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Abstract: Cyanophages are abundant in aquatic environments and play a critical role in bloom
dynamics, including regulation of cyanobacteria growth and photosynthesis. In this study,
cyanophages from western Lake Erie water samples were screened for lytic activity against the host
cell (Microcystis aeruginosa), which also originated from Lake Erie, and identified with real-time
sequencing (Nanopore sequencing). M. aeruginosa was mixed with the cyanophages and their
dynamic interactions were examined over two weeks using atomic force microscopy (AFM) as
well as transmission electron microscopy (TEM), qPCR, phycocyanin and chlorophyll-a production,
and optical absorbance measurements. The TEM images revealed a short-tailed virus (Podoviridae)
in 300 nm size with unique capsid, knob-like proteins. The psbA gene and one knob-like protein
gene, gp58, were identified by PCR. The AFM showed a reduction of mechanical stiffness in the
host cell membranes over time after infection, before structural damage became visible. Significant
inhibition of the host growth and photosynthesis was observed from the measurements of phycocyanin
and chlorophyll-a concentrations. The results provide an insight into cyanobacteria–cyanophage
interactions in bloom dynamics and a potential application of cyanophages for bloom control in
specific situations.

Keywords: Podoviridae; atomic force microscopy; mechanical stiffness; Microcystis; harmful
algal bloom

Key Contribution: This is the first study to report that Podoviridae destroys toxin-producing
cyanobacteria from Lake Erie. Atomic force microscopy results discovered the damage in mechanical
stiffness of Microcystis by the cyanophage infection.

1. Introduction

Cyanobacterial blooms in freshwater have been a growing concern not only in the United States
but also globally, with increasing frequency, duration, and intensity [1]. They pose a great threat for
environmental and public health because of toxic compounds released from the blooms, and cause
significant economic loss for those bloom-affected areas [2–5]. These toxins, such as microcystins,
saxitoxins, nodularins and cylindrospermopsin, are widely distributed across the world and are
difficult to remove [3]. Previous studies focused on controlling blooms in many ways, including
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applying various chemicals [6,7] and controlling eutrophication of waterbodies [8,9]. However, more
specific and targeted approach is needed for controlling toxic blooms without adding more chemicals.

Cyanophages are viruses that infect cyanobacteria as their host. Similar to other bacteriophages,
cyanophages can alter the metabolism and the replication of their hosts, then further influencing the
structure of the cyanobacterial community [10–12]. The succession of toxic Microcystis aeruginosa,
one of the most commonly found toxic cyanobacteria in freshwater, is affected by the abundance
of its cyanophages, indicating that cyanophages may play a critical role in bloom formation
dynamics [13–15]. Therefore, cyanophages were considered as a potential biological control of
cyanobacterial blooms [16,17]. Bacteriophages are promising for controlling bacterial infections, with
great advantages of its host specificity. Instead of using chemicals, such as antibiotics, bacteriophages
would minimize the side effect of disturbing other natural microbiota [18,19].

While most freshwater cyanophages are known as tailed Myoviridae (with a long contractile
tail), Podoviridae (short non-contractile tail), Siphoviridae (long non-contractile tail), and tail-less
phages have been also reported [20–25]. Current PCR-based diagnoses of cyanophages are mostly
targeting structural genes of Myoviridae, such as capsid protein gene (g20) and tail sheath protein
(g91) [15,26–29]. The presence and abundance of other cyanophage families in environments are still
highly underestimated [29]. In addition, active gene exchanges between cyanophages and their hosts
make it more difficult to find a quantitative target.

At a morphological level, the development of microscopy with high-resolution, three-dimensional
imaging, such as atomic force microscopy (AFM), enables a more accurate description of host–phage
interactions. Previous studies described the application of AFM as a versatile tool to explore phage
infections from a morphological to a molecular scale [30,31]. To achieve high sensitivity on soft
cyanobacteria samples, AFM’s tapping mode was performed. For this, an AFM probe, consisting of
a micro-cantilever with a nanometer scale tip, was driven to oscillate at/or near its resonance frequency
and gently tap the sample surface that was characterized. Then the amplitude and phase of oscillations
were changed by the tip–sample interactions, which were measured by a laser detection system.
The recorded change in amplitude provides the morphology of the sample, while the change of phase
reveals the compositional variations. It has recently been applied for observing viruses, including
cyanophages [31,32].

