microcystis sp.9 87.30 307.47 0.32 6.65 38.95 155.16 UDL UDL UDL 595.84

10 Microcystis sp.10 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
11 Microcystis sp.11 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
12 Microcystis sp.12 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
13 Microcystis sp.13 182.73 751.11 0.40 22.82 UDL UDL 1.02 1.40 UDL 959.48
14 Anabaenopsis sp.1 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
15 Anabaenopsis sp.2 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
16 Anabaenopsis sp.3 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
17 Anabaenopsis sp.4 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
18 Anabaenopsis sp.5 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
19 Anabaenopsis sp.6 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
20 Anabaena sp. 1 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
21 Anabaena sp. 2 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
22 Anabaena sp. 3 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
23 Anabaena sp. 4 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL
24 Planktothrix sp.1 UDL UDL UDL UDL UDL UDL UDL UDL UDL UDL

UDL: under detection level.
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Appendix C

Table A3. Microcystin concentration (µg/g DW) in animals.

No.
Animals Organ dmRR MCRR NOD MCYR dmLR MCLR MCLY MCLW MCLF Total

Fish

1 Ganges river sprat (Corica soborna) Visceral UDL 1.29 UDL UDL UDL 1.09 UDL UDL UDL 2.38
2 Tilapia (Oreochromis sp.) Visceral UDL 2.87 UDL UDL UDL n.q. UDL UDL UDL 2.87
3 Tilapia (Oreochromis sp.) Visceral UDL UDL UDL UDL UDL 0.76 UDL UDL UDL 0.76
4 Tilapia (Oreochromis sp.) Gut UDL 9.91 UDL UDL 0.36 1.29 UDL UDL UDL 11.55
5 Tilapia (Oreochromis sp.) Digestive tract UDL UDL UDL 4.90 1.22 109.83 UDL UDL UDL 115.95
6 Tilapia (Oreochromis sp.) Liver UDL UDL UDL 0.27 UDL 13.12 UDL UDL UDL 13.39
7 Sknakskin gourami (Trichogaster pectoralis) Visceral UDL UDL UDL 0.02 UDL 13.84 UDL UDL UDL 13.86
8 Gold fish (Carassius sp.) Visceral UDL UDL UDL UDL UDL 18.57 UDL UDL UDL 18.57
9 Gold fish (Carassius sp.) Digestive tract UDL UDL UDL UDL UDL 0.36 UDL UDL UDL 0.36

10 Suckermouth catfish (Hypostomus plecostomus) Digestive tract UDL UDL UDL 9.08 1.15 98.15 UDL UDL UDL 108.38
11 Suckermouth catfish (Hypostomus plecostomus) Liver UDL UDL UDL 0.99 UDL 17.99 UDL UDL UDL 18.97
12 Suckermouth catfish (Hypostomus plecostomus) Musscle UDL UDL UDL 0.07 UDL 3.66 UDL UDL UDL 3.73

Mollusca
13 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.21 UDL UDL UDL UDL 0.21
14 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.33 UDL UDL UDL UDL 0.33
15 Apple snail (Pomacea canaliculata) Visceral UDL 1.67 UDL UDL 0.22 UDL UDL UDL UDL 1.89
16 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.24 UDL UDL UDL UDL 0.24
17 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.36 UDL UDL UDL UDL 0.36
18 Apple snail (Pomacea canaliculata) Visceral UDL 2.35 UDL UDL 0.36 UDL UDL UDL UDL 2.71
19 Apple snail (Pomacea canaliculata) Visceral UDL 2.61 UDL UDL 0.37 UDL UDL UDL UDL 2.98
20 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.25 UDL UDL UDL UDL 0.25
21 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.26 UDL UDL UDL UDL 0.26
22 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.27 UDL UDL UDL UDL 0.27
23 Apple snail (Pomacea canaliculata) Visceral UDL 2.75 UDL UDL 0.46 UDL UDL UDL UDL 3.21
24 Apple snail (Pomacea canaliculata) Visceral UDL 2.56 UDL UDL 0.43 UDL UDL UDL UDL 2.99
25 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.33 UDL UDL UDL UDL 0.33
26 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.28 UDL UDL UDL UDL 0.28
27 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL 0.28 UDL UDL UDL UDL 0.28
28 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL UDL 2.56 UDL UDL UDL 2.56
29 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL 0.05 UDL 2.86 UDL UDL UDL 2.90
30 Apple snail (Pomacea canaliculata) Visceral UDL UDL UDL UDL UDL 1.61 UDL UDL UDL 1.61
31 Apple snail (Pomacea canaliculata) Egg UDL UDL UDL UDL 0.23 UDL UDL UDL UDL 0.23
32 Apple snail (Pomacea canaliculata) Musscle UDL UDL UDL UDL 0.15 UDL UDL UDL UDL 0.15
33 Apple snail (Pomacea canaliculata) Musscle UDL UDL UDL UDL 0.23 UDL UDL UDL UDL 0.23
34 Apple snail (Pomacea canaliculata) Musscle UDL UDL UDL UDL 0.30 UDL UDL UDL UDL 0.30

35 Apple snail (Pomacea canaliculata) Whole
neonates UDL UDL UDL UDL 0.25 UDL UDL UDL UDL 0.25

Crustaceae UDL UDL UDL
36 White leg shrimp (Litopenaeus vannamei) Whole head UDL 14.43 UDL UDL UDL 0.79 UDL UDL UDL 15.21

UDL: under detection level.
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