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Abstract: Eighty-seven samples of malt from several Polish malting plants and 157 beer samples
from the beer available on the Polish market (in 2018) were tested for Fusarium mycotoxins
(deoxynivalenol (DON), nivalenol (NIV)), and their modified forms ((deoxynivalenol-3-glucoside
(DON-3G), nivalenol-3-glucoside (NIV-3G), 3-acetyldeoxynivalenol (3-AcDON)). DON and its
metabolite, DON-3G, were found the most, among the samples analyzed; DON and DON-3G
were present in 90% and 91% of malt samples, and in 97% and 99% of beer samples, respectively. NIV
was found in 24% of malt samples and in 64% of beer samples, and NIV-3G was found in 48% of
malt samples and 39% of beer samples. In the malt samples, the mean concentration of DON was
52.9 µg/kg (range: 5.3–347.6 µg/kg) and that of DON-3G was 74.1 µg/kg (range: 4.4–410.3 µg/kg). In
the beer samples, the mean concentration of DON was 12.3 µg/L (range: 1.2–156.5 µg/L) and that of
DON-3G was 7.1 µg/L (range: 0.6–58.4 µg/L). The concentrations of other tested mycotoxins in the
samples of malt and beer were several times lower. The risk of exposure to the tested mycotoxins,
following the consumption of beer in Poland, was assessed. The corresponding probable daily intakes
(PDIs) remained a small fraction of the tolerable daily intake (TDI). However, in the improbable
worst-case scenario, in which every beer bottle consumed would be contaminated with mycotoxins
present at the highest level observed among the analyzed beer samples, the PDI would exceed the
TDI for DON and its metabolite after the consumption of a single bottle (0.5 L) of beer.

Keywords: Fusarium toxins; modified mycotoxins; beer; malt; risk assessment

Key Contribution: High number of malt and beer samples were contaminated with mycotoxins.
Strong beers (with higher alcohol content) contain higher levels of mycotoxins. Risk analysis showed
a low level group probable daily intake of mycotoxin from beer. DON-3G present in beer has a
significant share in group exposure to mycotoxins.

1. Introduction

Barley (Hordeum vulgare L.) has been grown for many years and is of great economic importance [1].
Approximately 57 million tonnes of barley was produced annually (in 2018) in the European Union,
while global production has reached 147 million tonnes annually [2]. Most of the harvested grain is
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used as feed but the highest quality barley is selected for food production, including the production of
malt. Malt is an ample source of the B-group vitamins, niacin, and minerals. It is increasingly used in
the bakery and pastry industries to improve the quality of both the taste and health of their products [3].
However, beer production remains as the main application of malt [1,4]. Beer is an alcoholic beverage
commonly consumed in numerous countries globally. Poland has the third largest quantity of beer
production in Europe (approximately 93, 40.5, and 40.4 million hectoliters in Germany, UK, and Poland,
respectively) and the fourth highest beer consumption per capita in Europe (approximately 138, 105,
101, and 97 liters in Czech Republic, Austria, Germany, and Poland, respectively [5]).

To arrive at a high-quality malt, one needs to start with a healthy grain with sufficiently high
energy for germination and sufficient protein content. However, unfavorable climatic conditions
during the plant vegetation season may negatively impact the quality of the grain and consequently,
the decrease quality of the malt produced from that grain [6]. The most important climatic conditions
are rainfall and temperature, which are two factors that mostly determine the degree to which the
plants may become infected with pathogen fungi. Fusarium is one of the major fungal species infecting
cereal grains, including barley. Fusarium head blight (FHB) disease caused by these fungi is a problem
in various regions of the world. The fungal infection decreases crop yield, but even greater damage
may result from the production of mycotoxins, which are secondary metabolites of the fungi that are
toxic to humans and animals [7].

Fusarium spp. most often responsible for FHB in Poland include F. graminearum, F. avenaceum,
and F. culmorum; however, other species are also seen in various regions of the world [8–10]. The
mycotoxins produced by Fusarium in cereal grains include the trichothecenes, deoxynivalenol (DON),
and nivalenol (NIV), and their modified forms. These toxins are also phytotoxic [11,12]. F. culmorum
and F. graminearum are among the varieties that most aggressively infect plant ears [13,14]. Many
of these fungi are capable of synthesizing 3- (3-AcDON) or 15-acetyl deoxynivalenol (15-AcDON),
which are modified forms of DON [15]. Studies of the phytotoxic effects of DON have shown that
the ability to covert DON into deoxynivalenol-3-glucoside (DON-3G) is the plant’s primary defense
mechanism against the toxin. Similar metabolic detoxication mechanisms help to build resistance to
toxins in numerous cereal grain plants [16]. In barley, this mechanism is thought to be controlled by
the QTL (quantitative trait loci)-specific region. Future studies involving deeper genetic analyses may
help to develop tools to select fungal toxin-resistant plants using specific markers (marker-assisted
selection; [17]). The phytotoxic effects of DON-3G are very weak compared to DON [18] and thus, it
may be expected that a similar relationship holds for nivalenol 3-glucoside (NIV-3G) and NIV.

