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Abstract: Ochratoxin A (OTA) contamination in grape production is an important problem
worldwide. Microbial volatile organic compounds (MVOCs) have been demonstrated as useful
tools to identify different toxigenic strains. In this study, Aspergillus carbonarius strains were classified
into two groups, moderate toxigenic strains (MT) and high toxigenic strains (HT), according
to OTA-forming ability. The MVOCs were analyzed by GC-MS and the data processing was
based on untargeted profiling using XCMS Online software. Orthogonal projection to latent
structures discriminant analysis (OPLS-DA) was performed using extract ion chromatogram GC-MS
datasets. For contrast, quantitative analysis was also performed. Results demonstrated that the
performance of the OPLS-DA model of untargeted profiling was better than the quantitative method.
Potential markers were successfully discovered by variable importance on projection (VIP) and t-test.
(E)-2-octen-1-ol, octanal, 1-octen-3-one, styrene, limonene, methyl-2-phenylacetate and 3 unknown
compounds were selected as potential markers for the MT group. Cuparene, (Z)-thujopsene, methyl
octanoate and 1 unknown compound were identified as potential markers for the HT groups. Finally,
the selected markers were used to construct a supported vector machine classification (SVM-C)
model to check classification ability. The models showed good performance with the accuracy of
cross-validation and test prediction of 87.93% and 92.00%, respectively.

Keywords: ochratoxin A; Aspergillus carbonarius; untargeted profiling; chemometrics; biosynthetic pathway

Key contribution: An untargeted profiling method was introduced for A. carbonarius strain volatiles.
OPLS-DA coupled with VIP was applied to provide the OTA biosynthetic pathway and SVM-C
model was used to classify different toxigenic strains with potential markers.

1. Introduction

Ochratoxin A is a mycotoxin reported to be a potential human carcinogen (group 2B) defined by
the International Agency for Research on Cancer (IARC) and it is common in grape and grape-related
products [1,2]. A. carbonarius in section Nigri is known to infect grape and is a main source of ochratoxin
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A in grape products [3,4]. Identifying different toxigenic strains is a crucial task to control the safety of
foodstuffs. A typical approach is to assess volatile organic compounds generated by the fungi [5–7].

Microbial volatile organic compounds (MVOCs) are generated by the metabolism of
microorganisms such as bacteria and filamentous fungi [8–11]. The MVOCs have been studied for
various reasons including predicting spoilage processes caused by microorganisms during the period
of storing foodstuffs, taxonomy research to identify different fungal species [8,9] and investigating the
relation between volatile compounds in indoor air environments with contamination by fungi [10,11].
Also, MVOCs have been used to discover the relationships with the mycotoxins [5,6,12,13].
For example, Jeleń et al. [13], investigated the volatile sesquiterpenes generated by both toxigenic and
nontoxigenic Fusarium sambucinum strains, and the toxigenic strains produced more sesquiterpenes
with greater chemical diversity compared with nontoxigenic strains. However, a later study
investigated volatile compounds produced by Aspergillus strains with different OTA-forming ability
and showed that the profile of volatiles generated by toxic strains could not be distinguished from
non-toxic strains [5]. Therefore, further research needs to be applied to characterize different toxigenic
strains. Selected previous studies were performed by gas chromatography-mass spectrometry (GC-MS)
technology to analyze MVOCs based on relative quantitative data [5,6,12,13]. Limitations of this
time-consuming quantitative analysis approach included incomplete peak resolution [14] and limited
breadth of analysis [15].

Data analysis strategies have developed over many years and suggested chemometrics as
a useful and efficient way to analyze large data sets generated by modern information-rich analytical
techniques [15–20]. The data generated from GC-MS experiments exhibit high dimensionality with
numerous variables, and in order to better understand the information between the different samples,
untargeted metabolic fingerprinting of GC-MS data coupled with chemometrics has proven to be
a robust tool [21,22]. However, untargeted profiling of MVOCs to distinguish different toxigenic strains
is not always available or precisely identified in reference library data.

