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Abstract: Screening for compounds that can neutralize the toxicity of tetrodotoxin (TTX) or reduce its
negative effects is necessary. Our study tested the TTX detoxification capacity of exopolysaccharide
(EPS) extracted from lactic acid bacteria. EPS of Leuconostoc mesenteroides N3 isolated from the Vung
Tau sea (Vietnam), Lactobacillus plantarum PN05, and Lactobacillus rhamnosus PN04 were used in
the study. To more completely evaluate the importance of EPS in detoxification, EPS samples of
Leuconostoc mesenteroides N3, Lactobacillus plantarum PN05 and Lactobacillus rhamnosus PN04 were
also tested. The majority of EPS of these bacteria contained glucose; this was observed using
thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) analysis.
As observed with FTIR analysis, only EPS of Lactobacillus plantarum PN05 contained methyl groups.
The results indicated that detoxification of TTX in mice could be obtained at an optimal dose
of 248 µg EPS from Leuconostoc mesenteroides incubated with 54 µg cuprous oxide for 40 min or
148 µg EPS Lactobacillus rhamnosus incubated with 55 µg cuprous oxide for 40 min, while EPS from
Lactobacillus plantarum showed TTX detoxification capacity without cuprous oxide combination.
Consequently, EPS from Lactobacillus plantarum PN05 can be used in TTX prevention. This is the first
report on the importance of lactic acid bacteria in TTX detoxification.
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1. Introduction

Up to now, an antidote for tetrodotoxin (TTX) poisoning has not been developed. It is necessary
to find an effective method to minimize the risks associated with clinical trials of TTX.

Many researchers proved that TTX was produced by symbiotic bacteria, and then accumulated
in different organs of puffer fishes [1–4]. TTX was also found commonly in various types of animal
including the California newt [5], the goby [6], the gastropod mollusks [7], the xanthid crab [8], and the
blue-ringed octopus [9]. TTX inhibits the initiation and conduction of potential action by selectively
blocking sodium channels on the nerve and muscle membrane at extremely low concentrations [10].
Furthermore, TTX-containing puffer fish meat was traditionally fermented before use in Japan [11].

Lactic acid bacteria (LAB) are used as probiotics. Lactic acid bacteria can be divided into
homopolysaccharides or heteropolysaccharides to protect themselves from unfavorable culture
conditions such as desiccation, osmotic stress, antibiotics or toxic compounds, predation by protozoans,
phagocytosis and phage attack [12,13]. There are varieties of heteropolysaccharide categorized
according to their structure, composition, molecular mass, and functionalities. Exopolysaccharide (EPS)
production from LAB is strongly influenced by culture conditions, resulting in different structures
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and functions [14]. The EPS from Streptococcus thermophilus CRL 1190 was found to be effective for
preventing chronic gastritis [15]. The EPS of Lactobacillus paracasei subsp. paracasei NTU 101 and
Lactobacillus plantarum NTU 102 demonstrated potential antioxidant properties [16]. EPS can also
interact with copper forming a complex structure and conferring specific activities in EPS [17].

As the above stated above, the study investigated TTX detoxification using Lactobacilli
exopolysaccharide.

2. Results

2.1. Identification of Leuconostoc mesenteroides N3

After checking the bacterium showing short chain of coccal shape under the microscope, bacterium
was identified by biochemical tests and 16S rRNA sequencing analysis. As a result, the bacterium was
found to be a facultative anaerobe. It can utilize and produce acid by fermenting D-glucose, mannitol,
rhamnose, D-sorbitol, mannose, D-galactose, D-fructose, and 10% lactose. In addition, this bacterium
appeared positive for indole, urease, amylolysis, phenylalanine deaminase, utilization of malonate, and
methyl red tests, but negative for sucrose, maltose and L-arabinose, Voges–Proskauer reaction, gelatin
liquefaction, tryptophan deaminase, ornithine decarboxylase, phenylalanine deaminase, and arginine
decarboxylase. The partial 16S rRNA sequence was 425 bp deposited in DDBJ (accession number:
LC066674). The partial 16S rRNA gene sequence was analyzed using NCBI BLAST, showing 99% of the
homology to Leuconostoc mesenteroides. The isolated strain was identified as Leuconostoc mesenteroides N3.

