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Abstract: Aflatoxin B1 (AFB1) is a highly toxic mycotoxin found worldwide in cereals, food, and
animal feeds. AFB1 binds to human serum albumin (HSA) with high affinity. In previous experiments,
it has been revealed that reducing the binding rate of AFB1 with HSA could speed up the elimination
rate of AFB1. Therefore, we examined the ability of quercetin to compete with AFB1 for binding
HSA by fluorescence spectroscopy, synchronous spectroscopy, ultrafiltration studies, etc. It was
shown that AFB1 and quercetin bind to HSA in the same Sudlow site I (subdomain IIA), and the
binding constant (Ka) of the quercetin-HSA complex is significantly stronger than the complex of
AFB1-HSA. Our data in this experiment showed that quercetin is able to remove the AFB1 from HSA
and reduce its bound fraction. This exploratory work may be of significance for studies in the future
regarding decreasing its bound fraction and then increasing its elimination rate for detoxification.
This exploratory study may initiate future epidemiological research designs to obtain further in vivo
evidence of the long-term (potential protective) effects of competing substances on human patients.

Keywords: aflatoxin B1; quercetin; human serum albumin; competitive interaction; fluorescence
spectroscopy

Key Contribution: This is the first time evidence that the addition of quercetin can remove AFB1

from HSA and reduce the bound fraction of AFB1 has been illustrated.

1. Introduction

Aflatoxin B1 (AFB1), a kind of carcinogenic toxin, which had been classified as a group I
carcinogen [1] by the International Agency for Research on Cancer, is often found in agricultural
products, feed, and food such as grain and oil through various channels. According to the statistics,
an estimated five billion people worldwide are exposed to high levels AFB1, and human health is in
serious dangers [2–5]. How to reduce or degrade the toxicity of AFB1 in agricultural production is
one of the key research directions in the food safety field. Many techniques for reducing toxicity or
degrading the structure of AFB1 have been researched and reported. For instance, the toxicity of AFB1

can be reduced by vitamin E through lowering the activities of plasma aspartate aminotransferase,
alanine aminotransferase, and alkyne phosphatase [6]. A macromolecular complex was formed by
β-D-glucan with AFB1 in vivo to attenuate its toxicity [7]. The toxicity of AFB1 could be decreased by
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papaya extract through decreasing the oxidative stress reaction [8]. Most detoxification in the reports
was taken as the effects after the toxin reacted with the target organ [9–12]. However, there is still
a very high risk of damaging the target organ by AFB1. Therefore, it is of great significance to study
the detoxification to AFB1 during the transport process of AFB1 in vivo.

Most xenobiotics will bind and be transported by serum albumin before they react with the
target organ in the blood circulation in vivo [13]. AFB1 follows a similar behavior as serum albumin
in vivo, and many types of DNA damage can be induced by 8,9-epoxy AFB1, which is produced in
the metabolic process of AFB1 through the catalytic action of the cytochrome P450 enzyme in the
target organ (Figure 1) [14]. Recently, it has been reported that the time of the toxin molecules binding
to serum albumin could affect the half-life of the toxin in the organism [15–17]. Koszegi et al. [18]
reported that some flavonoids such as quercetin could compete with and displace ochratoxin A (OTA)
from human serum albumin (HSA). After the competitive interaction between flavonoids and OTA to
bind with HSA, it was found that the bound fraction of OTA was decreased, and then, its half-life was
decreased [18]. Hence, it is speculated that the toxicity of AFB1 to target organs will be reduced and its
elimination rate will be accelerated during the bio-transportation process due to the broken interaction,
or its displacement, between AFB1 and HSA. It has been reported that quercetin had high affinity to
HSA in the pH 7.4 condition in vitro, and the primary binding site on albumin was the same as that of
the AFB1-HSA complex (subdomain IIA) [19–23]. It has been reported that quercetin is a highly-active
flavonoid that regulates the uptake of toxins to reduce body damage [24]. Therefore, quercetin was
thought to be a very effective competitor in the binding of AFB1 to HSA.