A critical step for metabolomics study is to analyze high-dimensional data generated from the
GC-MS data. A variety of chemometrics methods have been developed to project the multi-dimensional
data to lower dimensions and explore the differences between group samples [23] including partial
least squares discriminant analysis (PLS-DA) [24], orthogonal projection to latent structures discriminant
analysis (OPLS-DA) [25], principle component analysis (PCA) and support vector machine (SVM) [26,27].
Of these, PLS-DA is one of the most attractive classification methods in chemometrics and has been
successfully implemented in metabolomics research [22,28,29]. OPLS-DA is an extension of PLS-DA,
which improves the interpretation of constructed models by removing variance orthogonal to the variation
of interest [30]. The advantage of OPLS-DA is that one single component is used to predict the group or
class whereas the rest of the components are used to define the variation orthogonal to the first predicting
component [31,32]. In addition, PLS-DA and OPLS-DA can provide statistical information, such as
loading weight, sensitivity ratios (SR), regression coefficients and variable importance on projection (VIP),
which can be performed to find out important variables [28,33,34]. Among these, VIP is popular in
metabolomics in order to choose potential markers or discriminate metabolites [15]. SVM is a so-called
machine-learning strategy and it is a powerful modeling tool to solve classification problems [35,36].
The advantage of this method is its flexibility to solve both linear and non-linear problems [23].

Until now, it is very difficult to distinguish different OTA contamination levels in grape and grape
production using volatile compounds, due to the fact that grape products have very complex volatile
composition, which will likely interfere with the MVOCs related specifically to OTA generation.
Therefore, it is necessary to clearly understand the MVOCs generated from different toxigenic
A. carbonarius and ideally identify relevant biomarkers specific to the presence of OTA. Our previous
work has demonstrated the capacity to predict the OTA content using volatile compounds with PLS
regression methods [37]. However, due to the shortage of negative A. carbonarius strains, namely
non-toxigenic or moderate toxigenic strains, the character of moderate toxigenic (MT) and high
toxigenic (HT) strains could not be applied to chemometrics analysis. In this study, as model fungi
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strains, two moderate toxigenic strains were selected. An untargeted metabolic profiling approach
was carried out to explore the volatile information generated by GC-MS for selected A. carbonarius
strains. In order to validate its feasibility, traditional quantitative analysis was also performed.
The chemometrics techniques were used as robust tools for extracting the volatile character of different
toxigenic strains. In this study, the potential for MVOCs with chemometrics to be used to recognize
different toxigenic strains was comprehensively investigated. Subsequently, exploring potential
biomarkers to provide clues for metabolism pathways may be suggested.

2. Results and Discussion

2.1. Toxigenic Investigation of A. carbonarius Strains

The OTA producing ability of four strains (AC44, AC46, SD27 and AF) during incubation periods
in Czapek Yeast Extract Agar (CYA) culture medium were analyzed. On the basis of the experiment
the strains could be divided into two classes, namely MT strains (AC44 and AC46) and HT strains
(SD27 and AF). The amount of OTA produced by the investigated strains is shown in Figure 1.
The content of OTA varied especially according to different HT and MT groups. For SD27 strains,
the OTA synthesis commenced from the 2nd day, then sharply increased to the highest content (4808
µg/kg) at the 4th day, then decreased by about 2.5 fold over the following days. The other HT strain
AF showed a different trend compared with SD27 strain, with the content of OTA gradually rising over
the 10-day measurement period to 2670 µg/kg. Regarding the MT strains, AC44 and AC46 showed
a similar trend that the OTA synthesized from the 2nd day remained stable over the remaining days.
The content of OTA was 0–5.4 and 0.8–68.6 µg/kg for AC44 and AC46 strains, respectively, being some
2000–5000 of µg/kg less than the HT group.
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2.2. GC-MS Profiles of Different Toxigenic Strains

The total ion chromatograms (TICs) of MVOCs profiling for different toxigenic strains grown at
the 3rd day are shown in Figure 2 and the resulting data are shown in Table 1. In totally, fifty-two
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MVOCs were qualitatively and quantitatively analyzed in detail. Among these, nineteen MVOCs were
unambiguously identified using the authorized chemical standards. The rest are tentatively reported
by comparing the MS profile and retention indices (RIs) with literature values in the NIST 11 database.
These MVOCs included 3 alcohols, 5 aldehydes, 3 ketones, 9 esters, 12 sesquiterpenes, 18 hydrocarbons
and two other compounds.
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1-Octen-3-ol and other compounds with eight carbons, (E)-2-octen-1-ol, 1-octanol, octanal,
(E)-2-octenal, 1-octen-3-one and 3-octanone were both found in both MT and HT strains. These
8-carbon compounds may be synthesized by oxidation of linoleic acids [38] and were isolated from
numerous molds, such as A. ochraceus, A. oryzae and A. niger [39,40]. They could be recognized as
indicators for the invasion of molds, especially when 1-octen-3-ol was detected, which contributed to
a mushroom flavor [38].
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Table 1. Volatile metabolites of four strains extracted from the CYA culture medium.