2.2. EPS Isolation

The EPS yield of Leuconostoc mesenteroides, Lactobacillus plantarum, and Lactobacillus rhamnosus
was 140 mg, 150 mg, and 140 mg per 106 cfu/mL, respectively. However, the EPS solubility in water
of isolated Leuconostoc mesenteroides, Lactobacillus plantarum, and Lactobacillus rhamnosus was 9.88%,
67.73%, and 9.26%, respectively (Table 1).

Table 1. Characteristics of exopolysaccharide (EPS) obtained from lactic acid bacteria.

Selected LAB Crude EPS
(mg/0.5 L Culture)

Water Solubilizing EPS
(mg/0.5 L Culture) Percentage (%) Molecular

Weight (Da)

Leuconostoc mesenteroides 140 13.83 9.88 3.8 × 104

Lactobacillus plantarum 150 101.6 67.73 4 × 104

Lactobacillus rhamnosus 140 12.96 9.26 4.4 × 104

2.3. Monomer Detection

By thin layer chromatography (TLC) analysis, the EPS of Leuconostoc mesenteroides,
Lactobacillus plantarum, and Lactobacillus rhamnosus was constituted mostly by glucose. The Rf
value of standard D-glucose was 0.73, similarly to the spots of monomer from the EPS of
Leuconostoc mesenteroides, Lactobacillus plantarum, and Lactobacillus rhamnosus (Figure 1).

The monomer detection was also confirmed by high-performance liquid chromatography (HPLC).
The results of the HPLC showed that EPS from Leuconostoc mesenteroides, Lactobacillus plantarum, and
Lactobacillus rhamnosus consisted of D-glucose and one unknown monomer. All hydrolyzed peaks
appear at the same retention time of standard D-glucose (Table 2). Moreover, the ratio between
D-glucose and the unknown monomer was highest in the EPS of Lactobacillus plantarum, then the EPS
of Leuconostoc mesenteroides, and finally lowest in the EPS of Lactobacillus rhamnosus. These differences
could result in a different TTX detoxification capacity.
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1457 cm−1, 1224 cm−1, 1645 cm−1, and 1056 cm−1, respectively. Significantly, the EPS of Lactobacillus 
plantarum contained a different frequency at 1380.7 cm−1 while 1456.3 cm−1 and 1457.4 cm−1 in the EPS 
of Lactobacillus rhamnosus and Leuconostoc mesenteroides, respectively. It was revealed that the EPS of 
Lactobacillus plantarum contained a dimethyl group in its monomer. This difference could make the 
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Figure 1. The hydrolyzed exopolysaccharide (EPS) of Leuconostoc mesenteroides (1), Lactobacillus plantarum (2),
and Lactobacillus rhamnosus (3) were detected by thin layer chromatography (TLC). Standard glucose (4).

Table 2. The retention time and peak area of monomer revealed by high-performance liquid
chromatography (HPLC).

Hydrolyzed EPS from Selected Lactic Acid Bacteria (LAB) Peak Area Retention Time (min)

Leuconostoc mesenteroides
143,843 13.133
87,661 15.599

Lactobacillus plantarum 82,310 13.125
53,584 15.575

Lactobacillus rhamnosus
120,313 13.152
34,456 15.620

Standard D-glucose 579,056 15.512

2.4. Functional Group Detection

FTIR was performed for more clarification on the structure of EPS and summarized in Table 3.
The polymers had group frequencies including OH, CH2, CH, C–C, C=O, C–O at 3425 cm−1,
2934 cm−1, 1457 cm−1, 1224 cm−1, 1645 cm−1, and 1056 cm−1, respectively. Significantly, the EPS
of Lactobacillus plantarum contained a different frequency at 1380.7 cm−1 while 1456.3 cm−1 and
1457.4 cm−1 in the EPS of Lactobacillus rhamnosus and Leuconostoc mesenteroides, respectively. It was
revealed that the EPS of Lactobacillus plantarum contained a dimethyl group in its monomer. This
difference could make the EPS of Lactobacillus plantarum have a different activity in comparison with
that of the EPS of Lactobacillus rhamnosus and Leuconostoc mesenteroides.

Table 3. The Wavenumber (cm−1) corresponding to chemical bonds from FTIR spectrum.