In this proposal, the effect of quercetin on the AFB1-HSA complex was studied by fluorescence
spectroscopy, synchronous spectroscopy, ultrafiltration studies, etc. The aim is to explore the ability
of quercetin to bind competitively to HSA with AFB1. Our results showed that quercetin is able to
remove the AFB1 from HSA, and this is the first time this molecular displacement has been described
as a new type of interaction of quercetin affecting the biological behavior of AFB1.
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the interaction mechanism of the AFB1-HSA system and the quercetin-HSA system, respectively. In 
this study, fluorescence emission spectra of albumin were recorded in the presence of increasing AFB1 
and quercetin concentration (Figure 2). In order to exclude the inner-filter effect, emission intensities 
were corrected by Eq. 1. In a concentration-dependent fashion, AFB1 and quercetin induced the 
decrease of fluorescence at 340 nm (emission maximum of HSA), resulting from the quenching effects 
of AFB1 and quercetin. Based on the fluorescence quenching (Figure 2), the Ksv, Kq, and Ka of the  

Figure 1. Structure of AFB1 and its metabolites.

2. Results

2.1. Investigation of the Interaction between HSA with AFB1 and Quercetin

To analyze the ability of quercetin to compete with AFB1 for binding to HSA, we first studied the
interaction mechanism of the AFB1-HSA system and the quercetin-HSA system, respectively. In this
study, fluorescence emission spectra of albumin were recorded in the presence of increasing AFB1 and
quercetin concentration (Figure 2). In order to exclude the inner-filter effect, emission intensities were
corrected by Equation (1). In a concentration-dependent fashion, AFB1 and quercetin induced the
decrease of fluorescence at 340 nm (emission maximum of HSA), resulting from the quenching effects
of AFB1 and quercetin. Based on the fluorescence quenching (Figure 2), the Ksv, Kq, and Ka of the
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AFB1-HSA complex and quercetin-HSA complex were calculated (Table 1) by Equations (2) and (4).
In practice, kq cannot be larger than 2 × 1010 L mol−1 S−1 for a collisional quenching process [25,26].
We found that the static quenching mechanism occurred for the AFB1-HSA system (Kq = 1.623 × 1012)
and the quercetin-HSA system (Kq = 1.83 × 1013), which corresponded to the results of previous studies
such as [27,28] and [29]. Fluorescence quenching studies denoted the results of a static quenching
mechanism for the AFB1-HSA and quercetin-HSA system. The Ka of the quercetin-HSA complex was
one order of magnitude larger than the AFB1-HSA complex, indicating that the fluorescence quenching
ability of quercetin to HSA is significantly stronger than AFB1 in the same condition.
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To determine the binding site, site marker competitive experiments were carried out. Typically, 
ketoprofen and ibuprofen, as the most commonly-applied site markers of Sudlow’s site Ӏ (located on 
subdomain IIA) and Sudlow’s site II (located on subdomain IIIA) respectively, were applied in this 
experiment. Complex formation of the ligand (AFB1 or quercetin) with HSA resulted in the increased 
fluorescence signal of the ligand, and there was no fluorescence spectral interference of site markers 
(ketoprofen and ibuprofen as competitive probes) at the maximum emission wavelength of the ligand 

Figure 2. (A) Fluorescence emission spectra of HSA (5 µM) in the presence of increasing AFB1

concentration. The concentration of AFB1 was 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 µM from a–j. (inset: the
Stern–Volmer plot of the AFB1-HSA system). Conditions: T = 25 ◦C, pH = 7.4, λex = 280 nm. (B) Plots of
log[(F0 – F)/F] versus log[Q] for the interaction of HSA and AFB1. (C) Fluorescence emission spectra of
HSA (5 µM) in the presence of increasing quercetin concentration. The concentration of quercetin was
0.4, 0.8. 1.2, 1.6., 2.0, 2.4, 2.8, 3.2, 3.6, 4.0 µM from a–j. (inset: the Stern–Volmer plot of the quercetin-HSA
system). Conditions: T = 25 ◦C, pH = 7.4, λex = 280 nm. (D) Plots of log[(F0-F)/F] versus log[Q] for the
interaction of HSA and quercetin.

Table 1. The values of Ksv, Kq, Ka, and the possible number of binding sites (n) for various systems
are estimated.