NO. REF.RI 1 RI Name Identification
Methods 2 Ion 3 CYA Culture Medium

Alcohols
1 979 980 1-Octen-3-ol Std, MS, RI 57 AC44, AC46, AF, SD27
2 1069 1067 (E)-2-Octen-1-ol Std, MS, RI 57 AC44, AC46, AF, SD27
3 1069 1070 1-Octanol MS, RI 56 AC44, AC46, AF, SD27

Aldehydes
4 1001 1001 Octanal MS, RI 43 AC44, AC46, AF, SD27
5 1057 1055 (E)-2-Octenal Std, MS, RI 41 AC44, AC46, AF, SD27
6 1102 1103 Nonanal MS, RI 57 AC44, AC46, AF, SD27
7 1115 1107 (E,E)-2,4-Octadienal MS, RI 81 AC44, AC46, AF, SD27
8 1313 1314 (E,E)-2,4-Decadienal MS, RI 81 AC44, AC46, AF, SD27

Ketones
9 978 976 1-Octen-3-one MS, RI 55 AC44, AC46, AF, SD27
10 984 985 3-Octanone Std, MS, RI 43 AC44, AC46, AF, SD27
11 1290 1291 2-Undecanone MS, RI 43 AC44, AC46, AF, SD27

Esters
12 1092 1093 Methyl benzoate MS, RI 105 AC44, AC46, AF, SD27
13 1120 1123 Methyl octanoate MS, RI 74 AC44, AC46, AF, SD27
14 1255 1254 Methyl-2-phenylacetate MS, RI 104 AC44, AC46, AF, SD27
15 1326 1322 Methyl decanoate MS, RI 74 AC44, AC46, AF, SD27
16 1723 1723 Methyl tetradecanoate MS, RI 74 AC44, AC46, AF, SD27
17 1823 1825 Methyl pentadecanoate MS, RI 74 AC44, AC46, AF, SD27
18 1927 1926 Methyl hexadecanoate Std, MS, RI 74 AC44, AC46, AF, SD27
19 2096 2095 Methyl linoleate Std, MS, RI 67 AC44, AC46, AF, SD27
20 2100 2102 Methyl oleate MS, RI 55 AC44, AC46, AF, SD27

Terpenoids
21 1024 1024 p-Cymene MS, RI 119 AC44, AC46, AF, SD27
22 1028 1028 Limonene MS, RI 68 AC44, AC46, AF, SD27
23 1412 1411 Longifolene MS, RI 161 AC44, AC46, AF, SD27
24 1416 1417 α-Cedrene Std, MS, RI 119 AC44, AC46, AF, SD27
25 1428 1426 β-Cedrene MS, RI 161 AF
26 1435 1436 (Z)-Thujopsene MS, RI 119 AC44, AC46, AF, SD27
27 1435 1438 α-Bergamotene MS, RI 93 AC44, AC46, AF, SD27
28 1458 1457 β-Farnesene Std, MS, RI 41 AC44, AC46, SD27
29 1481 1481 β-Chamigrene Std, MS, RI 189 AF
30 1505 1505 β-Himachalene MS, RI 119 AF
31 1509 1510 Cuparene Std, MS, RI 132 AF
32 1563 1563 (E)-Nerolidol Std, MS, RI 41 AC44, AC46, AF, SD27

Hydrocarbons
33 893 889 Styrene Std, MS, RI 104 AC44, AC46, AF, SD27
34 1100 1100 Undecane Std, MS, RI 57 AC44, AC46, AF, SD27
35 1200 1199 Dodecane Std, MS, RI 57 AC44, AC46, AF, SD27
36 1300 1299 Tridecane Std, MS, RI 57 AC44, AC46, AF, SD27
37 1318 1326 Decane, 2,3,5,8-tetramethyl- MS, RI 57 AC44, AC46, AF, SD27
38 1400 1400 Tetradecane Std, MS, RI 57 Internal standard
39 1460 1462 Tetradecane, 4-methyl- MS, RI 43 AC44, AC46, AF, SD27
40 1500 1499 Pentadecane Std, MS, RI 57 AC44, AC46, AF, SD27
41 1564 1562 Pentadecane, 2-methyl- MS, RI 43 AC44, AC46, AF, SD27
42 1570 1569 Pentadecane, 3-methyl- MS, RI 57 AC44, AC46, AF, SD27
43 1600 1600 Hexadecane Std, MS, RI 57 AC44, AC46, AF, SD27
44 1649 1648 Pentadecane, 2,6,10-trimethyl- MS, RI 57 AC44, AC46, AF, SD27
45 1666 1663 Hexadecane, 2-methyl- MS, RI 57 AC44, AC46, AF, SD27
46 1700 1700 Heptadecane Std, MS, RI 57 AC44, AC46, AF, SD27
47 1703 1706 Pristan MS, RI 57 AC44, AC46, AF, SD27
48 1765 1763 Heptadecane, 2-methyl- MS, RI 57 AC44, AC46, AF, SD27
49 1770 1771 Heptadecane, 3-methyl- MS, RI 57 AC44, AC46, AF, SD27
50 1800 1800 Octadecane Std, MS, RI 57 AC44, AC46, AF, SD27
51 1806 1810 Phytane MS, RI 57 AC44, AC46, AF, SD27