The consumption of DON- and/or NIV-contaminated food/feed may lead to disorders of the
gastrointestinal tract, reproductive organs, and/or the immune system in both humans and animals.
The toxicological characteristics of these toxins have been extensively described [19]. The lower levels
of toxicity of DON-3G compared with DON have been confirmed in both humans and animals. In some
in vitro studies and in some research on animals, it has been shown that DON-3G is not transported
through the intestinal epithelium, but rather, is hydrolyzed by bacteria within the lower part of the
alimentary tract [20]. Similar data are not available for NIV-3G, but it is commonly thought that the
adverse effects of NIV-3G are weaker than those of NIV, as they are for DON-3G and DON.

Currently, the only European Commission regulation concerning mycotoxins in foodstuffs requires
that the DON concentration in unprocessed cereal grains must not exceed 1250 µg/kg [21]. Taking into
consideration the scientific evidence regarding the rapid absorption and excretion of DON, the in vivo
deacetylation of 3- and 15-AcDON, and the hydrolysis of DON-3G in the lower parts of the alimentary
tract; a European Food and Safety Authority (EFSA) expert panel recognized in 2017 that the toxic
effects of DON-derivatives in humans may be comparable to the toxic effects of DON. Therefore, the
tolerable daily intake (TDI) and reference dose (RfD) values have been recalculated as the sum of the
three latter substances. Based on epidemiological data, a TDI threshold of 1 µg/kg body weight/day
and an RfD dose of 8 µg/kg body weight/day have been accepted [19].
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Reports on mycotoxins and their metabolites in Polish malts used in the brewing industry are
very limited. The aims of this work included: (i) to assess the contamination of malts, sampled from
several Polish malting plants, with selected Fusarium mycotoxins including their modified forms; (ii) to
assess the mycotoxin contamination of beer available in 2019 on the Polish market; and (iii) to assess
the risk of exposure to these mycotoxins following the consumption of beer in Poland.

2. Results and Discussion

2.1. Malt

Mycotoxins were found in the majority of the malt samples analyzed (Table 1). DON and DON-3G
were found most often (in 90% and 91% of the malt samples, respectively) and at the highest levels
(average of 52.9 and 74.1 µg/kg for DON and DON-3G, respectively). The percentage of samples
positive for 3-AcDON was clearly lower 59% and NIV and NIV-3G were detected in the least number
of samples (24% and 48%, respectively). DON-3G/DON molar ratios varied from 22% to 186% among
DON-positive samples, while NIV-3G/NIV molar ratios varied from 32% to 126% among NIV-positive
samples. Individual results regarding the content of individual mycotoxins in malt samples are
presented in Table S1.

Table 1. Concentration of mycotoxins in 87 barley malt samples.

Assumed
Values

Concentration (µg/kg) Molar Ratios

DON DON-3G 3-AcDON NIV NIV-3G DON-3G
/DON

NIV-3G
/NIV

Positive
samples (%)

78
(90%)

79
(91%)

51
(59%)

21
(24%)

42
(48%)

78
(90%)

21
(24%)

Average 52.9 74.1 7.7 22.1 13.9 89% 65%
Median 24.2 33.1 4.9 17.5 10.0 88% 66%

Min–Max 5.3–347.6 4.4–410.3 2.2–40.2 8.3–118.6 5.0–57.4 22%–186% 32%–126%

DON, deoxynivalenol; DON-3G, deoxynivalenol-3-glucoside; 3-AcDON, 3-acetyldeoxynivalenol; NIV, nivalenol;
NIV-3G, nivalenol-3-glucoside.

In grains, DON-3G is known to be a product of the plant defense reaction to the presence of
the phytotoxin, DON [22–24]. DON-3G is easily soluble and plants can easily transport it from the
cytoplasm to vacuoles or the intercellular space [16]. The DON-3G/DON ratio in the grain itself does not
usually exceed 30% [25,26]. However, in malt samples we observed an average DON-3G/DON ratio of
89%, with a range of 22%–186%. Relatively high values (average 65%, range 32%–126%) were also noted
for the NIV-3G/NIV ratio. Some researchers have suggested that changes occur during the malting
process that activate secondary detoxicating enzymes, which then catalyze the conversion of the toxins
to their glycoside derivatives [27–29]. Maul et al. [29] have shown that sprouting seeds of barley, millet,
oat, rye, and spelt are capable of converting DON into DON-3G by means of UDP-glucosyltransferases.
In barley, approximately 50% of DON was found to be converted, mainly into DON-3G, with a similar
conversion rate observed in wheat. Moreover, Lancova et al. [28] reported that, during barley grain
germination, the concentration of DON may decrease by 90%, while the concentration of DON-3G may
markedly increase, to a level as high or several times higher than DON. Spanic et al. [30] presented
data on mycotoxin levels in wheat varieties varying in Fusarium head blight resistance; the average
content of DON-3G increased from 59.9 µg/kg in grain to 163.9 µg/kg in malt.