The main objectives of this study were to: (1) characterize lytic cyanophages isolated from Lake
Erie, both morphologically and genetically; and (2) examine the host (M. aeruginosa) and cyanophage
interactions using multiple tools, including signature gene screening, photopigment measurements,
transmission electron microscopy (TEM), and AFM. Thus, we aimed to gain insights into potential use
of cyanophages for controlling toxic cyanobacteria proliferation under applicable situations.

2. Results and Discussion

2.1. Screening of Lytic Cyanophages

Water samples from western Lake Erie were collected from May to August 2015 and were
screened for cyanophages. Among the samples, the cyanophage with the highest lytic activities against
M. aeruginosa was selected. It was named as Ma-LEP, which indicates its host strain (Microcystis
aeruginosa, Ma), origin (Lake Erie, LE) and taxonomic family (Podoviridae, see below for more details).
The host, Microcystis aeruginosa, was also isolated from Lake Erie and confirmed with PCR by targeting
PC-IGS and toxin-producing genes (mcyA, and mcyE), and identified with real-time sequencing
technique (MinION, Oxford Nanopore Technologies) (Figure S1).

2.2. The Effects of Ma-LEP Infection on Microcystis aeruginosa

To examine effects of lytic cyanophage Ma-LEP on M. aeruginosa (host), dynamic change of host
population was measured with multiple parameters; OD (680 nm), two important photosynthetic
pigments (phycocyanin and chlorophyll-a) and targeted gene of M. aeruginosa (mcyE). Figure 1 shows
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the dynamic changes of these parameters over time after phage infections. Table 1 summarizes the
growth of pigment production rate (slope) and the correlation coefficient (R2) of each parameter when
fitting the raw data of Figure 1 in linear models (for mcyE gene, data from day 0 to day 5 had a strong
fit of the linear regression).
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Figure 1. The dynamic changes of M. aeruginosa infected by cyanophage Ma-LEP in two weeks.
(a) optical density (OD) at 680 nm; (b) the concentration of M. aeruginosa (mcyE gene); (c) the
concentration of phycocyanin; (d) the concentration of chlorophyll-a.; (e) control (M. aeruginosa only,
left) and infected by cyanophage Ma-LEP (right three).
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Table 1. Pigment production and growth of M. aeruginosa with or without cyanophage Ma-LEP infection
as a function of time in a linear model.

Treatment
Phycocyanin Chlorophyll-a OD at 680 nm Log (Gene Copy Number) 1

Slope R2 Slope R2 Slope R2 Slope R2

Control 13.10 0.93 3.45 0.84 0.04 >0.99 0.28 0.82
Cyanophage

Ma-LEP 5.75 ** 0.68 2.18 ** 0.90 0.03 ** 0.99 0.13 ** 0.74

1 Data from day 1 to day 5 were fitted, ** p < 0.01.

Ma-LEP impaired the growth and photosynthesis of M. aeruginosa significantly when compared
with the control group (M. aeruginosa host inoculated with autoclaved cyanophage), indicating
that Ma-LEP can slow down or reduce bloom intensity. The phage-infected M. aeruginosa showed
a significant decrease (p < 0.01) in their growth rates (OD at 680 nm, Figure 1a). The qPCR results
(Figure 1b) showed the mcyE gene concentration (microcystin-producing M. aeruginosa abundance)
was reduced at days 4, 5, and 14 (p < 0.05). Noteworthy, the extracellular DNA from lysed cells was
also contributing to the total DNA copy counts; therefore, using qPCR might have overestimated the
host count, especially in the cyanophage group. Meanwhile, the production of the photosynthetic
pigments, phycocyanin, and chlorophyll-a, was significantly reduced (p < 0.01) after Ma-LEP infection,
possibly due to the cell lysis or suppression of related genes by cyanophages (Figure 1c,d). For more
accurate measurements of M. aerguginosa’s photosynthetic activities, amount of carbon fixed, and
oxygen production per unit time should be measured.