Others
52 1181 1182 Naphthalene MS, RI 128 AC44, AC46, AF, SD27

53 - 1484 3-Furanacetic acid,
4-hexyl-2,5-dihydro-2,5-dioxo- MS 126 AC44, AC46, AF, SD27

1 REF.RI = literature retention index, obtained from the NIST11 database. The column type selected in
NIST11 database for RI values is a DB-5 column (30 m × 0.25 mm × 0.25 µm). If not available, the RI values
of HP-5 column (30 m × 0.25 mm × 0.25 µm) was chosen. 2 Identification Methods = Std (authentic standard
retention time); MS (Mass spectrum) with minimum match of 70%; RI (Retention Index). 3 Ion = quantification
ion response.
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The esters generated by the four strains include 7 fatty acid methyl esters and two other esters,
methyl benzoate and methyl-2-phenylacetate. The fatty acid methyl esters may derive from enzyme
catalyzed reactions between alcohols and acyl-CoA [41]. Methyl-2-phenylacetate is an important flavor
compound in wine, which contributes to the fruity notes of wine aroma [42] and it was first detected
in A. carbonarius incubated in CYA medium.

Considering the hydrocarbons, 18 compounds were identified, including styrene, 17 alkanes
and isoalkanes, of which the carbon backbone ranged from C11 to C18. Styrene is an 8-carbon
compound and is derived from phenylalanine by the shikimic acid pathway [43,44]. It has been found
in some species of Penicillium and could be a potential indicator of food spoilage, capable of producing
off-flavors [45]. Alkanes and isoalkanes were found in A. carbonarius and their diversity was mainly
determined elsewhere by the different carbon source used in the culture medium [46].

There were 12 terpenoids found in four strains, including limonene, p-cymene and
10 sesquiterpenes. Limonene is a commonly identified metabolite generated by P. glabrum, P. roqueforti,
A. flavus, and A. ochraceus [5,47] and it was found in all the strains. Sesquiterpenes are regarded
as representative compounds showing different characters with different toxigenic strains, such as
Fusarium sambucinum [13], A. flavus [7] and P. roqueforti [12]. In our study, 10 sesquiterpenes were
detected and in particular, β-cedrene, β-chamigrene, β-himachalene and cuparene were only detected
in AF strains. By contrast, β-farnesene was absent in AF strains.

Of the other compounds, 3-furanacetic acid, 4-hexyl-2,5-dihydro-2,5-dioxo- was found in all
strains and it was first detected in A. carbonarius in our previous work [37]. The content of this
compound reached a maximum at the 2nd day, and sharply declined from the 3rd to the 10th day.
This compound may not be regarded as a specific compound for different toxigenic strains because it
showed the same trend in both MT and HT strains.

In summary, the volatile profile of these two groups were similar except the AF strain, which has
a unique sesquiterpenes pattern. The differences between them were confusing and the procedure of
qualitative analysis and quantitative analysis is complicated and time-consuming. Therefore, further
analysis is necessary to explore the useful information which can be used to distinguish them reliably.

2.3. Chemometrics for Analyzing the Differences of Two Group Strains

The MVOCs data obtained by GC-MS were submitted to XCMS online to generate the adjusted
EIC automatically. In total, 829 EICs were obtained and all the EICs were normalized by the
internal standard ion fragment which was coded as M57T23 using the ion mass m/z 57. Then,
an 828 × 84 dataset was used for the subsequent chemometrics analysis.

In order to find outliers, an unsupervised pattern recognition method (PCA) was performed in
this study. All data were scaled using a Pareto scaling method. As shown in Figure 3, PC1 accounted
for 75% and PC2 accounted for 14% of total variation. An outlier (coded as AF_6_2 in red) stood out
from the major group of samples. It was caused by the variation of the internal standard, which meant
that the content of the internal standard was significantly lower in the sample marked as AF_6_2 than
others. This sample was excluded from further analysis.