There are very few reports in the literature on the co-occurrence of DON/DON-3G and NIV/NIV-3G
in brewing malts, even though such data are essential for regulating food safety. In the present study,
we detected these substances in both malt and beer samples. However, the DON concentration did not
exceed 750µg/kg, the maximum permissible level in malt specified in EC Regulation 1881/2006, in any of
the tested malt samples [21]. Practically, malt plants in Poland do not purchase grain contaminated with
DON at levels above 1 mg/kg, while the maximum permissible level in grain is 1.25 mg/kg, as per EC
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Regulation 1881/2006 [21]. Mitteleuropäische Brautechnische Analyskomommision [31] recommends
the inspection of each batch of grain offered to a malting plant for the presence of F. graminearum and
F. culmorum. If mycelia are visible, they recommend the analysis of the grain for mycotoxins. There
are some indications in the literature [32–35] that high amounts of additional mycotoxins may be
synthesized in fungi-contaminated grain during the malting process, thus significantly impacting
food safety.

2.2. Beer

The majority of beers marketed in Poland are light beers based on pilsner malts. However, dark ale
or lager beers produced from Munich malts, usually obtained from lower quality grains [36], caramel
malts or roasted pale ale malts are also popular. The two latter malts are enzymatically inactive; they
are introduced in small amounts [37], to darken the beer and enhance its flavor. Wheat beers are also
becoming increasingly common on the market. They are produced from barley malt, with the addition
of at least 50% wheat or wheat malt. The flavor of these beers is unique, differing from the flavor
of classical barley-only beers [38]. We divided our beer samples into three common categories for
analysis: light, dark, and wheat beers. The percentage of mycotoxin-positive beer samples in all these
groups was high (Table 2). Individual results regarding the content of mycotoxins in beer samples are
presented in Table S1.

Table 2. Concentration of mycotoxins in light, dark, and wheat beers.

Type of Beer
Concentration (µg/L) Molar Ratios

DON DON-3G 3-AcDON NIV NIV-3G DON-3G
/DON

NIV-3G
/NIV

Light
beers

(n = 105)

No. of positive
samples (%) 101 (96%) 103 (98%) 72 (69%) 70 (67%) 45 (43%) 100 (95%) 42 (40%)

Average 13.0 7.3 1.0 1.5 1.1 46% 42%
Median 8.0 4.8 0.7 1.4 0.8 33% 30%

Min–Max 1.2–156.5 0.6–36.8 0.3–8.3 0.6–3.6 0.5–4.5 10–149% 12–137%

Dark
beers

(n = 28)

No. of positive
samples (%) 28 (100%) 28 (100%) 7 (25%) 15 (54%) 7 (25%) 28 (100%) 6 (21%)

Average 11.7 7.8 1.2 1.0 0.7 40% 41%
Median 8.8 4.8 0.8 0.8 0.6 39% 36%

Min–Max 2.7–54.4 1.3–58.4 0.3–3.9 0.6–2.5 0.5–0.8 18–71% 30–74%

Wheat
beers

(n = 24)

No. of positive
samples (%) 24 (100%) 24 (100%) 13 (58%) 15 (63%) 10 (42%) 24 (100%) 9 (38%)

Average 9.6 5.0 0.9 1.1 0.9 34% 50%
Median 9.9 3.8 0.9 1.0 0.9 34% 52%

Min–Max 2.2–24.6 0.6–13.2 0.9–1.9 0.6–2.0 0.5–1.6 14–59% 23–79%

Total
(n = 157)

No. of positive
samples (%) 153 (97%) 155 (99%) 92 (59%) 100 (64%) 62 (39%) 152 (97%) 57 (36%)

Average 12.3 7.1 1.0 1.3 1.1 43% 43%
Median 8.6 4.8 0.8 1.2 0.8 38% 37%

Min–Max 1.2–156.5 0.6–58.4 0.3–8.3 0.6–3.6 0.5–4.5 10–149% 12–137%

DON, deoxynivalenol; DON-3G, deoxynivalenol-3-glucoside; 3-AcDON, 3-acetyldeoxynivalenol; NIV, nivalenol;
NIV-3G, nivalenol-3-glucoside.

As was the case for malt samples, DON and DON-3G were the most frequently found toxins in
beer samples, being present in 96% and 98% of light beer samples, respectively, and in all the samples
of dark and wheat beers. Other mycotoxins, namely, 3-AcDON, NIV, and NIV-3G were found at lower
levels in 69%, 25%, and 58%; 67%, 54%, and 63%; and 43%, 25%, and 42% of the light, dark, and wheat
beer samples, respectively. The maximum DON (156.5 µg/L) and DON-3G (58.4 µg/L) concentrations
were found in a light and a dark beer sample, respectively. The average levels of the three remaining
tested mycotoxins ranged from 0.7 to 1.5 µg/L, i.e., they were approximately 6–20 times lower than the
DON levels. The average DON-3G/DON and NIV-3G/NIV molar ratios ranged from 34% to 46% and
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41% to 50%, respectively. Neither the mycotoxin concentrations nor their molar ratios were dependent
on the beer category.