In addition, Ma-LEP also showed lysogenic activity during continuous culturing under lab
conditions when appropriate dose of UV light was applied. It was found that 23.58 mJ/cm2 of UV
intensity was sufficient for the cyanophage to activate cell lysis (Figure S2; Table S1).

Since the toxin concentrations were the sum of both free (released from dead cells) and particulate
(from intact cells) toxins within the confined flasks, no statistical significance was observed in
microcystin concentrations between the two groups (phage treated vs. control) during the one-week
period (Figure S3).

AFM is an emerging technique in biological studies, including cells, viruses, and biological
molecules (DNA, protein, etc.) [1–5]. In this study, AFM images provided an in-depth view of the
physical changes of infected host. To better visualize the host–phage interaction over time, an air
tapping mode of AFM was used. It applied a fine tip to the object surface and monitored the frequency
change of the tip when it interacted with different shapes, material, etc. The height images (the
left column in Figure 2 provides morphological information of the cyanobacterial hosts) and the
phase images (the right column in Figure 2) show the changes in stiffness of the targeted objects
(M. aeruginosa). The changes from both images revealed the structural damages of M. aeruginosa cells
after the cyanophage Ma-LEP infection. Initially, the M. aeruginosa was observed in a clear circular
shape about 2 µm tall in contrast to the background (mica, in this case), indicating the intactness of
host cells (Figure 2a). Following cyanophage infection, cells became irregular and started to shrink and
break down, while the height was reduced to 0.8 and 0.4 µm (Figure 2b,c, only one representative cell
was shown in Figure 2) and, finally resulted in the rupture of the entire cell. Actually, the tapping mode
can achieve resolution down to several nanometers without damaging the samples (either during
sample preparation or imaging steps), allowing repeated observations and flexible applications [6].
Therefore, AFM air tapping modes can be used repeatedly to further observe viral topology (e.g.,
the arrangement of the “knob-like protein” on Ma-LEP capsids). AFM also enables observation of
biological specimens in fluid, which can maintain the bioactivity of samples and allows more vivid
visualization [1]. This method allows capturing the cellular changes of hosts at lytic cycle in vivo,
which may provide more information on host–phage interactions and mechanisms of interests in
future studies.
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Figure 2. Structural changes of M. aeruginosa caused by cyanophage Ma-LEP infection. (a) Control
group; (b,c) cyanophage Ma-LEP infected group. Left and right columns show the morphological
change and the stiffness damage of the host cells, respectively, as the infection progressed.

The interpretation of phase images requires a detailed understanding about the cantilever dynamics
depending on the AFM tip–sample interactions. When the AFM tip hovers over a sample instead of
indenting it due to relatively high attractive forces (so-called attraction-dominant regime), the phase
becomes larger than 90◦. In the phase map of Figure 2a, the perimeter of the cyanobacteria showing
the bright color over 90◦ indicates that the tip experiences a strong attractive force. We conjecture
this strong attraction was caused by large surface tension of the cyanobacteria owing to its intact,
spherical shape. When the AFM tip gently indents the surface at every tapping cycle (so-called
repulsion-dominant regime), the phase is maintained to be less than 90◦. Within this regime, phase is
known to be sensitive to the viscoelastic stiffness of the surface: the increase in phase qualitatively
indicates that the mechanical stiffness is reduced. Comparing the phase values within the repulsive
dominant regime where phase is less than 90◦, one can see that the stiffness of the cyanobacteria is
reduced with the phage infection.
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2.3. Morphology of Ma-LEP