After that, two OPLS-DA models were carried out to differentiate between MT and HT groups.
For untargeted profiling method, the result is shown in Figure 4a, the OPLS-DA model for CYA
medium demonstrated that the fungi were clearly divided into two clusters according to their different
toxigenic ability. The model generated one predictive and four orthogonal (1 + 4) components with
R2 of 85.0% and Q2 was 67.4%. In order to prove the robustness of this untargeted profiling method,
the data obtained from quantitative analysis of GC-MS was also performed as a control method.
Another OPLS-DA model based on quantitative analysis (the dataset was 52 × 83) was constructed
and the result is shown in Figure 4b. Some overlapping occurred in the two-dimension score plot.
Besides, the model generated one predictive and five orthogonal (1 + 5) components with R2 and Q2

values of 68.4% and 50.9%, respectively, which means that the performance of this model was not as
good as the OPLS-DA model based on the untargeted GC-MS profiling.
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2.4. Discovery of Potential Markers of HT and MT Strains

The potential markers discovery is a critical step for metabolomics studies [28]. The process
of selecting informative metabolites was important for finding the differences between HT and MT
strains and it could provide clues of their different metabolism pathways. Potential markers were
then selected using VIP values based on the untargeted profiling method. The plot of VIP value
(first 100 variables) with standard error is shown in Figure 5a. The potential markers were selected
based on VIP value higher than 1.5 [21,22] and p < 0.05 according to the t-test. Besides, metabolites
with error bars extending beyond zero, which showed no statistic meaning, were also excluded. Finally,
39 extracted ion variables were obtained and these variables were identified using ion information and
retention times. In total, 12 compounds were identified and the relative content (normalized by the
internal standard ion fragment) is shown in Table 2.
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Table 2. Potential markers selected by VIP values and t-test.

NO. Potential Markers Retention
Time/Min Ion Information

Relative Content 1

MT HT

1 Styrene 8.001–8.004 103, 78, 77, 104, 51, 105 0.13–29.77 * 0.08–13.21
2 1-Octen-3-one 10.627–10.672 97, 70, 111, 98, 83, 55 1.46–114.32 * 4.00–86.63
3 Octanal 11.378 55 0.03–2.95 * 0.04–1.43
4 Limonene 12.232 91 0.17–9.21 * 0.04–0.63

5 2-Octen-1-ol 13.408–13.466 68, 95, 58, 81, 54, 110, 82,
41, 39, 57, 55, 69, 67, 56 0.51–75.13 * 2.00–57.36

6 Methyl octanoate 15.091 74 0.03–0.14 0.03–0.56 *
7 Unknown 15.438–15.446 69, 84, 55 0.02–0.44 0.03–1.08 *
8 Unknown 20.402 91 0–0.82 * 0–0.25
9 Unknown 21.057 91 0–0.27 * 0–0.07

10 Thujopsene 23.718–23.756 204, 121, 105 0–0.67 0–4.1 *
11 Unknown 24.599 165 0.05–0.47 * 0.02–0.23
12 Cuparene 25.542 132 0–0.01 0–1.3 *

1 = Relative content (equivalent of tetradecane %) of all samples in each group. * Potential markers for each group
strains are marked in bold type letter. This is according to criteria: significant value (p < 0.05) in statistical analysis
(t-test) and variable important on projection (VIP) beyond 1.50.
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These volatile compounds included, 1 alcohol, 1 aldehyde, 1 ketone, 1 ester, 3 hydrocarbons,
2 sesquiterpenes and 4 unidentified compounds. Of these, (E)-2-octen-1-ol, octanal, 1-octen-3-one,
styrene, limonene and 3 unidentified compounds (m/z was 91, 91 and 165) were selected as the
important metabolites for AC44 and AC46 strains. The abundance of these compounds was
significantly higher than those generated by high toxigenic strains.