EPS from Selected LAB
Wavenumber (cm−1)

OH C–H C=O N–H C–H C–C C–O C–H

Leuconostoc mesenteroides 3427.5 2934.4 1645.1 1542.5 1457.4 1224.6 1056.2 813.4
Lactobacillus plantarum 3438.2 2936.8 1654.2 1550.9 1380.7 1223.4 1052.4 814.8
Lactobacillus rhamnosus 3421.9 2934.1 1652.1 1539.6 1456.3 1221.6 1057.2 813.6

2.5. Mice Assay for TTX Detoxification Capacity of EPS

TTX was incubated with the EPS of Leuconostoc mesenteroides, Lactobacillus plantarum, and
Lactobacillus rhamnosus together with cuprous oxide at room temperature for 20 to 60 min. On the basis
of the lethal dose (0.22 µg TTX/mouse unit) that caused 100% of mice to die within 30 min, the TTX
dose applied to the mice depending on their weight is presented in Table 4.
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Table 4. The dead time of mouse treated with different dose of TTX.

Mice Weight of Mouse (g) Dose of Tetrodotoxin (TTX) (µg/Mouse Unit) Time Until Death (min)

1 19.53 0.20 57
2 20.52 0.20 65
3 21.02 0.20 49
4 19 0.22 28
5 20.81 0.22 30
6 21 0.22 26
7 19.95 0.24 18
8 20.30 0.24 22
9 20.86 0.24 15

2.6. TTX Detoxification Capacity of EPS of Lactobacillus rhamnosus

Experimentally, the optimal combination of EPS of Lactobacillus rhamnosus (147.946 µg) with
cuprous oxide (55.325 µg) incubated for 40.415 min showed the highest TTX detoxification capacity,
resulting in all mice recovering after injection (Figure 2). EPS or cuprous oxide alone did not help
mice recover from TTX. There was no significant difference in the incubation time from 20 to 60 min
in the TTX detoxification capacity. Table 5 showed the reduction percentage of TTX incubated with
EPS (28.99%) or both EPS and cuprous oxide (37.81%). The interaction between the EPS of Lactobacillus
rhamnosus and cuprous oxide in TTX detoxification may occur in a shorter time, less than 20 min.
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Table 5. The reduction percentage of TTX by EPS in combination with Cu2O reveal by HPLC.

EPS from
Selected LAB

TTX Dose
(µ/mu)

EPS Dose
(µ/mu)

Cuprous
Oxide (µ/mu)

Incubation
Time (min) Peak Area Retention

Time (min)
%

Reduction

Leuconostoc
mesenteroides

0.5 250 55 40 30,026 15.038 37.54
0.5 250 0 40 45,212 15.046 5.96

Lactobacillus
rhamnosus

0.5 150 55 40 29,899 15.068 37.81
0.5 150 0 40 34,139 15.064 28.99

Lactobacillus
plantarum

0.5 100 55 40 44,618 15.063 7.19
0.5 100 0 40 40,968 15.063 14.78

Cuprous oxide 0.5 0 55 40 31,547 15.083 34.38

Standard TTX 0.5 0 0 40 48,077 15.121 0
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2.7. TTX Detoxification Capacity of EPS of Lactobacillus plantarum

In the Figure 3, the mixture of the EPS of Lactobacillus plantarum and cuprous oxide did not show
any TTX detoxification in mice. However, the EPS of Lactobacillus plantarum showed TTX detoxification
capacity in mice. Actually, EPS showed the higher reduction percentage of TTX than EPS incubated
with cuprous oxide when analyzed by HPLC (Table 5).Toxins 2018, 10, x FOR PEER REVIEW  5 of 11 
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2.8. TTX Detoxification Capacity of EPS of Leuconostoc mesenteroides

The combination of the EPS of Leuconostoc mesenteroides and cuprous oxide significantly affected
the survival in mice (Figure 4). In experiment, the optimal incubation time was 40.04 min, the optimal
EPS dose was 248.449 µg, and cuprous oxide dose was 54.204 µg for mice survival after injection. In
the study, the incubation times of EPS and cuprous oxide were changed from 20 to 60 min which
insignificantly affected the survival in mice. Table 5 showed that the reduction percentage of TTX
incubated with EPS (5.96%) was lower than the EPS incubated with cuprous oxide (37.54%). The
interaction between the EPS of Leuconostoc mesenteroides and cuprous oxide in TTX detoxification may
occur in a shorter time, less than 20 min.