Ma-LEP was taken for TEM imaging to visualize structure of Ma-LEP (Figure 3). Multiple
short-tailed viruses (~300 nm) were observed (Figure 3a). Interestingly, the structure of capsids
(Figure 3c) looked similar to the knob-like proteins found in marine phage Syn5 [7], leading to a deeper
investigation of this novel structure (see more details in Section 2.4).
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2.4. Genetic Characterization

For genetic characterization of the isolated cyanophage, multiple signature genes from previous
studies were tested (Table S2) and only one photosynthesis-related gene was present. The core gene psbA,
originated from the cyanobacteria photosystem II core protein D1, was detected by PCR and yielded
a 582-base pair (bp) gene fragment (accession #: MK765681). The sequence showed 79% identities
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with the one in Synechococcus (a major marine cyanobacteria genera, but also inhabits in freshwater)
cyanophage, which suggests a potential common host range (Figure 4). One potential hypothesis
is that cyanophages may take advantage of their own replications by regulating photosynthetic
capacity of the hosts [12,33–35]. It was also reported that the psb gene serves to protect host cells
from light stress, which induces excessive oxidative species and damages to the photosynthetic
complex [36]. In addition, through gene transfer from host to phages, the psbA gene may be shared by
various cyanophages and can serve as a ubiquitous indicator of co-evolution [29,37]. Interestingly,
the freshwater cyanophage Ma-LMM01 isolated in Japan does not have psb gene [24], but contains
a phycobilisome (a major photosynthesis complex, especially in Synechococcus) degradation gene (nblA).
Other freshwater tail-less cyanophages were also known to carry the nblA [20,21]. However, nblA gene
was absent in our cyanophage Ma-LEP (data not shown).
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number: MK765681). The horizontal lines show genetic distance and the bar at the bottom of the figure
denotes distance.

As TEM images showed, a “knob-like protein”, a unique structure of capsid protein in cyanophage
Syn5, seemed to be present on Ma-LEP’s capsid [7,8]. This special protein may be a stabilizer for
viral capsids. Instead of “sewing” the capsomere together as stabilizing proteins in other viruses do,
it displays a distinctive diagonal positioning on the hexametric capsomeres of mature Syn5 capsid and
“breaks” the symmetric structure of viral capsids [7]. Three potential genes (gp55, gp57, gp58) encoding
this protein were identified and sequenced, but there have been no additional reports of its presence in
other cyanophages. In this study, using self-designed gp58 primers yielded a ~300bp-fragnent, which
is similar to the gp58 of Syn5 [9] (100% identities; accession number: MK765680). This result further
confirmed the presence of this novel protein and similar evolutionary roots of the two cyanophages.
It can be predicted that the cyanophage Ma-LEP may possess similar arrangements of capsid proteins,
but additional details are needed using more advanced imaging techniques. However, no phylogenic
tree can be created due to its rare presence.

In summary, this is the first study to utilize the phase image data from AFM and to visualize the
changing mechanical stiffness of M. aeruginosa membranes after cyanophage infection. The short-tailed
cyanophage, named as Ma-LEP, from Lake Erie can infect bloom-forming toxic cyanobacteria, Microcystis
aeruginosa, and negatively affect the host’s photosynthesis and growth. Ma-LEP contains two signature
genes, psbA and gp58, but more genome data is needed in a future study. The results from this
study provide an insight into Microcystis-cyanophage interactions in bloom dynamics and a potential
application of cyanophage for bloom control in adequate settings.