The alcohol content of beer depends on the extent to which the yeast ferments the sugars, which
largely depends on the amount of grain and malt in the fermentation batch. Stronger beer requires more
grain, which results in a higher risk of mycotoxin contamination [27,39,40]. Grain extracts used for beer
production contain mainly sugars but may also contain dextrins, nitrogenous compounds (proteins),
mineral salts, and other compounds, depending on the recipe used by the beer manufacturer [41].
Therefore, a comparison of the level of mycotoxin contamination in beers with different extract contents
must be treated only as an approximation. Therefore, we re-organized the beer samples into three
different categories: mild beers (0.5–5.0% alcohol, 3.5–12.5% extract), regular beers (5.1–6.0% alcohol,
6.8–16.0% extract), and strong beers (6.1–10.0% alcohol, 8.4%–21.0% extract; Table 3).

Table 3. Concentrations of mycotoxins in mild, regular, and strong beers.

Type of Beer Concentration (µg/L) Molar Ratios

DON DON-3G 3-AcDON NIV NIV-3G DON-3G
/DON

NIV-3G
/NIV

Mild
beers

n = 48)

No. of positive
samples (%)

45
(94%)

47
(98%)

26
(54%)

21
(44%)

18
(38%)

45
(94%)

15
(31%)

Average 7.1 5.6 0.8 1.2 1.3 50% 58%
Median 4.3 3.0 0.7 1.0 1.0 45% 43%

Min–Max 1.4–24.6 0.6–30.9 0.3–2.7 0.6–2.3 0.5–4.5 18–149% 26–137%

Regular
beers

(n = 61)

No. of positive
samples (%)

61
(100%)

61
(100%)

40
(67%)

45
(75%)

23
(38%)

59
(97%)

23
(38%)

Average 12.1 7.0 0.9 1.5 1.1 42% 41%
Median 9.5 5.2 0.8 1.3 0.9 37% 37%

Min–Max 1.2–54.2 0.6–31.5 0.4–2.6 0.6–3.6 0.5–2.8 15–118% 16–90%

Strong
beers

(n = 48)

No. of positive
samples (%)

48
(100%)

48
(100%)

27
(56%)

34
(71%)

21
(44%)

48
(100%)

19
(40%)

Average 17.3 8.6 1.3 1.3 0.7 38% 34%
Median 8.5 5.2 0.9 1.1 0.7 37% 32%

Min–Max 2.0–156.5 0.6–58.4 0.3–8.3 0.6–3.3 0.5–1.8 10–104% 12–52%

DON, deoxynivalenol; DON-3G, deoxynivalenol-3-glucoside; 3-AcDON, 3-acetyldeoxynivalenol; NIV, nivalenol;
NIV-3G, nivalenol-3-glucoside.

The number of positive samples and the concentration of the majority of the tested mycotoxins
positively correlated with alcohol content in most cases. DON and DON-3G were the predominant
toxins in 94% and 98% of mild beer samples, respectively, and in all samples of regular and strong beer,
with average DON concentrations of 7.1, 12.1, and 17.3 µg/L and average DON-3G concentrations of
5.6, 7.0, and 8.6 µg/L for mild, regular, and strong beers, respectively. Less clear, but similar trends
were noted for the other tested mycotoxins.

Mycotoxin contamination of beer has been studied by numerous groups (Table 4). However,
data on the co-occurrence of DON, DON-3G, 3-AcDON, NIV, and NIV-3G in beer are scarce. The
scope of most reported studies has been restricted to DON, DON-3G, and 3-AcDON, with a few
studies also including NIV. Typically, the reported concentrations of the predominant DON have not
exceeded 100 µg/L [27,42–45]. The findings from the present study mostly agree with those from
previous studies (because the fraction of positive samples may depend on the LOD and LOQ of the
method used). Higher concentrations of DON have been found mainly in beers originating from
non-European countries, including craft beers from Brazil (127–501 µg/L; [46]), traditional African beers
from Cameroon (140–730 µg/L; [47]), and Busaa-type beers from Kenya (200–360 µg/kg [48]). However,
relatively high DON concentrations (104–182 µg/L) have also been found in strong (>8% alcohol)
Norwegian Imperial Stout beer [49]. In this study, we found a high DON concentration (156.5 µg/L)
only in one strong (>8% alcohol) sample of a light beer.
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Table 4. Selected literature data on mycotoxins in beer.