Toxins 2018, 10, x FOR PEER REVIEW  5 of 11 

 

 
Figure 3. Surface and contour plot of combination of EPS of Lactobacillus plantarum, Cu2O, and time 
treatment for TTX detoxification capacity on mice. 

Table 5. The reduction percentage of TTX by EPS in combination with Cu2O reveal by HPLC. 

EPS from 
Selected LAB 

TTX 
Dose 

(µ/mu) 

EPS Dose 
(µ/mu) 

Cuprous 
Oxide (µ/mu) 

Incubation 
Time (min) 

Peak 
Area 

Retention 
Time (min) 

% 
Reduction 

Leuconostoc 
mesenteroides 

0.5 250 55 40 30,026 15.038 37.54 
0.5 250 0 40 45,212 15046 5.96 

Lactobacillus 
rhamnosus 

0.5 150 55 40 29,899 15.068 37.81 
0.5 150 0 40 34,139 15.064 28.99 

Lactobacillus 
plantarum 

0.5 100 55 40 44,618 15.063 7.19 
0.5 100 0 40 40,968 15.063 14.78 

Cuprous oxide 0.5 0 55 40 31,547 15.083 34.38 
Standard TTX 0.5 0 0 40 48,077 15.121 0 

2.8. TTX Detoxification Capacity of EPS of Leuconostoc mesenteroides 

The combination of the EPS of Leuconostoc mesenteroides and cuprous oxide significantly affected 
the survival in mice (Figure 4). In experiment, the optimal incubation time was 40.04 min, the optimal 
EPS dose was 248.449 µg, and cuprous oxide dose was 54.204 µg for mice survival after injection. In 
the study, the incubation times of EPS and cuprous oxide were changed from 20 to 60 min which 
insignificantly affected the survival in mice. Table 5 showed that the reduction percentage of TTX 
incubated with EPS (5.96%) was lower than the EPS incubated with cuprous oxide (37.54%). The 
interaction between the EPS of Leuconostoc mesenteroides and cuprous oxide in TTX detoxification may 
occur in a shorter time, less than 20 min. 

 
Figure 4. Surface and contour plot of combination of EPS of Leuconostoc mesenteroides, cuprous oxide,
and time treatment for TTX detoxification capacity on mice.



Toxins 2018, 10, 288 6 of 11

3. Discussion

Lactobacillus plantarum PN05, Leuconostoc mesenteroides N3, and Lactobacillus rhamnosus PN04 were
chosen to clarify TTX detoxification. EPS is a countering compound produced by lactic acid bacteria in
response to disadvantageous conditions, hypothesized as a TTX detoxification compound in this study.
Different bacteria may produce EPS differently in response to hard conditions, resulting in different
activities [18]. EPS may directly bind and reduce the toxicity of antibiotic or prevent antibiotic binding
to active sites. Other studies revealed that TTX can be removed from puffer fish meat by traditional
fermentation in which lactic acid bacteria play the main roles [11]. According to researched results,
EPS was chosen and scanned for its TTX detoxification capacity.

Lactobacillus plantarum, Leuconostoc mesenteroides, and Lactobacillus rhamnosus had an equal
productivity of EPS, but varied their solubility in water largely because of the difference of functional
groups detected by FTIR, leading to the different interaction with water and other compounds.

From the Box–Behnken design, the experimentally optimal results indicated that the EPS of
Leuconostoc mesenteroides and Lactobacillus rhamnosus can detoxify TTX and help mice survive when
combined with cuprous oxide, while the EPS of Lactobacillus plantarum alone showed TTX detoxification
capacity. This variation may be due to the different structure of EPS of the three strains. The study
suggested that the EPS of Lactobacillus plantarum alone could be used in prevent TTX contamination.