System Ksv (LmoL−1) Kq (LmoL−1S−1) Ka (M−1) n R2

AFB1-HSA 1.62 × 104 1.62 × 1012 6.02×104 1 0.993
Quercetin-HSA 1.83 × 105 1.83 × 1013 6.31×105 1 0.992

To determine the binding site, site marker competitive experiments were carried out. Typically,
ketoprofen and ibuprofen, as the most commonly-applied site markers of Sudlow’s site I (located on
subdomain IIA) and Sudlow’s site II (located on subdomain IIIA) respectively, were applied in this
experiment. Complex formation of the ligand (AFB1 or quercetin) with HSA resulted in the increased
fluorescence signal of the ligand, and there was no fluorescence spectral interference of site markers
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(ketoprofen and ibuprofen as competitive probes) at the maximum emission wavelength of the ligand
(AFB1 or quercetin) [25,30]. Therefore, displacement of the ligand from HSA by site markers could lead
to the decreased fluorescence signal at 440 nm (AFB1) or 535 nm (quercetin) [25,30]. As we can see from
Figure 3, In the AFB1-HSA and quercetin-HSA system, ibuprofen, a specific ligand for Sudlow’s site II,
had little effect on the fluorescence intensity of HSA, indicating that ibuprofen could not substitute
the AFB1 and quercetin. With the addition of ketoprofen, as a specific ligand for Sudlow’s site I, the
fluorescence intensity of HSA in both complexes was greatly reduced, indicating that ketoprofen
replaced AFB1 and that quercetin bound to HSA. Based on the above studies, we can conclude that
AFB1 and quercetin bind to HSA in Sudlow’s site I (subdomain IIA), which is in good agreement with
the modeling studies previously reported [25,26].
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Figure 3. (A) Effects of probes on the fluorescence intensity of AFB1 in the system of AFB1-HSA.
(λex = 365 nm, λem = 440 nm). (B) Effects of probes on the fluorescence intensity of quercetin in the
system of quercetin-HSA. (λex = 455 nm, λem = 535 nm). F1: Fluorescence intensity of AFB1 or quercetin
in the absence of probes. F2: Fluorescence intensity of AFB1 or quercetin in the presence of probes.

2.2. Investigation of the Competitive Interaction between Quercetin and AFB1 for HSA

In order to explore the competitive interaction between quercetin and AFB1 to bind with HSA,
site marker experiments were carried out with fluorescence probes (ketoprofen and ibuprofen).
Ibuprofen had no effect on the fluorescence spectra of AFB1 (red columns in Figure 4A) or quercetin (red
columns in Figure 4B) in the AFB1-HSA-quercetin system, while the fluorescence signals of AFB1 (black
columns in Figure 4A) or quercetin (black columns in Figure 4B) were decreased by the ketoprofen
probe. These results indicated that AFB1 and quercetin could bind to HSA in the same Sudlow’s site I.

From the above experiments, both AFB1 and quercetin could specifically bind to a known site on
HSA in Sudlow’s site I, and the Ka of the quercetin-HSA complex was much greater than that of the
AFB1-HSA complex; thus, we hypothesized that the affinity of quercetin with HSA was much greater
than AFB1 with HSA.

For the sake of verification of this hypothesis, competitive interaction studies between quercetin
and AFB1 for HSA were carried out. As shown in Figure 5, there was a significant difference between
the system (HSA + AFB1) and the system (HSA+ quercetin) in the fluorescence intensity of HSA. It was
confirmed that the fluorescence quenching ability of quercetin to HSA was significantly stronger than
AFB1, and quercetin had stronger binding ability to bind with HSA compared to AFB1. Consequently,
we further speculated that quercetin had the potential to compete for AFB1 from HSA, thereby
hindering the binding of AFB1 to HSA.
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Figure 4. (A) Effects of the probes on the fluorescence intensity of AFB1 in the system of
AFB1-HSA-quercetin (λex = 365 nm, λem= 440 nm). (B) Effects of probes on the fluorescence intensity
of quercetin in the system of AFB1-HSA-quercetin (λex = 455 nm, λem= 535 nm). F1: Fluorescence
intensity of AFB1 or quercetin in the absence of probes. F2: Fluorescence intensity of AFB1 or quercetin
in the presence of probes.
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(λex = 280 nm, CAFB1 = Cquercetin = 4 × 10−6 M, **: p < 0.01 between HSA-AFB1 system and
HSA-quercetin system).

2.3. Ultrafiltration Studies

Although quercetin and AFB1 bound to HSA at the same binding site and the binding ability of the
quercetin-HSA complex was stronger than the complex of AFB1-HSA, it could not directly be proven
that AFB1 could be substituted by quercetin in the presence of AFB1 and quercetin. Consequently, the
investigation of competitive substitution by ultrafiltration studies was carried out, which determined
whether quercetin was able to block the binding of AFB1 and HSA, decreasing the half-life of AFB1.