Beer
No. of

Samples Toxin
LOD
(µg/L)

LOQ
(µg/L)

Concentration(µg/L)
Reference

Average Max

Wheat beer 46
DON 1 4.5 18.4 49.6

[43]

DON-3G 0.9 3.5 11.5 28.4
3-AcDON 2.2 8.2 <LOD <LOD

Pale beer 217
DON 2.2 5.4 12 89.3

DON-3G 0.4 3.5 9.3 81.3
3-AcDON 2.4 6.8 <LOD <LOD

Dark beer 47
DON 2.9 11 22.4 45

DON-3G 1.4 4.1 10.7 26.2
3-AcDON 4.3 11 <LOD <LOD

Bock beer 20
DON 1.2 4.1 13.8 27.1

DON-3G 0.5 1.5 14.8 33.3
3-AcDON 3.6 9.2 <LOD <LOD

Non-alcoholic
beer

19
DON 1.2 3 14.8 33.3

DON-3G 0.4 1.4 3 6.6
3-AcDON 2.6 6 <LOD <LOD

Shandy beer 25
DON 1.5 3.9 6.9 12.7

DON-3G 0.4 1.3 3.8 7.9
3-AcDON 2.7 10 <LOD <LOD

Wheat beer 10
DON 1 4.5 14 27

[44]

DON-3G 0.9 3.5 8.6 15
3-AcDON 2.2 8.2 <LOD <LOD

Pale beer 10
DON 2.2 5.4 13 30

DON-3G 0.4 3.5 8.3 19
3-AcDON 2.4 6.8 <LOD <LOD

Dark beer 10
DON 2.9 11 11 11

DON-3G 1.4 4.1 9.6 16
3-AcDON 4.3 11 <LOD <LOD

Bock beer 10
DON 1.2 4.1 13 22

[44]

DON-3G 0.5 1.5 16 32
3-AcDON 3.6 9.2 <LOD <LOD

Non-alcoholic
beer

10
DON 1.2 3 3.7 3.7

DON-3G 0.4 1.4 2.3 3.1
3-AcDON 2.6 6 <LOD <LOD

Shandy beer 10
DON 1.5 3.9 6.4 6.4

DON-3G 0.4 1.3 3.5 5.5
3-AcDON 2.7 10 <LOD <LOD

Light beers 158

DON 1 2.5
1.6–9.2

(depending on
alcohol content)

3.7–35.9

[27]

DON-3G 1 2.5 1.7–5.8 1.2–37
AcDONs 2 5 1.7–5.8 1.0–25

NIV 2.5 10 <LOD <LOD

Dark beers 18

DON 1 2.5 1.3–11.2 1.0–16.0
DON-3G 1 2.5 <LOQ–7.8 <LOQ–26.0
AcDONs 2 5 <LOQ–13.7 <LOQ–24.0

NIV 2.5 10 <LOD <LOD
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Table 4. Cont.

Beer
No. of

Samples Toxin
LOD
(µg/L)

LOQ
(µg/L)

Concentration(µg/L)
Reference

Average Max

African
traditional

beer
10

DON

n.r

10 81.8 140

[49]

DON-3G 2.5 <LOD <LOD
AcDONs 10 <LOQ <LOQ

NIV 5 8.7 9

Bock beer 2

DON

n.r.

10 52 64
DON-3G 2.5 60 97
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Dark lager 2

DON

n.r.

10 32.5 41
DON-3G 2.5 52 68
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Double India
Pale Ale

1

DON

n.r.

10 67 67
DON-3G 2.5 48 48
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Eisbock 1

DON

n.r.

10 32 32

[49]

DON-3G 2.5 32 32
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Fruit/Vegetable/
Spice 1

DON

n.r.

10 <LOQ <LOQ
DON-3G 2.5 LOD LOD
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Imperial Stout 18

DON

n.r.

10 95.1 412
DON-3G 2.5 96.7 619
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

India Pale Ale 3

DON

n.r.

10 40 64
DON-3G 2.5 14 18
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Non/Low
Alcohol

1

DON

n.r.

10 <LOQ <LOQ
DON-3G 2.5 <LOD <LOD
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Pale ale 5

DON

n.r.

10 20.3 40
DON-3G 2.5 29.5 82
AcDONs 10 <LOQ <LOQ

NIV 5 <LOD <LOD

Pale Lager 6

DON

n.r.

10 12.5 13
DON-3G 2.5 22 53
AcDONs 10 <LOQ <LOQ

NIV 5 <LOD <LOD

Smoked 1

DON

n.r.

10 23 23
DON-3G 2.5 14 14
AcDONs 10 <LOQ <LOD

NIV 5 <LOD <LOD
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Table 4. Cont.

Beer
No. of

Samples Toxin
LOD
(µg/L)

LOQ
(µg/L)

Concentration(µg/L)
Reference

Average Max

Sour Ale 4

DON

n.r.

10 17 29

[49]

DON-3G 2.5 16.7 22
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Stout 4

DON

n.r.

10 28 30
DON-3G 2.5 41.3 52
AcDONs 10 <LOD <LOD

NIV 5 <LOD <LOD

Strong Dark
Pale

3

DON

n.r.

10 17.5 25
DON-3G 2.5 26.5 35
AcDONs 10 <LOQ <LOD

NIV 5 <LOD <LOD

Strong Pale
Ale

9

DON

n.r.

10 17.5 25
DON-3G 2.5 26.5 35
AcDONs 10 <LOQ <LOD

NIV 5 <LOD <LOD

Strong Pale
Lager 1

DON

n.r.