In the cases of the EPS of Leuconostoc mesenteroides and Lactobacillus rhamnosus, the EPS showed
their TTX detoxification capacity when combined with copper ion. EPS is a long chain polymer while
tetrodotoxin contains many strong functional groups in a compact structure. In the presence of copper,
both EPS structures of Leuconostoc mesenteroides and Lactobacillus rhamnosus contain functional groups
(O–H, N–H) that interact with copper forming a complexly compact structure that can bind to TTX
through many hydrogen bonds (Figure 5), then TTX was not enough amount to cause TTX toxicity
in mice. According to the FTIR result, the EPS of Lactobacillus plantarum was methylated. This group
makes the electric density in oxygen become more negative in charge allowing them to interact with
hydrogen of the hydroxyl groups of TTX (Figure 6). These interactions might happen faster than the
interaction of copper with nitrogen in nitro moiety of TTX leading to TTX detoxification without the
presence of copper. Further investigations must be conducted to optimize the way EPS originated in
many sources in TTX detoxification.
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4. Conclusions

EPS from Leuconostoc mesenteroides N3 and Lactobacillus rhamnosus PN04 combined with cuprous
oxide can detoxify TTX in mouse. However, because cuprous oxide is toxic, these combinations
should be considered well. Fortunately, EPS from Lactobacillus plantarum PN05 alone showed TTX
detoxification capacity in mice. Therefore, the study may bring out the potential way in TTX prevention.

5. Materials and Methods

5.1. Isolation and Identification of Leuconostoc mesenteroides N3

The seawater samples were collected at different places in the Vung Tau sea in Vietnam. These
samples were handled in sterile condition. The isolation for lactic acid bacteria was done according to
Schillinger [19] and Rodriguez et al. [15]. The media including the de Man–Rogosa–Sharpe (MRS) agar
or broth (Merck, Darmstadt, Germany) were used. Briefly, a 10 g of sample was mixed with 90 mL
saline solution (0.9%) to get a ratio of 1/10. The solutions were shaken for 10 min to homogenize.
A volume of 1 mL was plated on MRS agar and incubated in CO2 (5%) conditions at 45 ◦C for 48 h.
About ten colonies were grown at the incubated condition. All colonies were taken for identification.
The isolated colonies were tested by microscopic examination with gram stain and catalase production.
The pure colonies were also characterized using an uronic acid test. Then, the strains were identified
by biochemical characterization based on the ability of the isolates to utilize different carbon sources,
which were determined by API CHL 50 (bioMerieux, Lyon, France) and 16S rRNA sequencing analysis.
The forward primer was f1 (5′-GCAAGTCGAACGCACAGCGA-3′) and the reverse primer was f2
(5′-CACGTATTTAGCCGTCCCTTTC-3′). The PCR reaction was performed as follows: 95 ◦C for 5 min;
30 cycles of 95 ◦C for 20 s, 50 ◦C for 20 s, and 72 ◦C for 3 min; and a final extension at 72 ◦C for 10 min.
The PCR product was stored at 4 ◦C. The purified PCR product was then sequenced. The homology
comparison of 16S rRNA gene sequence with the others was performed using BLAST (NCBI).

5.2. Cultivation of Lactic Acid Bacteria for EPS Isolation

Lactic acid bacteria strains used in this study including Leuconostoc mesenteroides N3,
Lactobacillus plantarum PN05 isolated from Coriandrum sativum [20], and Lactobacillus rhamnosus PN04
isolated from Hottuynia cordata Thunb [21]. All these strains were cultured in MRS broth at room
temperature for 48 h.

5.3. Mice

Mice (20 ± 1 g) selected for this experiment were male, provided by the cell
reprograming laboratory, Hochiminh City International University (HCM-IU), Vietnam National
University—Hochiminh city. All the procedures were done according to the rules of HCM-IU (Ethical
approval code: 302/QD-DHQT-QLKH; Renewed date of approval: 2 July 2018).
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5.4. Isolation of EPS

All supernatant was harvested after centrifugation at 10,000 rpm, 4 ◦C for 30 min. The procedure
was done according to Wei’s group [22]. The dried EPS was used for quantification, further purification
for structure determination, and testing for TTX neutralization.

5.5. EPS Determination

The EPS concentration was determined by the phenol-sulphuric acid method [23]. The absorbance
was measured at 490 nm. The concentration of EPS was determined in triplicate. Distilled water was
used as blank. The EPS content of each sample was calculated based on the standard curve.