3. Materials and Methods

3.1. Water Sample Collection, Concentration, and Screening of Lytic Cyanophages

Water samples were collected from western Lake Erie from 2013 to 2015 at seven different locations
(Figure 5). The map was created using ArcGIS for Desktop 10.2 (Esri, Redlands CA, USA). Viruses in
water samples were collected and concentrated using cation-coated filter methods [38]. Briefly, 500 mL
of water was passed through an Al3+-coated 0.45µm filters (EMD Millipore Filter, SIGMA-ALDRICH
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Co., St Louis, MO, USA), and viruses captured by the filter were eluted into 10 mL of 1.0 mM NaOH (pH
= 10.8) after rinsing with 200 mL of 0.5 mM H2SO4 (pH 3.0). The eluate was neutralized with 100 µL of
50 mM H2SO4 (pH 1.0) in 10 mL of 1× Tris-EDTA buffer (pH 8.0), and concentrated by centrifugation at
3000 g for 10 min (twice) using a Centriprep™ YM-50 Filter (4310 centrifugal concentrator regenerated
cellulose 50 kDa NMWL, EMD Millipore, Billerica, MA, USA). Fifty microliters of each concentrate
were inoculated into an optimized well-assay containing 100 µL of Microcystis aeruginosa culture, which
was originally isolated from Lake Erie (see below section), and then incubated at room temperature
with a 12 h light cycle for 2 days to screen for lytic cyanophages by measuring the OD at 680 nm.
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3.2. Host Bacteria: Microcystis aeruginosa

M. aeruginosa was isolated from Lake Erie using BG-11and CT media with agarose method [39].
M. aeruginosa was first identified by targeting PC-IGS (phycocyanin intergenic spacer) and
microcystin-producing mcyA and mcyE genes [40]. Furthermore, M. aeruginosa was identified by
following Nanopore’s protocol (1D genomic DNA by ligation protocol). For that, ligation sequencing kit
1D (SQK-LSK108, Oxford Nanopore Technologies, Oxford, UK) was used and then real-time sequencing
technique, MinION (Oxford Nanopore Technologies, Oxford, UK) [41,42] was used. Briefly, bacterial
DNA was extracted with QIAamp genomic DNA kit (Qiagen, Valencia, CA, USA). Concentration
of the extracted DNA (~1 µg) was measured with Qubit 3.0 fluorimeter (Thermo Fischer Scientific,
Waltham, MA, USA). For fragmented DNA repair and end-repaired DNA, NEBNext FFPE repair Mix
and NEBNext End repair/dA-tailing Module (New England BioLabs Inc., Ipswich, MA, USA) was
used, respectively. After DNA purification with AMPure XP beads (Beckman Coulter, Brea, CA, USA),
the sample was loaded on the SpotON flow cell (Oxford Nanopore Technologies, Oxford, UK). A 72 h
sequencing protocol was applied using the Nanopore sequencing software, MinKNOW (v1.10.23,
2017, Oxford Nanopore Technologies, Oxford, UK), in order to collect electronic signal data. Oxford
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Nanopore Technologies provides a bioinformatics tool, which is a cloud-based EPI2MEAgent platform.
Figure S1 shows the identification result of the M. aeruginosa from Lake Erie.

3.3. The Effects of Cyanophage Infections on Microcystis aeruginosa

Cyanophage concentrates (four independent sets) or autoclaved cyanophage concentrates
(as a control) were inoculated into a Microcystis aeruginosa culture (host) at a ratio of 1:100 by
volume, then incubated at room temperature with a 12 h light cycle for 2 weeks. The optical
density at 680 nm, and concentrations of phycocyanin and chlorophyll-a were measured to monitor
the dynamic changes of the host, using a spectrophotometer (4001/4 Spectronic Unicam, Moyer
Instruments, Inc. Tamaqua, PA, USA) or an AquaFluor Handheld Fluorometer (8000-010 Turner
designs, San Jose, CA, USA) with units of phycocyanin and in vivo chlorophyll-a (details can be found
at http://www.turnerdesigns.com/t2/doc/spec-guides/998-8081.pdf) [43]. DNA of Microcystis aeruginosa
was extracted using ZR fungal/bacteria DNA MicroPrep™ Kit (Zymo Research Corp, Irvine, CA, USA)
following the manufacturer’s instruction. The quantification of the toxin-producing Microcystis by
targeting mcyE was performed using CFX96 TouchTM Real-time PCR Detection System (Bio-Rad,
Hercules, CA, USA) in duplicate (Table S2). The total volume of PCR reaction was 20 µL containing
2 µL extracted DNA, 0.5 µM of each primer, 0.125 mM probe, 10 uL of TaqMan® Universal PCR Master
Mix II (ThermoFisher Scientific, Grand Island, NY, USA). The microcystins were measured by Abraxis
microcystins/nodularins-ADDA ELISA kit (Abraxis LLC, Warminster, PA, USA) following EPA method
546 [44].