10 12 12
DON-3G 2.5 17 17
AcDONs 10 <LOQ <LOD

NIV 5 <LOD <LOD

Wheat beer 5

DON

n.r.

10 10 32
DON-3G 2.5 4 41
AcDONs 10 <LOQ <LOD

NIV 5 <LOD <LOD

Mild beer 28
DON 1.3 4.1 10.5 65

[42]

DON-3G 1.9 6.2 7.6 25
NIV 0.6 2.1 2.7 4.8

Regular beer 34
DON 1.3 4.1 6.6 19.7

DON-3G 1.9 6.2 8.8 35.8
NIV 0.6 2.1 1.5 7.4

Strong beer 38
DON 1.3 4.1 10 73.6

DON-3G 1.9 6.2 10.3 35.2
NIV 0.6 2.1 2.8 7.6

n.r. = not reported.

Some of the beer samples tested had a higher concentration of DON-3G than DON.
Similar DON-3G/DON molar ratios have been reported in the literature, with averages of 0.56
(range 0.11–1.25 [43]) and 0.79 (range 0.1–2.6 [49] and 0.7–1.0 [26]. As can be seen, the DON-3G/DON
molar ratios in beer are similar to those in malt.

2.3. Dietary Exposure Assessment

The following group TDI values were used in the assessment of risk of exposure to mycotoxins
following beer consumption: 1 µg/kg body weight/day of the sum of DON, DON-3G, 3-AcDON, and
15-AcDON [20] and 1.2 µg/kg body weight/day of the sum of NIV and NIV-3G [50]. The average beer
consumption in Poland is 97 L per capita annually, i.e., 0.27 L per capita per day [5]. In three considered
scenarios, it was assumed that consumed beer contained mycotoxins at a level equal to: (i) the median,
(ii) the third quartile, or (iii) the maximum concentration found in our samples (the worst-case scenario).
It was assumed that the average adult in Poland weighs 70 kg. The results of the calculations are
shown in Table 5. PDI values remained a small fraction of TDI values in the first and second scenarios
(5.1% and 7.9%, respectively, for DON and its derivatives and 0.32% and 0.61%, respectively, for NIV
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and its derivatives). In the improbable third scenario (worst case), the PDI would reach 65.2% of the
TDI for DON and its derivatives and 2.41% of the TDI for NIV and its derivatives.

Table 5. Group probable daily intake and its share of the total daily intake calculated in three scenarios,
in which different concentrations of mycotoxins were assumed in the consumed beer.

Assumed
Values

DON DON+DON3G+3AcDON NIV+NIV3G

Concentration
(µg/L)

* PDI
(ng/kg b.w./day) %TDI Concentration

(µg/L)
PDI

(ng/kg b.w./day) %TDI Concentration
(µg/L)

PDI
(ng/kg b.w./day) %TDI

Median ** 8.3 31.5 3.2 14.2 50.7 5.1 1.1 3.8 0.32
Quartile 3 ** 13.3 50.4 5.0 22.2 79.4 7.9 2.1 7.3 0.61
Maximum 156.5 594.1 59.4 182.5 651.8 65.2 8.1 28.9 2.41

DON, deoxynivalenol; DON-3G, deoxynivalenol-3-glucoside; 3-AcDON, 3-acetyldeoxynivalenol; NIV, nivalenol;
NIV-3G, nivalenol-3-glucoside; PDI, probable daily intake; TDI, total daily intake; * PDI =

C∗Cd
b.w. , where C is

concentration of the mycotoxin in the contaminated beer, Cd is the average daily consumption of beer in Poland,
and b.w. is mean body weight. ** If the measurement for any analyte was below the LOQ, the median and 3rd
quartile were calculated assuming that the analyte was present at the level of LOQ/2.

The average consumption of 0.27 L of beer per day assumed in the above dietary exposure
assessment does not reflect the real situation, since beer consumers rarely drink less than one bottle
(0.5 L) per day. The PDI for persons drinking 0.5 L of beer daily would be approximately twice the
values calculated above, in which case the TDI of DON and its derivatives would exceed the worst-case
scenario by approximately 30%. Each additional beer bottle consumed per day would double the
above calculated PDI values. It is also worth noting that the analytical method developed here was not
efficient at detecting 15-AcDON. However, since 3-AcDON was detected at very low levels, one can
expect that the contribution of 15-AcDON to the PDI is insignificant.

Of course, beer is not the main source of DON and its derivatives (the most important trichothecenes
from a food safety point of view) in the human diet. Greater levels of exposure come from the
consumption of bakery products, corn flakes, pasta, and other grain-based foodstuffs that are consumed
daily, not only by beer consumers. Considering the exposition, bakery products and pastas are in
Europe more and more often indicated as a possible quite serious threat to human health [50]. Studies
of markers in urine have shown that chronic exposure to DON and its derivatives is greater than
the accepted TDI [51–53]. Therefore, the consumption of beer may increase the risk of excessive
mycotoxin exposure.