As shown in Figure 6, the addition of quercetin significantly increased the AFB1 concentration
in the free state and decreased the AFB1 concentration in the bound state, which signified that the
addition of quercetin could replace AFB1 in the AFB1-HSA complex, and the AFB1 was changed from
the bound state to the free state.



Toxins 2019, 11, 214 6 of 14
Toxins 2018, 10, x FOR PEER REVIEW  6 of 14 

 

 
Figure 6. Fluorescent intensity of AFB1 in different systems (λex = 365 nm, λem = 440 nm, A: AFB1 in 
the free state; B: AFB1 in binding state; *: p < 0.05 compared to another quercetin concentration;  
**: p < 0.01 compared to another quercetin concentration). 

2.4. Synchronous Fluorescence Studies 

The information about the molecular environment near the chromophore molecules can be 
obtained by synchronous spectroscopy. The shift at maximum emission, corresponding to the 
changes of polarity around chromophores, is a useful way to evaluate the microenvironment of 
amino acid residues. 

Figure 7, Figure 8, and Figure 9 present the peaks for the complex when Δλ = 15 nm and  
Δλ = 60 nm. For the AFB1-HSA system, the synchronous fluorescence presented a red shift of 1 nm at 
Δλ = 15nm and 2 nm at Δλ = 60 nm, which denoted that AFB1 was able to increase polarity around 
Tyr, as well as around Trp. For the quercetin-HSA system, the synchronous fluorescence showed a 
small blue shift (0.5 nm) at Δλ = 15 nm, which signified that hydrophobicity around the Tyr residue 
increased. However, the small red shift of 0.5 nm in the quercetin-HSA system at Δλ = 60 nm 
demonstrated that the hydrophobicity around the Trp residue decreased. For the AFB1-quercetin-
HSA system, where AFB1 and quercetin were increasingly added and HSA was at constant 
concentration, a small red shift of 0.5 nm at Δλ = 60 nm was observed, but no shift when Δλ = 15 nm. 
These results suggested that in ternary system, ligands bind near the Trp residue. It can be inferred 
from the above experimental phenomena that the presence of quercetin affected the hydrophobicity 
of the protein microenvironment and changed the interaction of AFB1 with HSA.  

 
Figure 7. (A) Synchronous fluorescence spectra of the AFB1-HSA system, Δλ = 15 nm; (B) synchronous 
fluorescence spectra of the AFB1-HSA system, Δλ = 60 nm. The concentration of HSA was 4 μM, and 
the concentrations of AFB1 were 0, 2, 4, 8, 12 μM from top to bottom. 

Figure 6. Fluorescent intensity of AFB1 in different systems (λex = 365 nm, λem = 440 nm, (A) AFB1

in the free state; (B) AFB1 in binding state; *: p < 0.05 compared to another quercetin concentration;
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2.4. Synchronous Fluorescence Studies

The information about the molecular environment near the chromophore molecules can be
obtained by synchronous spectroscopy. The shift at maximum emission, corresponding to the
changes of polarity around chromophores, is a useful way to evaluate the microenvironment of amino
acid residues.

Figures 7–9 present the peaks for the complex when ∆λ = 15 nm and ∆λ = 60 nm. For the
AFB1-HSA system, the synchronous fluorescence presented a red shift of 1 nm at ∆λ = 15nm and 2 nm
at ∆λ = 60 nm, which denoted that AFB1 was able to increase polarity around Tyr, as well as around
Trp. For the quercetin-HSA system, the synchronous fluorescence showed a small blue shift (0.5 nm)
at ∆λ = 15 nm, which signified that hydrophobicity around the Tyr residue increased. However,
the small red shift of 0.5 nm in the quercetin-HSA system at ∆λ = 60 nm demonstrated that the
hydrophobicity around the Trp residue decreased. For the AFB1-quercetin-HSA system, where AFB1

and quercetin were increasingly added and HSA was at constant concentration, a small red shift of
0.5 nm at ∆λ = 60 nm was observed, but no shift when ∆λ = 15 nm. These results suggested that in
ternary system, ligands bind near the Trp residue. It can be inferred from the above experimental
phenomena that the presence of quercetin affected the hydrophobicity of the protein microenvironment
and changed the interaction of AFB1 with HSA.
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2.5. The Effect of the Ratio of Quercetin to HSA on the Competitive System

