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Abstract: Cyanobacteria are photosynthetic organisms that produce a large diversity of natural
products with interesting bioactivities for biotechnological and pharmaceutical applications.
Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore,
represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial
strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts
from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five
of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication
analyses revealed the production of nine known natural products. Natural products possibly
responsible for the observed bioactivities and five unknown, chemically related chlorinated
compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our
results provide new information on the vast biosynthetic potential of cyanobacteria isolated from
Brazilian environments.

Keywords: natural products; mass spectrometry; leukemia; antifungal; antibacterial; cyanotoxins;
Nostoc

Key Contribution: The molecular network constructed using mass spectrometry data indicates
natural products potentially involved in anticancer and antimicrobial activities and unknown
chlorinated molecules to be characterized.

1. Introduction

Cyanobacteria are photosynthetic bacteria commonly found in diverse aquatic and terrestrial
environments [1]. They produce a large range of secondary metabolites (natural products) that are
predominantly produced to gain evolutionary advantages, such as adaptation to the surrounding
environment or as a defense mechanism, rather than being part of primary metabolism (i.e.,
growth, development, or reproduction) [2–4]. Many cyanobacterial natural products are synthesized
by non-ribosomal peptide synthetases (NRPS), polyketide synthase (PKS), or hybrid NRPS-PKS
(NRPS/PKS) [5]. These molecules have diverse applications in pharmacology, biotechnology,
and bioenergy production [6–9].
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Cyanobacterial natural products have a diverse array of biological activities and properties [10–12].
Toxins and protease inhibitors are amongst the most commonly reported [13–16]. Antibiotic
activity is frequently found in cyanobacterial extracts, but the active compounds have seldom
been determined [17–19]. Cyanobacteria are also a promising source of anticancer compounds [20,21].
These include the elastase inhibitor lyngbyastatin [22], the microtubulin inhibitor curacin A [23],
the sodium-channel blocker kalkitoxin [24,25], and the antitumor cryptophycin [26]. Although the
anticancer activity of cyanobacterial compounds has not been thoroughly investigated, some studies
point to diverse implications in apoptosis [27].

Several cyanobacteria produce antileukemic compounds [21–26,28]. Approximately 80% of the
cases of acute leukemia in adults in the United States are acute myeloid leukemia (AML). Over
29,000 cases of AML were recorded in Europe between 1995 and 2002 [29]. The treatment for this
disease is currently based on chemotherapy, and long-term prognosis for such patients is poor [30].
The discovery and development of new drugs to treat AML are necessary due to emerging AML drug
resistance and the harsh side effects of the current treatments [31]. Marine cyanobacteria are a rich
source of anticancer compounds, but cyanobacteria isolated from underexplored environments are
promising alternative source of drug leads for drug discovery [9,27,32,33].

Brazilian biomes are characterized by unusually high biodiversity, and new cyanobacterial
taxa are frequently described from these biomes [34–39]. Strains isolated from these biomes have
antimicrobial and anticancer activities [40–42]. New natural products are continuously described from
cyanobacteria isolated from these habitats [40,43,44]. Metabolic profiling has increasingly been used to
visualize and organize the vast chemical diversity and large repertoire of molecules synthesized by
microorganisms [45]. This approach enables the assessment of groups of compounds with analogous
biosynthetic origins and structures, which may facilitate the discovery of novel compounds [46].

In this study, we screened cyanobacterial isolates from Brazilian habitats for natural products and
tested the antileukemic and antimicrobial activity of their culture extracts. Furthermore, we constructed
a molecular network to expand the current knowledge of their chemical diversity.

2. Results

2.1. Cyanobacterial Isolates

A total of 62 isolates from diverse biomes from Brazil were tested for antimicrobial and anticancer
activities (Table S1). A phylogenetic tree based on 16S rRNA gene was constructed in order to access
the evolutionary history of these strains (Figure 1). The 62 isolates belong to 23 different genera spread
among five different orders: Synechococcales, Oscillatoriales, Chroococcales, Chroococcidiopsidales,
and Nostocales.
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Figure 1. Evolutionary history based on 16S rRNA gene sequences of the 62 analyzed cyanobacterial 
strains (in bold) and 73 other strains: According to this Bayesian inference, the sequences formed 
diverse clades belonging to different orders. Accession numbers in NCBI are shown in parentheses. 