3.4. Atomic Force Microscopy

Gelatin-coated mica (gelatin from porcine skin, Sigma, CAS# 9000-70-8, St. Louis, MO, USA;
PELCO®mica sheet, Ted Pella Inc., Redding, CA, USA) was prepared as previous research described [45].
One mL of cyanophage propagation from Method 3.5 was centrifuged at 2320× g for 2 min (Eppendorf
centrifuge 5415R with F45-24-11 rotor, Hauppauge, NY, USA), and the supernatant was discarded.
The pellet was mixed with 10 µL of 2.5% of Glutaraldehyde to fix overnight at 4 ◦C, which was
then applied on the gelatin-coated mica, using a pipette tip and rested for 10 min. The mica slides
were washed by sterilized deionized water to remove extra propagation material and dried at aseptic
atmosphere for imaging. Imaging was performed in tapping mode of a commercial AFM (MFP-3D
infinity from Asylum Research) equipped with silicon cantilever (natural frequency ~70 kHz, spring
constant ~2 N/m, AC240 from Asylum Research).

3.5. TEM

Ten microliters of the cyanophage propagation was mixed with 10 µL of 5% of Glutaraldehyde to
fix the samples. Carbon/Formvar-coated copper grids were glow discharged in a PELCO easiGlow™
discharge unit. Ten µl of drop sample were incubated on the grid for 5 min, and then incubated with
a drop of 1% uranyl acetate for 30 s after removing excess sample. Grids were imaged in a FEI Tecnai™
G2 Biotwin TEM (ThermoFisher Scientific, Hillsboro, Oregon, USA) at 80 kEV and images captured
using an AMT camera and software (R5.6, 2017, Thermo Fisher Scientific, Woburn, MA, USA).

3.6. Targeting Viral Genes Using PCR

The viral DNAs from cyanophage concentrates were extracted using PowerViral Environmental
DNA Isolation Kit (MO BIO, San Diego, CA, USA). Primers of gp55, gp57 and gp58 (knob-like protein
genes) were generated from sequences of corresponding genes using NCBI Primer Blast [38,39]. Other
PCR primers, including psbA, and PCR conditions were described in Table S1. PCR amplicon were
checked by 2% agarose gel at 50 V for 30 min and purified by QIAquick PCR Purification Kit (Qiagen,
Germantown, MD, USA) following manufacturer’s instruction. Sequencing was performed by BigDye®

Terminator Cycle Sequencing combined with 3730 DNA Analyzer (ThermoFisher Scientific, Grand
Island, NY, USA) and identified by NCBI BLASTn [40]. The phylogenic analyses of cyanophage

http://www.turnerdesigns.com/t2/doc/spec-guides/998-8081.pdf
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Ma-LEP based on the sequence of psbA gene (accession number: MK765681) was carried out using
a software from the PhyML program, which is available at www.phylogeny.fr [45–49].

3.7. Statistical Analysis

Data were fitted into a linear regression model using SPSS Statistics for Windows, Version 24.0
(2017, IBM, Armonk, NY, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/11/8/444/s1,
Figure S1: Taxonomy tree at the genus level and classification of Microcystis with read numbers. Figure S2:
Induction of lysogenic cyanophage Ma-LEP by UV irradiation. Figure S3: Microcystin concentrations with or
without lysogenic cyanophage Ma-LEP infection (no significant difference). Table S1: Pigment production and
growth of M. aeruginosa with or without lysogenic Cyanophage Ma-LEP infection after UV irradiation as a function
of time in a linear model. Table S2: PCR conditions and primer sequences used in this study (Reference [50] is
cited in the Supplementary Materials).
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