For the sake of estimating the effects of different ratios of AFB1: quercetin on the competitive
interaction between quercetin and AFB1 to bind with HSA, the fluorescence intensity of HSA in
different systems was examined (Table 2). Here, and in the tables below, the first column represents
different system conditions. The other columns represent the value of the fluorescence intensity of
HSA. As shown in the second and third lines in Table 3, the fluorescence intensity of HSA in the
system (HSA + AFB1 + quercetin) had a significant difference from the AFB1-HSA system (p < 0.05),
which indicated that the addition of quercetin significantly affected the fluorescence intensity of HSA
in the AFB1-HSA system. In the fourth and fifth lines in Table 3, the fluorescence intensity of HSA in
the system (HSA + quercetin + AFB1) had no significant difference from the HSA + quercetin system
(p < 0.05), which indicated that the addition of AFB1 had no influence in the HSA + quercetin system.
These results indicated that quercetin is able to remove AFB1 from HSA and that AFB1 is not able to
remove quercetin from HSA. In the system (HSA + (AFB1 + quercetin)), the fluorescence intensity had
a significant difference compared with the system (HSA + AFB1), and the fluorescence intensity had
no significant difference compared with the system (HSA + quercetin). It was revealed that HSA was
prone to binding to quercetin and that quercetin could prevent the binding between AFB1 and HSA
when the molar concentration ratio of AFB1:quercetin was 1:2.
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Table 2. The fluorescence intensity of HSA in different systems when the molar concentration rate of
AFB1: quercetin is 1:2 (λex = 280 nm, λem = 345 nm).

Systems
HSA:AFB1:Quercetin

2:1:2 1:1:2

HSA 494.3 ± 41.6 a 498.7 ± 61.8 a

HSA + AFB1 424.7 ± 58.5 b 444.9 ± 19.4 b

HSA + AFB1 + Quercetin 251.4 ± 17.8 d 282.7 ± 37.9 c

HSA + Quercetin 292.6 ± 31.0 b, c 319.8 ± 31.3 b

HSA + Quercetin + AFB1 254.4 ± 22.9 c 265.4 ± 38.5 b

HSA + (AFB1 + Quercetin) 315.6 ± 20.7 c 281.8 ± 49.9 c

Note: The numbers marked by the same letters (“a”, “b”, “c”, and “d”) represent the existence of statistical
significance (p < 0.05) in the same column.

As shown in Table 3, the same results were presented in 1:1 system as 1:2 system, indicating
that quercetin can displace AFB1 from HSA and that HSA was more prone to binding to quercetin,
which prevented the binding of AFB1 to HSA.

Table 3. The fluorescence intensity of HSA in different systems when the molar concentration rate of
AFB1: quercetin is 1:1 (λex = 280 nm, λem = 345 nm).

Systems
HSA:AFB1:Quercetin

2:1:1 1:1:1

HSA 512.8 ± 5.7 a 530.9 ± 57.8 a

HSA + AFB1 433.6 ± 15.2 b 497.1 ± 23.9 b

HSA + AFB1 + Quercetin 376.3 ± 14.3 c 375.7 ± 64.1 c

HSA + Quercetin 374.1 ± 16.7 b 407.3 ± 21.6 b

HSA + Quercetin + AFB1 360.5 ± 27.5 b 386.7 ± 64.2 b

HSA + (AFB1 + Quercetin) 398.6 ± 19.9 c 414.1 ± 23.4 c

Note: The numbers marked by the same letters (“a”, “b”, and “c”) represent the existence of statistical significance
(p < 0.05) in the same column.

As shown in Table 4, the fluorescence intensity of HSA in the system (HSA + AFB1 + quercetin) was
significantly different from the system (HSA + AFB1) (p < 0.05). The fluorescence intensity of HSA in
the system (HSA + quercetin + AFB1) was not significantly different from the system (HSA + quercetin).
In the system (HSA + (AFB1 + quercetin)), the fluorescence intensity had a significant difference
compared with the system (HSA + AFB1), and the fluorescence intensity had no significant difference
compared with the system (HSA + quercetin). These results revealed that quercetin is still able to
competitively bind to HSA with AFB1 when the ratio of AFB1:quercetin is 2:1.

Table 4. The fluorescence intensity of HSA in different systems when the molar concentration rate of
AFB1: quercetin is 2:1 (λex = 280 nm, λem = 345 nm).