2.2. Bioactivity Screening 

Aqueous and organic cyanobacterial cell extracts were first tested for their cytotoxic activity 
against the human leukemia MOLM-13 cell line (Table S2). Two of the 62 aqueous extracts resulted 
in 70–90% cell death (CCIBt3594 and CENA185), while 11 were highly cytotoxic with 90–100% cell 
death (CENA69, 72, 161, 219, 270, 513, 514, 524, 535, 543, and 548). The organic extracts from the 
cyanobacteria were more potent, 13 samples induced 70–90% cell death (CENA21, 67, 137, 147, 152, 
153, 154, 159, 160, 215, 216, 272, and 526), and 26 induced apoptosis in 90–100% of the cells (CCIBt3594; 
UFV-E1; UFV-L1; UFV-27; and CENA69, 71, 72, 135, 161, 185, 217, 219, 270, 283, 296, 298, 302, 382, 
510, 513, 514, 524, 535, 541, 543, and 548). A dilution of the organic extracts to 3.99 mgDW·ml-1 (0.3%) 
revealed that two samples induced cell apoptosis in 70–90% of the cells (CENA69 and 382) and 13 
samples induced apoptosis in 90–100% (CENA71, 72, 161, 185, 219, 270, 296, 298, 513, 514, 524, 535, 
and 548). The extracts that induced apoptosis between 70–90% of the MOLM-13 cells were diluted 10 
times, and the extracts inducing over 90% cell death were diluted 10 and 100 times to further compare 
the cytotoxic potential. For the aqueous extracts, only Nostoc sp. CENA219 presented a moderate 
apoptosis rate (51%) at 100 times dilution. The organic extracts of Aliinostoc sp. CENA69 and 
CENA513 and Fischerella sp. CENA161 were highly cytotoxic (above 70%) towards MOLM-13 cells 
even at a concentration of 0.133 mgDW mL−1 (100-fold dilution). 

The cyanobacterial extracts with the highest apoptosis induction of MOLM-13 cells were also 
tested for cytotoxicity towards the normal rat kidney epithelial NRK cell line (Table 1). By comparing 
the potency of normal and malignant cells, the test provided evidence for potential use as an 
anticancer compound. The strains Fischerella sp. CENA72, Cyanobium sp. CENA185, Limnothrix sp. 
CENA217, Nostoc sp. CENA296, and Aliinostoc sp. CENA524 showed particularly selective 

Figure 1. Evolutionary history based on 16S rRNA gene sequences of the 62 analyzed cyanobacterial
strains (in bold) and 73 other strains: According to this Bayesian inference, the sequences formed
diverse clades belonging to different orders. Accession numbers in NCBI are shown in parentheses.

2.2. Bioactivity Screening

Aqueous and organic cyanobacterial cell extracts were first tested for their cytotoxic activity
against the human leukemia MOLM-13 cell line (Table S2). Two of the 62 aqueous extracts resulted
in 70–90% cell death (CCIBt3594 and CENA185), while 11 were highly cytotoxic with 90–100% cell
death (CENA69, 72, 161, 219, 270, 513, 514, 524, 535, 543, and 548). The organic extracts from the
cyanobacteria were more potent, 13 samples induced 70–90% cell death (CENA21, 67, 137, 147, 152,
153, 154, 159, 160, 215, 216, 272, and 526), and 26 induced apoptosis in 90–100% of the cells (CCIBt3594;
UFV-E1; UFV-L1; UFV-27; and CENA69, 71, 72, 135, 161, 185, 217, 219, 270, 283, 296, 298, 302, 382,
510, 513, 514, 524, 535, 541, 543, and 548). A dilution of the organic extracts to 3.99 mgDW·ml-1 (0.3%)
revealed that two samples induced cell apoptosis in 70–90% of the cells (CENA69 and 382) and 13
samples induced apoptosis in 90–100% (CENA71, 72, 161, 185, 219, 270, 296, 298, 513, 514, 524, 535,
and 548). The extracts that induced apoptosis between 70–90% of the MOLM-13 cells were diluted 10
times, and the extracts inducing over 90% cell death were diluted 10 and 100 times to further compare
the cytotoxic potential. For the aqueous extracts, only Nostoc sp. CENA219 presented a moderate
apoptosis rate (51%) at 100 times dilution. The organic extracts of Aliinostoc sp. CENA69 and CENA513
and Fischerella sp. CENA161 were highly cytotoxic (above 70%) towards MOLM-13 cells even at a
concentration of 0.133 mgDW mL−1 (100-fold dilution).