5.6. Molecular Weight Determination

The extracted EPS was purified according to the method [24]. The precipitated EPS was dissolved
in water, dialyzed in water, and lyophilized. The UV spectrum of the purified EPS was investigated for
the presence of protein or nucleic acid. The molecular weight of EPS was determined by performing gel
permeation chromatography (GPC). The EPS was eluted with 0.1 NaNO3 at a flow rate of 0.6 mL/min.
Dextran was used as standard to estimate the molecular weight of EPS [25].

5.7. Monomer Detection

Monomers of EPS were preliminary detected by thin layer chromatography [26]. After that,
high performance liquid chromatography was performed to thoroughly detect for monomers. The
hydrolyzed EPS was dissolved in Milli-Q water and applied into the monosaccharide Ca2+ column.
Milli-Q water was used as mobile phase. The flow rate was 0.6 mL/min. The monosaccharides such
as D-glucose, D-galactose, fructose, D-mannose, D-xylose, and L-rhamnose were used as standards.
Refractive Index Detector (RID) was used in the study [26].

5.8. FT-IR

FTIR was performed to detect functional groups or chemical bonds in the compound according
to the previous method [27]. To detect functional group present in the EPS, FTIR was carried out by
micro-KBr pellet technique. Lyophilized EPS powder was ground with potassium bromide powder
finely. A spectrum was recorded using FTIR spectrophotometer (Nicolet-5700 Thermo Electron
Corporation, Madison, WI, USA) in the frequency range of 400–4000 cm−1. Potassium bromide was
used as a background reference.

5.9. Test for TTX Neutralization Capacity of EPS

TTX in a range of 0.1–0.5 µg was screened on mice via intraperitoneal injection to determine
minimal dose at which 100% mice died within 30 min. After determination of exact lethal dose, TTX
was combined with EPS of Leuconostoc mesenteroides, Lactobacillus plantarum, and Lactobacillus rhamnosus
with and without cuprous oxide. The mixtures were incubated for 20–60 min, then intraperitoneally
injected in mice. The symptoms and time of death of injected mice were recorded carefully. In parallel,
we intraperitoneally injected mice with TTX, and then injected EPS or EPS combined with cuprous
oxide. All the symptoms and time of death were then recorded. Box–Behnken design was used to set
up the doses for TTX detoxification in mice.

5.10. Statistical Analysis and Box–Behnken Design

In order to maximize the TTX detoxification capacity of EPS, the different concentrations of EPS
and Cu2O as well as incubated time were screened. A set of factors was studied at three levels (−1, 0,
+1) those are standing for the lower extreme, central point and the higher extreme of each factor in the
design respectively (Tables 6–8). These factors were symbolized as A, B, and C, respectively.
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Table 6. Code level of Plackett–Burman design for Lactobacillus plantarum.

Income Variables
Code Levels

−1 0 1

EPS (µg/mouse unit) (A) 100 200 300
Cuprous oxide (µg/mouse unit) (B) 10 55 100

Incubated time (min) (C) 20 40 60

Table 7. Code level of Plackett–Burman design for Lactobacillus rhamnosus.

Income Variables
Code Levels

−1 0 1

EPS (µg/mouse unit) (A) 100 150 200
Cuprous oxide (µg/mouse unit) (B) 10 55 100

Incubated time (min) (C) 20 40 60

Table 8. Code level of Plackett–Burman design for Leuconostoc mesenteroides.

Income Variables
Code Levels

−1 0 1

EPS (µg/mouse unit) (A) 100 250 400
Cuprous oxide (µg/mouse unit) (B) 10 55 100

Incubated time (min) (C) 20 40 60

The experimental matrix was designed by using the Design-Expert@ version 8.06 (Stat-Ease Inc,
East Hennepin Avenue, Minneapolis, MN, USA) design was arranged in Table 9.

Table 9. Plackett–Burman experimental design matrix.

Experiment
Factors

A B C

1 −1 −1 0
2 −1 1 0
3 1 −1 0
4 1 1 0
5 −1 0 −1
6 −1 0 1
7 1 0 −1
8 1 0 1
9 0 −1 −1
10 0 −1 1
11 0 1 −1
12 0 1 1
13 0 0 0
14 0 0 0
15 0 0 0

On the basis of Box–Behnken design, the experiments for determination of optimal combination of
EPS and cuprous oxide in a suitable incubation time were done. All the results were statistically analyzed.
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