Systems
HSA:AFB1:Quercetin

2:2:1 1:2:1

HSA 467.3 ± 40.9 a 501.8 ± 31.2 a

HSA + AFB1 405.7 ± 42.9 b 473.8 ± 2.7 b

HSA + AFB1 + Quercetin 315.9 ± 21.6 c 37.3 ± 19.4 c

HSA + Quercetin 328.0 ± 21.6 b 365.5 ± 7.6 b

HSA + Quercetin + AFB1 362.9 ± 30.4 b 72.0 ± 43.4 b

HSA + (AFB1 + Quercetin) 362.9 ± 30.4 b 72.0 ± 43.4 b, c

Note: The numbers marked by the same letters (“a”, “b”, and “c”) represent the existence of statistical significance
(p < 0.05) in the same column.
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3. Discussion

In previous experiments, several mycotoxins’ ligands (including AFB1, OTA, citrinin (CIT),
deoxynivalenol (DON), patulin, zearalenone (ZEN), etc. [27,31,32]) formed stable complexes with
HSA. HSA forms non-covalent complexes with these ligands, which could significantly affect the
distribution and elimination of these ligand molecules [27,31–34], Especially, OTA binds primarily
to albumin with high affinity (Ka~107 L/mol) [18], which gives rise to its longer plasma elimination
half-life (from a few days to one month) [22,35,36]. Sigrid et al. [36] studied the toxicokinetic profile of
OTA (50 ng/g) after the oral or intravenous administration to fish, quail, mouse, rat, and monkey. It
was found that the elimination of OTA can be completed through renal and hepatic clearance, both of
which can be influenced by the toxin’s binding to plasma macromolecules. Irene et al. [37] assessed
the toxicokinetic profile of OTA by one human volunteer. This half-life of OTA was approximately
eight-times longer than that determined previously in rats, which accounted for the specific OTA
binding plasma protein species and respective protein concentrations. Furthermore, Kumagai et
al. [16] studied the changes of OTA in both albumin-deficient and normal rats. It was revealed that
the concentration of OTA in plasma was reduced to <0.5 µg/mL within 10 min of the injection in
albumin-deficient rats, while remaining >50 µg/mL for 90 mins in normal rats [16]. The concentrations
of OTA in bile and urine, as well as the excretion rate of OTA in these fluids were 20–70-fold higher in
albumin-deficient than in normal rats [16]. In summary, it was demonstrated that the primary effect of
albumin binding on OTA is to retard its elimination by restricting the entry of OTA into the hepatic
and renal cells [16].

It is well known that natural flavonoids can also bind to HSA at the same binding site as OTA does
(site I, subdomain IIA). Miklós Poór et al. [18] studied the competitive interaction between flavonoids
and OTA, which found that some flavonoid aglycones are able to remove the toxin from HSA and
decrease the bound fraction of OTA. Baudrimonta et al. [17] had found that piroxicam also can bind
strongly to plasma proteins and could stop OTA binding with HSA and transporting to target organs.
Miklós Poór et al. [24] studied the competitive interactions between OTA and 13 drug molecules for
binding to HSA, which demonstrated that some drugs show high competitive capacity. In addition,
several extracorporeal dialysis procedures using albumin-containing dialysates have proven to be an
effective tool for removing endogenous toxins or overdosed drugs from patients [38–40].

As we all know, AFB1 can bind to HSA with high affinity (K~104 L/mol). The high affinity between
AFB1 and HSA could affect its distribution and elimination [27]. It has not been studied at present
whether AFB1 is removed from HSA and then reduces the bound fraction by competitive interaction.
Besides, flavonoids could bind to HSA with high affinity (K~105 L/mol) at the same binding site as
AFB1 does (site I, subdomain IIA) [41,42]. Especially, quercetin is one of the most common flavonoids
in nature and can bind with human albumin with high affinity [43]. Furthermore, quercetin was the
most effective competitor of OTA in the competition experiment between OTA and polyphenols [18].
Therefore, quercetin was adopted to study the competitive interaction between AFB1 and quercetin
when binding with HSA.