The cyanobacterial extracts with the highest apoptosis induction of MOLM-13 cells were also
tested for cytotoxicity towards the normal rat kidney epithelial NRK cell line (Table 1). By comparing
the potency of normal and malignant cells, the test provided evidence for potential use as an anticancer
compound. The strains Fischerella sp. CENA72, Cyanobium sp. CENA185, Limnothrix sp. CENA217,
Nostoc sp. CENA296, and Aliinostoc sp. CENA524 showed particularly selective cytotoxicity towards
MOLM-13 cells over NRK cells; these strains had an over nine-fold greater EC50 value for NRK than
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MOLM-13 (Table 1). It is noteworthy that the organic extracts from Cyanobium sp. CENA185 and
Limnothrix sp. CENA217 showed no apparent toxicity to NRK cells after 24 h (Figure S1). Nostoc sp.
CENA69, Fischerella sp. CENA161, and Aliinostoc spp. CENA513 and CENA514 showed relatively
smaller differences in cytotoxicity between the two cell lines as judged by EC50 values than the
other strains.

Table 1. Comparison of inhibition caused by organic cyanobacterial extracts in rat kidney epithelial
NRK and human leukemia MOLM-13 cell lines as measured by the area under the curve (AUC) of cells
with normal nuclei and EC50. See methods Section 5.3 for calculations of EC50 and AUC.

Cyanobacterial Strain
AUC EC50

NRK MOLM-13
Ratio

Total Area Std. Error Total Area Std. Error NRK MOLM-13

Nostoc sp. CENA69 63.01 2.902 26.61 4.412 2.4 0.098 0.054
Fischerella sp. CENA71 * 106.3 9.467 45.45 4.053 2.3 1.493 0.363
Fischerella sp. CENA72 * 164.4 14.78 52.32 9.073 3.1 3.129 0.201
Fischerella sp. CENA161 134.0 6.417 69.02 7.495 1.9 0.508 0.083
Cyanobium sp. CENA185 199.7 - 110.7 − −§ >15# 1.590
Limnothrix sp. CENA217 198.6 1.033 137.7 3.028 −§ >15# 1.410

Nostoc sp. CENA296 * 172.5 15.93 96.91 4.076 1.8 11.26 1.212
Fischerella sp. CENA298 124.9 8.210 98.90 12.37 1.3 2.283 1.324
Aliinostoc sp. CENA513 129.2 6.390 53.58 5.328 2.4 0.491 0.087

Aliinostoc sp. CENA514 * 108.2 4.706 32.96 5.631 3.3 0.842 0.140
Aliinostoc sp. CENA524 * 159.6 4.367 65.36 4.124 2.4 6.012 0.620
Aliinostoc sp. CENA535 85.71 2.182 60.54 10.19 1.4 1.218 0.566

Range given due to missing data in intermediate toxicity (see Figure S1); * p-value < 0.0001 calculated using
extra-sum-of-squares F test in GraphPad; # Cells were not affected with highest concentration tested. § Value could
not be calculated due to a lack of activity in NRK cells.

Another method to evaluate drug selectivity for one cell over another is to calculate the area under
the curve (AUC) of the dose-response curves (Table 1 and Figure S1). Aliinostoc sp. CENA514 has a
large AUC ratio between NRK and MOLM-13 cell lines, which indicates that the concentrations needed
to kill MOLM-13 AML cells will not harm nonmalignant NRK cells. The cell extract from Nostoc sp.
CENA69 was toxic for both MOLM-13 and NRK cell lines (Figure 2 and Table 1). The low value of the
half-maximum effective concentration (EC50) of Nostoc sp. CENA69 shows the high potency of this cell
extract for both tested cell lines (Table 1).