Data on the risks associated with the consumption of mycotoxin-contaminated beers exist only
with respect to officially regulated toxins. It is a common observation that DON is the greatest risk
factor, but beer is not generally considered an important source of dietary mycotoxin exposure. Even if
the maximum detected DON concentrations are taken into account, the PDI values remain a small
percentage of the TDI values, regardless of the country of origin of the beer. For example, the PDI is
14.0–20.8% of the TDI in Poland [54]; 18% of the TDI in Brazil [46]; 0.15–6.14% of the TDI in Spain,
where the average consumption is just half of that in Poland [55]; 0% of the TDI in Cyprus and 10% of
the TDI in Ireland [56].

The consumption of mycotoxin-contaminated beer results in negligible risk of exposure to NIV
and NIV-3G. EFSA has reported that even the consumption of bakery products and pasta is safe in
terms of exposure to these toxins [57]. In view of the low concentrations of NIV and NIV-3G, the PDI
values are far below the TDI values, even for foodstuffs that are consumed in relatively large quantities,
such as bakery products and pasta.

3. Conclusions

The data presented here on the co-occurrence of DON, NIV, and their metabolized (masked)
forms in brewing malts and beers available on the Polish market are among the first reported in the
literature. Mycotoxins were found in the majority of the barley malt and beer samples tested. DON
and its metabolite, DON-3G, were found most frequently (in more than 90% of samples), although
at safely low levels. NIV and its metabolite, NIV-3G, were found at lower levels in malt and beer
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samples. Because of the low mycotoxin levels, none of the tested beers were regarded as unsafe from a
toxicological point of view. However, in the worst-case scenario, the PDI would exceed the TDI for
DON and its metabolites after drinking just one bottle (0.5 L) of beer.

4. Materials and Methods

4.1. Reagents and Standards

Certified reference standards of DON, 3-AcDON, and NIV (100 µg/mL in acetonitrile),
and DON-3G (50 µg/mL in acetonitrile:water, 50:50, v/v), were purchased from Romer Labs
(Tulln, Austria). NIV-3G (110 µg/mL) was isolated from wheat, according to the procedure described
by Yoshinari et al. [58]. Acetonitrile, methanol, and LC/MS-grade water were purchased from Witko
(Łódź, Poland). Ammonium formate and formic acid (LC-MS grade) were obtained from Fisher
Scientific (Millersburg, PA, USA). DON-NIV wide-bore (WB) immunoaffinity columns and PBS buffer
solutions were purchased from Vicam (Watertown, NY, USA).

4.2. Research Material

One hundred and fifty-seven beer samples and 87 barley malt samples were analyzed. Various
brands of light, dark, and wheat beers (mild, regular, and strong) were purchased in 2019 from local
supermarkets in Poland. Malt was sampled from various malt plants located throughout the country,
in line with the guidelines specified within EC Regulation 519/2014 (February 23, 2006) [59], which
describes sampling and analysis methods for the official control of mycotoxin levels in foodstuffs. All
the acquired samples belonged to the most common Pilsner malts, which are used to produce pale
straw-colored ale and lager beers [36]. Malt samples, each with a mass of approximately 1 kg, were
ground in a Knife Mill Grindomix GM 200 grinder (Retsch GmbH, Haan, Germany).

4.3. Sample Preparation

Malt and beer samples were prepared for analysis using a method previously described by our
research team [42,60]. After extraction and homogenization (for malt extraction in Unidrive 1000
homogenizer, CAT Scientific Inc., Paso Robles, CA, USA), each sample was passed through a DON-NIV
WB immunoaffinity column at a speed of 1–2 drops/s. The column was rinsed with 10 mL of PBS and
10 mL of de-ionized water. Analytes were washed out of the column, first with 0.5 mL of methanol and
then with 1.5 mL of acetonitrile and were collected into a reaction vial. The solvent was evaporated
in a stream of nitrogen. The residues were re-dissolved in 300 µL of 30% methanol and analyzed by
liquid chromatography-mass spectrometry (LC-MS). Samples were analyzed at three replications.

4.4. LC-MS Analysis

An H-class liquid chromatograph coupled to a mass spectrometer with a time-of-flight analyzer
(UPLC-TOF-HRMS; Waters, Milford, MA, USA) was used to analyze mycotoxins. Analytes were
separated on a 2.1 × 100 mm, 1.6 µm UPLC C18 Cortecs chromatographic column (Waters) with an
appropriate pre-column, operated with a gradient regime. Phase A was 90:10 v/v methanol:water,
phase B was 10:90 v/v methanol:water. Both phases contained 0.2% formic acid and 10 mM ammonium
formate. The flow rate was 0.3 mL/min, with the following flow gradient: 0–2 min, 100% B; 3–6 min,
50% B; 22–23 min, 100% A; and 25–28 min, 100% B. Five microliters of each sample was injected onto
the column. The mass spectrometer was operated in the positive/negative electrospray ionization
mode, with an ion source temperature of 150 ◦C and a desolvation temperature of 300/350 ◦C for
positive/negative ionization, respectively. The nebulizing gas (N2) flow rate was 750 L/min and the
cone gas flow rate was 40 L/min. The capillary bias was 3200 V. Ion optics was operated in V mode and
the instrument was calibrated using a leucine-enkephalin solution.
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4.5. Method Validation