The result was similar to previous studies, that the non-toxigenic strains synthesized more volatile
compounds than the toxigenic strains [5]. The reason for abundant C8-compounds, (E)-2-octen-1-ol,
octanal and 1-octen-3-one, in MT strains may be explained by the metabolic pathway leading to the
formation of MVOCs and OTA, which provides important clues to the relationship between mycotoxin
formation and various groups of volatiles (Figure 6) [41]. The polyketide skeleton formation (marked
in red) is a critical step of OTA biosynthesis, which requires acetate and malonate with the activity
of polyketide synthases [48]. Meanwhile, the fatty acid formation pathway (marked in blue) is also
derived from acetate and malonate via the acetate-malonate pathway, which forms a competitive
relationship with polyketide skeleton formation [41]. According to that, we speculate that less OTA
biosynthesis may lead to more fatty acid formation. As a result, more eight carbon compounds, octanal,
(E)-2-octen-1-ol and 1-octen-3-one, are synthesized from fatty acid [38]. In particular, 1-octen-3-one was
a possible precursor of 1-octen-3-ol being produced via reduction or autoxidation [49,50]. Regarding
the hydrocarbons, styrene was identified as the important metabolite for the MT strains and the result
was in agreement with a previous study [51]. From the pathway marked in green (Figure 6), it can be
assumed that less phenylalanine was used to produce the ochratoxins, and the surplus was used to
synthesize more styrene than the HT strains. Limonene was firstly selected as a potential marker for
MT strains, though the reason for this is not clear and needs to further research.
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For HT strains, 2 identified sesquiterpenes, namely cuparene and (Z)-thujopsene, and 1 ester,
methyl octanoate, were selected as potential markers. There is an unknown compound identified as
a potential marker for HT strains, which has ion information of m/z 69, 84, 55. The sesquiterpenes have
been considered as a main difference between different toxigenic strains, such as Aspergillus flavus [7].
Results from previous study showed the Aspergillus strains which could synthesize OTA produced
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more sesquiterpenes [5]. These two sesquiterpenes were firstly identified as potential markers for
high toxigenic A. carbonarius strains. As for methyl octanoate, it has been showed that it may be play
an important role in the OTA biosynthesis [37].

For comparison, VIP values were also calculated based on quantitative analysis and similar but
not integrated results were obtained that three metabolites including 1-octen-3-one, 2-octen-1-ol and
styrene (VIP value beyond 1.5) were selected as potential markers (Figure 5b). This result showed the
robustness of untargeted profiling for analyzing the MVOCs to discover differences between HT and
MT strains.

2.5. SVM-C Pattern Recognition Based on Potential Markers

To check the classification ability of the selected variables, namely, the potential markers for
different group strains explored by the untargeted profile method, the SVM-C model was built by using
these fragmentations. The dataset was 39 × 83 and the RBF was applied as kernel function of the SVM-C
model in our study. Optimizing the appropriate SVM-C parameters (C, γ) is an important procedure
to provide good prediction performance. In addition, a 10 × 10 coarse grid search was performed
to adjust for the proper parameters. 3-fold cross validation was used to check the performance of
SVC models. The result is shown in Figure 7 and the optimal pair of parameters according to the
coarse search was marked with “×” and it was (103, 10−4) (Figure 7a). Next, a finder grid search
on the neighbor of (103, 10−4) was conducted and (1.29 × 103, 1.29 × 10−4) was selected as optimal
parameters (Figure 7b). When the best parameter (C, γ) was found, the training set was trained again
to generate the classifier.
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Finally, the test set was classified using the SVM-C model. The classification result is shown in
Table 3 and the accuracy of cross-validation and test prediction was 87.93% and 92.00%, respectively.
The same procedure was performed using the full 828 × 83 dataset and accuracy of cross-validation
and test prediction was 77.59% and 84.00%, respectively. These results showed the robustness of the
SVM-C model using the potential markers selected by the untargeted profiling approach.
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Table 3. Performance of SVM-C model.

Variable Selection Optimized Parameters No. Variables Data Sets Accuracy (%)

Full variables
C = 4.64 × 102

829
Cross-Validation 77.59

γ = 1.67 × 10−4 Test 84.00

VIP method
C = 1.29 × 103

39
Cross-Validation 87.93

γ = 1.29 × 10−4 Test 92.00

3. Conclusions

In the present study, the untargeted profile of MVOCs based on GC-MS data was firstly introduced
coupled with chemometrics analysis to distinguish different toxigenic A. carbonius strains. Comparing
with traditional quantitative analysis, the untargeted profile method has the potential to provide
comprehensive information and enhance the model performance. Furthermore, the identified potential
markers, selected by VIP values and t-test, could be used for classifying HT strains from MT strains
and they may provide clues of metabolite pathway of different toxigenic strains. We reiterate that
this study is preliminary, and the ability to distinguish different levels of OTA contamination in grape
and grape products with this novel system approach need to be further tested on more grape and
grape-product samples.

4. Materials and Methods

4.1. Chemicals

Volatile standards (Table 1), C8-C40 n-alkane series and ochratoxin A (OTA) standard were
purchased from Sigma Aldrich (St. Louis, MO, USA). Highly purified water was obtained from
a Milli-Q Gradient system (18 kΩ, Millipore, Bedford, MA, USA). Glacial acetic acid, acetonitrile and
formic acid (99% purity) were HPLC grade and were obtained from Merck (Darmstadt, Germany).