Figure 2. Cytotoxic cell extract from Nostoc sp. CENA69: Human leukemia MOLM-13 and rat kidney
epithelial NRK cells in different concentrations of cyanobacterial organic extract (indicated as mg of
dry weight (DW) of freeze-dried cell mass used per ml of cell suspension). DMSO: dimethyl sulfoxide
(negative control). Note the appearance of pyknotic and hypercondenced chromatin in the cells treated
with high concentration of CENA69 extract.
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To identify possible antibacterial and antifungal activity, organic extracts obtained from
cyanobacterial freeze-dried cells were also tested against Staphylococcus aureus and Candida albicans
(Table 2, Files S1 and S2). Fischerella spp. CENA71, CENA72, CENA161, and CENA298 and Aliinostoc
sp. CENA513 showed both antibacterial and antifungal activity. Aliinostoc spp. CENA514, CENA535,
and CENA548 extracts had antifungal activity while CENA524 presented antibacterial activity.

Table 2. Summary of the antifungal (F), antibacterial (B), and anticancer (C) activities observed in the
cyanobacterial crude extracts (see also Files S1 and S2). Bioactive cell extracts (+) showed inhibition
zone in the antimicrobial assay and above 70% induction of apoptosis of MOLM-13 cell lines at the
concentration of 13.3 mgDW mL−1. Previously obtained information of the compounds produced by
the studied strains are presented. Cyanobacterial extracts that induced apoptosis in less than 70% of
MOLM-13 cells did not present inhibition halo in the antimicrobial assays or that were not previously
described to produce a natural product were not included in this table. The use of sterile water may
have influenced the susceptibility of fungal and bacterial cells.

Taxon Strain
Activity Compounds

Detected
Reference

F B C a

Pannus brasiliense CCIbt3594 − − + − This study
Nostoc piscinale CENA21 − − + − This study

Nostoc sp. CENA67 − − + * − [42] and this study
Nostoc sp. CENA69 − − + * − [42] and this study

Fischerella sp. CENA71 + + + − This study
Fischerella sp. CENA72 + + + − This study

Oxynema sp. CENA135 − − + * Microcystin,
Saxitoxin [41,42] and this study

Nodosilinea sp. CENA137 − − + − this study
Nodosilinea sp. CENA147 − − + − this study
Chlorogloea sp. CENA152 − − + − this study

Cyanobium sp. CENA153 − − +
Microcystin,
Aeruginosin [41,47] and this study

Cyanobium sp. CENA154 − − + * Aeruginosin [42,47] and this study
Halotia wernerae CENA159 − − + − This study
Halotia wernerae CENA160 − − + − This study

Fischerella sp. CENA161 + + + Microcystin [48] and this study
Cyanobium sp. CENA185 − − + Microcystin [41] and this study
Cyanospira sp. CENA215 − − + − This study

Nostoc sp. CENA216 − − + − This study
Limnothrix sp. CENA217 − − + − This study

Nostoc sp. CENA219 − − + Hassallidin [32] and this study
Phormidium sp. CENA270 − − + Microcystin [49] and this study

Nostoc sp. CENA271 − − − Aeruginosin [47] and this study
Gloeotrichia sp. CENA272 − − + − This study

Calothrix sp. CENA283 − − + − This study
Nostoc sp. CENA296 − − + − This study

Fischerella sp. CENA298 + + + − This study
Cylindrospermopsis raciborskii CENA302 − − + Saxitoxin [50] and this study

Brasilonema sp. CENA382 − − + − This study
Pseudanabaenaceae

cyanobacterium CENA510 − − + − This study

Aliinostoc sp. CENA513 + + + − This study
Aliinostoc sp. CENA514 + − + − This study
Aliinostoc sp. CENA524 − + + − This study

Geminocystis sp. CENA526 − − + − This study
Aliinostoc sp. CENA535 + − + Puwainaphycin This study

Tolypothrix sp. CENA541 − − + − This study

Aliinostoc sp. CENA543 − − +
Nodularin,

Anabaenopeptin,
Pseudoaeruginosin

[11,43] and this study

Aliinostoc sp. CENA548 + − + Puwainaphycin This study
Brasilonema octagenarum UFV-E1 − − + − This study

Brasilonema sp. UFV-L1 − − + − This study
Brasilonema sp. UFV-27 − − + − This study

a Cytotoxic towards MOLM-13 cells (see Table 1).*Anticancer activity has also been previously observed [40].
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2.3. Natural Products Produced by Brazilian Cyanobacteria