Linearity ranges, limits of detection (LOD, the concentration at which the signal:noise ratio was 3),
limits of quantification (LOQ, the concentration at which the signal:noise ratio was 10), recovery rates
(R), and repeatability/precision (expressed as the relative standard deviation [RSD]), were determined
using calibration curves that were constructed using separate blank samples for each mycotoxin of
interest in the beer and malt matrices. The blanks were prepared in the same way as the analytes,
except that the respective amount of standard mixture was added just prior to finally dissolving it in
30% methanol, after which the solvent was removed in a dry nitrogen stream. Each calibration curve
consisted of eight points. The concentrations covered for the malt samples (in µg/kg) were: 5.0–1028
for DON; 4.0–516 for DON-3G; 2.0–1028 for 3-AcDON; 8.0–1050 for NIV; and 5.0–565 for NIV-3G. The
concentrations covered for the beer samples (in µg/L) were: 3–68.6 for DON; 2.1–34.4 for DON-3G;
0.9–68.6 for 3-AcDON; 2.1–70.1 for NIV; and 1.6–37.7 for NIV-3G. The results of the analytical method
validation experiment are shown in Tables 6 and 7.

Table 6. Limits of detection, limits of quantification, and determination coefficients for individual
analytes determined in malt and beer samples.

Analyte Ion Mass (m/z) Retention
Time (min)

Malt Beer

LOD
(µg/kg)

LOQ
(µg/kg) R2 LOD

(µg/L)
LOQ

(µg/L) R2

DON 341.2 (M+FA−H)− 4.08 5 17 0.9891 0.6 2.1 0.9977
DON-3G 503.2 (M+FA−H)− 4.22 4 13 0.9910 0.5 1.6 0.9919
3-AcDON 339.2 (M+H)+ 4.98 2 7 0.9974 0.3 0.9 0.9899

NIV 357.2 (M+FA−H)− 2.38 8 24 0.9909 1.0 3.0 0.9889
NIV-3G 519.2 (M+FA−H)− 2.45 5 17 0.9905 0.6 2.1 0.9989

DON, deoxynivalenol; DON-3G, deoxynivalenol-3-glucoside; 3-AcDON, 3-acetyldeoxynivalenol; NIV, nivalenol;
NIV-3G, nivalenol-3-glucoside; LOD, limit of detection; LOQ, limit of quantification; R2, determination coefficient.

Table 7. Recovery rates and relative standard deviations for individual analytes determined in malt
and in beer samples spiked at different fortification levels.

Analyte
Malt (n = 4) Beer (n = 4)

Fortification Level
(µg/kg) R (%) RSD (%) Fortification Level

(µg/L) R (%) RSD (%)

DON

42.9
128.6
514.3

1028.5

90.7
94.3

101.3
97.0

12.9
8.2

11.9
15.0

17.1
34.3
68.6

75.0
106.0
85.0

8.8
2.8
9.5

DON-3G

21.5
64.5
258.1
516.2

87.4
73.5
89.9
79.1

6.1
9.8
11.1
15.4

8.6
17.2
34.4

87.0
93.0
89.0

6.7
2.5
6.0

3-AcDON

42.9
128.6
514.3

1028.5

105.1
105.4
103.8
102.1

18.4
4.7
8.8
22.1

17.1
34.3
68.6

93.0
97.0
87.0

6.7
2.7
6.7

NIV

43.8
131.4
525.6

1051.2

89.9
85.8
85.1
83.7

11.4
8.6
9.3

13.0

17.5
35.0
70.1

80.0
100.0
91.0

6.2
6.5
9.4

NIV-3G

23.6
70.7

282.8
565.6

105.0
85.0
87.7
86.4

13.7
7.8
9.6

13.1

9.4
18.9
37.7

93.0
101.0
96.0

6.7
6.6
8.0

DON, deoxynivalenol; DON-3G, deoxynivalenol-3-glucoside; 3-AcDON, 3-acetyldeoxynivalenol; NIV, nivalenol;
NIV-3G, nivalenol-3-glucoside; R, recovery rate; RSD, relative standard deviation.
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Since all analytes of interest belonged to the trichothecenes group, we assessed the performance of
the method for DON analysis using the following specifications listed in EC Regulation 519/2014 [59]:
recovery rates 60%–110% or 70%–120%, depending on the fortification level and RSD ≤20%. These
criteria were met in 34 out of 35 analyte/fortification level combinations. In one case, the RSD was
above 20%.

This validated method was then used to analyze DON, DON-3G, 3-AcDON, NIV, and NIV-3G in
the malt and beer samples.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/12/715/s1,
Table S1: Individual results of mycotoxin concentrations in the analyzed beer and malt samples.
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