4.2. Fungi and Cultivation

Four A. carbonarius strains separated into two groups were used in this study, namely HT and
MT groups. The HT strains, including CCTCC AF2011004 (coded: AF) and AF 2015027 (coded: SD27)
strains, were isolated from grapes and dried vine fruits, respectively [37]. The MT strains, including
AC44 and AC46 strains, were isolated from grapes [52] and kindly provided by Dr. P. I. Natskoulis
(Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece). Strain
spores used for spore suspension were incubated on Malt Extract Agar (AOBOX, Beijing, China)
culture medium at 25 ◦C for 7 days. Afterwards, the spores were diluted with an aqueous solution
including 0.05% Tween 80 (v/v) to prepare strain spore suspension (concentration was105 spores/mL).

For fungi cultivation, Czapek Yeast Extract Agar (CYA; AOBOX, Beijing, China) culture medium
(10 mL) was added to a 30 mL head space vial. Then, the vial was autoclaved for 20 min at 121 ◦C
and the spore suspension (100 µL) was added to each vial and capped with cotton plugs. Afterwards,
the strain was incubated at 25 ◦C in the dark under stationary conditions from 2nd to 7th and 10th days.
The same volume of the autoclaved medium with 100 µL of 0.05% Tween 80 aqueous solution was used
as control samples. All the experiments were performed in triplicate and a total of 84 samples (4 strains
incubated over a seven-day period and performed in triplicate) were prepared for GC-MS analysis.

4.3. GC-MS Analysis

The GC-MS analyses followed our previous work [37]. In brief, tetradecane was dissolved in
methanol and the solution was used as internal standard. Before extraction, 10 µL of tetradecane
(5.0 mg/L) were placed into the bottom of the vial. The sample vial caps were replaced by crimp-top
silicon rubber caps with a Teflon layer and maintained at 60 ◦C in a water bath. Subsequently,
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the volatile compounds were extracted by SPME with a 2 cm, 50/30 µm, coated DVB/CAR/PDMS
fiber supplied by Supelco (Bellefonte, PA, USA) and the extraction time was 60 min.

The determination was conducted using an Agilent 7890 gas chromatograph (Agilent, Santa Clara,
CA, USA) fitted with an Agilent 5975C mass spectrometer (Agilent). Volatile compounds were injected
in the splitless mode injector (splitless time of 0.75 min) heated at 240 ◦C for 7 min and separated
on a DB-5 capillary column (30 m × 0.25 mm × 0.25 µm; Agilent). Helium was used as carrier gas
with a constant flow rate at 1.0 mL/min. The temperature program was as follows: 35 ◦C for 1 min,
and then increased to 230 ◦C at 5 ◦C /min, and finally increased to 280 ◦C at 20 ◦C /min. Electron
ionization (EI-MS) mode was carried out at 70 eV and a mass scan range from m/z 35 to 330 atomic
mass units (amu).

4.4. Ochratoxin A Analysis

The OTA analysis followed our previous work [53,54]. The ultrasound-assisted extraction
was used to extract OTA from culture sample with 10 mL of methanol aqueous solution (7:3, v/v)
for 30 min. This procedure was repeated twice with 5 mL of solution each time. Extracts were
filtered through a Whatman glass microfiber filter (Sigma Aldrich) to remove the hyphae and spores.
Subsequently, the resultant extract was filtered through 0.22 µm nylon syringe filters (Lanyi, Beijing,
China) before high-performance liquid chromatography (HPLC) analysis. The liquid chromatography
(LC) system consisted of a fluorescence detector (RF-20 Axs) and a pump (LC-20 AT) (Shimadzu
Scientific Instruments, Kyoto, Japan) with a 5 µm Prodigy ODS3, 100 A, 250 × 4.6 mm analytical
column (Phenomenex, Torrance, CA, USA). Separation was carried out by using isocratic elution with
isometric mobile phase A (composed by a water and glacial acetic acid (99:1, v/v) solution) and mobile
phase B (composed of acetonitrile and glacial acetic acid (99: 1, v/v) solution), at a rate of 1.0 mL/min
and 20 µL injection. Detection of OTA was performed using 333 nm and 460 nm as wavelength settings
for excitation and emission, respectively. Quantification of OTA was carried out by measuring its peak
area according to a five-point calibration curve between 3.2 and 4000 µg/L, which was constructed by
five serial dilutions of the OTA standard solution. The squared correlation coefficient (r2) was 1.