Cell extracts were analyzed using mass spectrometry, and a molecular network was constructed
based on the MS/MS spectra of the detected compounds. Due to the size of the resulting network, only
clusters containing potential new novel compounds detected exclusively in Brazilian cyanobacterial
extracts and previously known natural products are presented in Figure 3. The complete network
can be found in the Supplementary Materials (Figure S2). Cyanobacterial cell extracts from strains
producing known compounds were included in the analysis to facilitate the dereplication of different
compounds (Table S3). Puwainaphycins produced by Aliinostoc spp. CENA535 and CENA548 were
detected using a dereplication tool (GNPS) (Figure S3; Table S4).
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Cyanobacterial extracts that showed potent anticancer or cytotoxic activity presented novel
compounds detected only in Brazilian strains (Figure 4). The chlorinated compounds (M1–5) could
not be assigned in this study to any known molecule. Further information on these compounds are
presented in the Supplementary Material (Figure S4, File S3).
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3. Discussion

There has been a recent increase in the number of studies on natural products synthesized
by Brazilian cyanobacteria, particularly on toxins and protease inhibitors [43,44,51–53]. However,
the diversity of these organisms and their natural products will likely expand as these ecosystems are
further explored [54–56]. Therefore, strains were isolated from different biomes and their biosynthetic
potential in culture conditions is discussed here.

The 16S rRNA gene phylogenetic analysis demonstrated that, while some Nostoc strains were
distributed in the previously described Nostoc clusters 1, 2, and 3.3 [43], the remaining strains were
located in sparse and diverse clades more closely related to other Nostocalean genera.

Previous research indicated that analysis of a broad selection of taxonomical genera of cyanobacteria
would increase the possibility of detecting novel bioactive compounds [21,43]. The analysis of several
strains investigated in this study revealed significant antileukemic activity (≥70%). Approximately 21%
of the aqueous and 61% of the organic extracts were bioactive, in which all the cyanobacterial strains
that produced hydrophilic active compounds also contained a hydrophobic antileukemic extract. The
analysis measured by AUC aids in evaluating the effect of the compounds based on concentration and
is a reliable method to analyze dose-response curves [57].

Cell extracts of Cyanobium sp. CENA154, Nostoc spp. CENA67 and CENA69, and Oxynema sp.
CENA135 have previously been described as having anticancer activity against the murine colon
cancer cell line CT-26 and lung carcinoma 3LL [42]. In the present work, cell extracts of these strains
were similarly found to induce apoptosis of the AML cell line MOLM-13. Their organic extract is
responsible for the antileukemic activity, except for Nostoc sp. CENA69, in which the aqueous extract
also exhibited antileukemic activity at 13.3 mgDW mL-1 concentration. CENA69 showed a high
potency to induce cell death in MOLM-13 and was further tested using normal cells (NRK), which
also showed high cytotoxicity. Fischerella spp. CENA71 and CENA72 and Aliinostoc spp. CENA513,
CENA514, and CENA524 produce antileukemic compound(s) with higher potency against MOLM-13
cells than normal NRK cells. A similar study that investigated extracts from Portuguese cyanobacteria
also revealed effects against cancer cells but did not reduce the viability of NRK cells [58].

Among the 39 strains exhibiting high antileukemic activity, 12 of them produce previously
described compounds. Cyanobium spp. CENA153 and CENA185, Fischerella sp. CENA161, Oxynema
sp. CENA135, and Phormidium sp. CENA270 produce microcystins. These peptides are potent
hepatotoxins due to their protein serine/threonine phosphatase inhibitor activity [59]. Hepatocytes
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efficiently take up microcystin and are therefore the primary target of toxicity [60]. However, high doses
of microcystin can also induce oxidative stress [61]. The cellular effects of protein phosphatase inhibitors,
such as microcystin and nodularin, are due to differences in uptake. These toxins do not distinguish
between malignant and nonmalignant cells if microinjected into the cells [62]. Nevertheless, previous
studies have shown that there is no correlation between phosphatase inhibitors and apoptogenic
activity against SH-SY5Y-neuroblastoma and AML cells [58,63]. The lipopeptides hassallidin and
puwainaphycin have been previously shown to have cytotoxic activity [64,65]. Aeruginosin and
anabaenopeptin are protease inhibitors with no reported cytotoxic effects. Lastly, saxitoxin is a
neurotoxin that is associated with cytotoxic effects on mammalian cells [66–68]. Further analysis using
isolated compounds would be necessary to show which are the antileukemic compounds produced
by the tested Brazilian cyanobacteria. Three of the 62 strains are likely to produce new antibacterial,
antifungal, or anticancer molecules.