However, no data were found for any trial using quercetin in competitive AFB1-HSA models.
In this experiment, fluorescence quenching studies denoted the results of a static quenching mechanism
for the AFB1-HSA and quercetin-HSA (Figure 2) complex. The Ka of quercetin-HSA was one order
of magnitude larger than AFB1-HSA (Table 1), indicating that the fluorescence quenching ability of
quercetin to HSA is significantly stronger than AFB1 in the same condition. By the competitive probe
experiment, we can conclude that Sudlow’s site I is a high affinity binding site of the AFB1-HSA and
quercetin-HSA complex, which is in good agreement with modeling studies previously reported [25,26].
Quercetin and AFB1 bind to HSA at the same binding site (Figure 3); thus, it is possible that quercetin
and AFB1 could competitively bind with HSA. For the sake of verification of the above hypothesis,
research of the competitive interaction between quercetin and AFB1 to bind with HSA was carried out
(Figures 4 and 5). It was revealed that in the competition system, the binding sites of quercetin and
AFB1 on HSA were still on Sudlow’s site I. The binding ability of quercetin with HSA was significantly
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stronger than that of AFB1-HSA, which indicated that quercetin had the ability to replace HSA from
AFB1. By ultrafiltration studies (Figure 6), it was further confirmed that quercetin was able to remove
AFB1 from HSA and then decreased the bond fraction of AFB1.

According to other published papers, it was found that quercetin could affect the AFB1-induced
negative changes. Choi et al. [44] found that quercetin does not directly protect against AFB1-mediated
liver damage in vivo, but plays a partial role in promoting antioxidative defense systems and inhibiting
lipid peroxidation. Additionally, El-Nekeety et al. [45] found that quercetin has potential antioxidant
activity and could regulate the alteration of genes expression induced by AFB1. However, in this
experiment, based on the competitive interaction between quercetin and AFB1 binding to HSA,
respectively, we can conclude that quercetin is able to remove AFB1 from HSA and decrease the
bound fraction of AFB1. The effect of quercetin on AFB1-induced negative changes was studied in this
experiment from different aspects compared with the above [9–11,44,45] studies.

4. Conclusion

Competitive interaction between quercetin and HSA was investigated by fluorescence spectroscopy,
synchronous spectroscopy, ultrafiltration studies, etc. This is the first time evidence that the addition
of quercetin can remove AFB1 from HSA and decrease the bound fraction of AFB1 has been illustrated.
Furthermore, experiments in vivo are necessary in the future to explore the toxicological outcome of
the competitive interaction between AFB1 and quercetin with HSA.

5. Materials and Methods

5.1. Reagents

Aflatoxin B1 (AFB1, from Sigma), human serum albumin (HSA, from Sigma), quercetin (from
Aladdin), ketoprofen (from Shanghai chemical Technology Co., ltd), and ibuprofen (Beijing Bailingwei
Technology Co., ltd) were used as received. Tris solution was obtained from Amersco. Other chemicals
were of analytical grade.

5.2. Fluorescence Spectroscopic Measurements

Fluorescence measurements were carried out employing an F-2500 fluorescence spectrophotometer
(Shimadzu, Japan) at room temperature (25 °C), with a 1-cm path length quartz cell, using an excitation
wavelength of 280 nm. In the AFB1-HSA system, the concentration of HSA was fixed at 5 µM, whereas
the AFB1 concentration was varied from 0 to 9 µM. In the quercetin-HSA system, the concentration of
HSA was fixed at 5 µM, whereas the quercetin concentration was varied from 0 to 4 µM. In competitive
interaction between AFB1 and quercetin with HSA, the concentration of HSA was fixed at 5 µM,
whereas the concentration of AFB1 and quercetin was varied as above. In competitive interaction
studies, the construction methods of different systems were as follows: The system (HSA + AFB1)
was constructed by the addition of AFB1 to the HSA solution. The system (HSA + quercetin) was
constructed by the addition of quercetin to the HSA solution. For the system (HSA + AFB1 + quercetin),
AFB1 was added to the HSA solution firstly, and quercetin was then added to the solution. For the
system (HSA + quercetin + AFB1), quercetin was added to the HSA solution firstly, followed by the
addition of AFB1. For the HSA + (AFB1 + quercetin) system, AFB1 and quercetin were added to the
Tris solution firstly, followed by the addition of HSA.

For the sake of eliminating the inner-filter effects, the fluorescence intensities were corrected
applying the following equation [26,46]:

Fcor = Fobs × e
Aex+Aem

2 (1)
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where Fcor and Fobs represent the corrected and observed fluorescence intensities, respectively; whereas
Aex and Aem denote the absorbance values at excitation and emission wavelength, respectively.
The corrected fluorescence data were used for further analysis, related to HSA fluorescence quenching.