4.5. Data Processing

Untargeted metabolic profiling analysis was performed for the fungi volatile compounds. Raw
data were processed with multiple procedures, containing filtering, feature detection, alignment
and normalization, according to the pipeline described by Katajamaa and Orešič [55]. For this
purpose, the freely available software XCMS online (http://xcmsonline.scripps.edu) was introduced
in our study [56]. Raw data were transferred to NetCDF files using the MSD ChemStation software
(Agilent). Afterwards, data were extracted using the centWave algorithm, which collects regions
including potentially useful mass information in the chromatographic data and applies continuous
wavelet transformation (CWT) [15]. The advantage of this method is detection of both strong and
weak peak responses while maintaining a high sensitivity and low false discovery rate (FDR) [57].
The XCMS online parameters were optimized to extract the maximum information possible according
to the protocol described by González-Domínguez et al. [21], According to the character of our data,
the setting was S/N threshold 3 and minimum peak width was 3 s. The remaining parameters were set
as default. Pre-processed data were then exported as .csv files for further analysis using chemometrics.

The processing pipeline of quantitative analysis comprised the following steps: deconvolution,
library-based identification, and alignment [58]. Identification and deconvolution comprise the
main procedures of data processing, while alignment is a validation procedure for identification.
For deconvolution, the open source software, automated mass spectra deconvolution (AMDIS) was
used to process the GC-MS data. Next, alignment was performed relying on retention index (RI)
similarity. RI data were calculated automatically by AMDIS software, with the help of performing
a series of n-alkanes (C7-C40) under the same chromatographic conditions. Subsequently, MVOCs
were determined according to RIs of available standards and obtained mass spectra compared with

http://xcmsonline.scripps.edu
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corresponding volatile standards in the NIST11 MS database. Considering those volatile compounds
without reference standards, tentative identifications were conducted based on comparison of mass
spectra with those of the NIST11 MS database with match quality higher than 700 [59] and RIs found
in literature. For quantification, a specific ion was extracted for each volatile compound (Table 1),
which was generally the most abundant. The respective area of the specific ion was then calculated.
Afterwards, relative areas of volatile compounds were obtained compared to that of the m/z 57 ion of
the internal standard (tetradecane).

4.6. Chemometrics Analysis

Identified volatile compounds and extract ion chromatogram (EIC) data generated by XCMS
were both subjected to chemometrics analysis by OPLS-DA to compare MVOCs profiles, by means of
SIMCA-P™ software (Version 13.0, UMetrics AB, Umeå, Sweden). Before constructing the OPLS-DA
model, data were normalized using a Pareto scaling strategy to reduce the impact of artifacts and noise
in the models, which is positive for the model’s predictive ability [60]. For evaluation of the model
performance, two parameters were calculated, namely the R2 representing total explained variance
and cumulative Q2 that represents the fraction of the variation of Y which can be predicted by the
cross validation model [30]. Potential biomarkers were chosen from VIP generated from the OPLS-DA
model. This variable selection method was described by Chong and Jun [61]. The higher the absolute
value of VIP, the more important the corresponding variable [26]. Furthermore, potential markers
identified by VIP were screened out by t-test (p-values below 0.05).

4.7. Support Vector Machine Classification

Support vector machine (SVM) is a machine-learning strategy, which was originally introduced
by Vapnik and co-workers [26,27]. In recent years, it has been widely used in different research due
to its ability in prediction for both classification (SVM) [35,36] and regression [62,63]. When used for
classification, the basic idea of the support vector classification is that a separated set of binary labeled
training data was given with a hyper-plane which maximizes the distance from the two classes of
patterns [64]. The advantage of this technique is its flexibility in the choice of the kernel function which
allows the classification of two groups of samples, and this kernel can be used to select either linear
or non-linear problems [23]. Besides, some of the extensively used kernel functions including linear,
sigmoid, polynomial and radial basis function (RBF) can be carried out to construct models. Among
these, the RBF is popular in many problems [65,66] and was chosen in our study. For RBF kernel
function, two parameters are kernel width (γ) and regularization parameter (C), and the classification
result of the given data are affected by the pairs of parameters. Therefore, parameter optimization
is necessary before building the model [67]. In this study, the parameters of RBF were optimized by
the grid search strategy using the n-fold cross validation approach. This method is conducted in two
steps. Firstly, a coarse grid is applied with an exponentially growing sequence of (C, γ) (e.g., C = 10−7,
. . . , 102 and γ = 10−3, . . . , 106). Secondly, a finder grid search on that region can be conducted to
optimize the parameter (C, γ), which was used to perform the final training process. The SVM-C
model consisted of both training and test datasets, which represented 70% (n = 58) and 30% (n = 25) of
the data by random selection in the database. The SVM-C model was performed on The Unscrambler
X 10.4 (CAMO Software, Oslo, Norway).
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