The fluorescence quenching data are usually evaluated via the Stern–Volmer equation [16,17]:

F0

F
= 1 + Kqτ0[Q] = 1 + Ksv[Q] (2)

where F0 and F are the fluorescence emission intensity without and with the addition of a known
concentration [Q], respectively. Ksv is the Stern–Volmer constant; Kq is the quenching rate of the
biomolecule; τ0 is the average fluorescence lifetime of HSA without quencher.

For static quenching, the modified Stern–Volmer equation analyzes the data [47–49]:

F0

∆F
=

F0

F0 − F
=

1
faKa[Q]

+
1
fa

(3)

where ∆F = F0 − F is the difference in fluorescence intensity before and after the addition of the
quencher at concentration [Q], fa represents the fraction of accessible fluorescence, and Ka denotes the
effective quenching constant for the accessible fluorophores [50,51].

The binding constant (Ka) and the number of binding sites (n) can be evaluated using the following
equation [52,53]:

log
(F0 − F

F

)
= logKa + nlog[Q] (4)

where Ka is the binding constant of the interaction between the quencher and HSA and n is the number
of binding sites. Based on a plot of log[(F0-F)/F] versus log[Q], the n equal to the slope and Ka can
be obtained.

5.3. Synchronous Fluorescence

The synchronous fluorescence spectra were collected by simultaneous scanning of the excitation
and emission monochromators on an F-2500 fluorescence spectrophotometer (Shimadzu, Japan).
The experimental condition was that the wavelength interval (∆λ) of Thr and Trp were 15 nm and
60 nm, respectively [54,55], at 25 °C. The concentration of HSA was 4 × 10−6 M. The concentrations of
AFB1 and quercetin both were 0–8 × 10−6 M.

5.4. Site Marker Competitive Experiments

Site marker competitive experiments were performed with ketoprofen (as the site I marker) and
ibuprofen (as the site II marker) [56,57]. First, 1.0 mL of the 4 × 10−6 M HSA solution was added to
a 1-cm fluorescence cuvette, with the addition of 4 × 10−4 M quercetin and 4 × 10−4 M AFB1 solution to
make the ratio of HSA to ligand concentration 1:1. Then, 4 × 10−3 M ketoprofen or ibuprofen were
added the above solution, and the concentrations of ibuprofen and ketoprofen were 8.0, 16.0, 24.0, 32.0,
40.0, 48.0, 56.0, 64, and 72.0 × 10−6 M.

5.5. Ultrafiltration

Quercetin, AFB1, and HSA solution was prepared at a concentration ratio of 1:1:1 and reacted at
room temperature for 30 min. After the reaction, the solution was centrifuged at 4 ◦C at 10,000 rpm
for 15 min and washed 3 times on the filter with Tris-HCL buffer, collecting the filtrated solution
for further analysis of the next term. Methanol/water (50:50; v/v) was added to the filter, and the
blended mixture was left standing for 30 min. Then, it was centrifuged at 4 ◦C at 10,000 rpm for 15 min.
Here, the centrifugation operation should be repeated 3 times. Furthermore, the elution solution
was collected for the fluorescence measurements. The fluorescence emission spectra in the range of
400–500 nm of free solution and the elution were scanned at an excitation of 365 nm.
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5.6. Statistical Analyses

All of the data were statistically analyzed [53,58] by the one-way ANOVA test (IBM SPSS Statistics
20), with the level of significance at a minimum of p < 0.05 and a maximum of p < 0.01.
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of Non-Covalent Interactions of Aflatoxins (B1, B2, G1, G2, and M1) with Serum Albumin. Toxins 2017, 9,
339. [CrossRef]

28. Pacheco, M.E.; Bruzzone, L. Interactions between imazethapyr and bovine serum albumin: Spectrofluorimetric
study. J. Lumin. 2012, 132, 2730–2735. [CrossRef]

29. Neamtu, S.; Tosa, N.; Bogdan, M. Spectroscopic investigation of tolmetin interaction with human serum
albumin. J. Pharm. Biomed. Anal. 2013, 85, 277–282. [CrossRef]

30. Nunes, N.M.; Pacheco, A.F.C.; Agudelo, Á.J.P.; Da Silva, L.H.M.; Pinto, M.S.; Hespanhol, M.D.C.;
Pires, A.C.D.S. Interaction of cinnamic acid and methyl cinnamate with bovine serum albumin:
A thermodynamic approach. Food Chem. 2017, 237, 525–531. [CrossRef]
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