The construction of a molecular network was used to explore the complex variety of natural
products synthesized by the analyzed cyanobacteria. Although most of the molecules are produced by
both Brazilian and control strains, approximately 20% of the resulting clusters are exclusively present
in the group of Brazilian strains. Compounds that had already been identified in the strains, such as
microcystin-LR (Fischerella sp. CENA161) [48], [D-Leu1]microcystin-LR (Phormidium sp. CENA270) [49],
anabaenopeptin, and nodularin (Aliinostoc sp. CENA543) [43], were again found here (Figure S2
and Table S4). The molecular network also highlighted molecules that are possibly related to their
bioactivities, though the mass spectrometry analysis was not sufficient for identification and further
isolation and characterization are necessary.

Previous studies involving 17 of the 62 strains tested here (CENA21, 67, 69, 135, 152, 153, 154, 159,
160, 185, 216, 217, 247, 271, 281, 283, and 510) reported anticancer and antimicrobial activity on other
cell lines and microorganisms [41,42,47]. Thus, our analysis expands the number of strains producing
known bioactive compounds, especially from the Nostoc and Fischerella genera [32,43,52]. Nostoc
is a cosmopolitan genus of cyanobacteria that is predominantly terrestrial but is also frequently
found in symbiosis with other organisms [69,70]. They are known as a prolific producer of
secondary metabolites, such as peptides, polyketides, and alkaloids [71,72]. The compounds already
described include microcystin (hepatotoxin) [73], nostophycin (cytotoxic activity) [74], cryptophycin
(tumor inhibitor) [75], nostocyclamide (algae and bacteria growth inhibitor) [76], nostocarboline
(acetylcholinesterase inhibitor) [77], nostocine A (algae and plant growth inhibitor) [78], muscoride A
(antibacterial activity) [79], and cyanobacterin (cyanobacterial growth inhibitor) [80]. Nevertheless,
the biosynthetic potential of Nostoc remains underestimated, as many compounds have not yet been
identified [65]. Although Fischerella is comparatively less studied that Nostoc, several natural products
have been identified, such as microcystin [43], the antitumor welwitindolinones [81], the antibacterial
and antimycotic hapalindoles [82], and the antibacterial ambiguine [83].

4. Conclusions

Brazilian cyanobacteria belonging to 5 different orders and isolated from different biomes showed
anticancer, antibacterial, and antifungal activity. The known compounds microcystin, saxitoxin,
aeruginosin, hassallidin, nodularin, anabaenopeptin, pseudoaeruginosin, and puwainaphycin were
detected by mass spectrometry analysis and a dereplication tool. Nonetheless, the biosynthetic potential
of the strains remains mostly unknown as most of the molecular network could not be assigned
to known natural products. Among these compounds, some were found only in Brazilian strains
and could potentially be involved in the detected bioactivities. The unknown chlorinated molecules
detected in extracts showing relatively high anticancer activity are promising candidates for isolation
and characterization. We hypothesize that further studies with Brazilian cyanobacteria may reveal an
even larger biosynthetic repertoire, as the tested strains are expected to represent just a small fraction
of isolation sources in the ecosystems in the country.
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5. Materials and Methods

5.1. Cyanobacterial Strains

Nostoc spp. CENA67 and CENA69 and Fischerella spp. CENA71 and CENA72 (No. 3–6 in Table S1)
were isolated from the anthropogenic Amazon Dark Earth soils, which are highly fertile anthropogenic
soils produced by native populations of Central Amazonia [84]. Phormidium, Nodosilinea, Chlorogloea,
Cyanobium, and Halotia strains (No. 7–14 in Table S1) originate from Cardoso Island on the coast of the
State of São Paulo. This region is covered by the Atlantic Forest, mangroves, and restingas (herbaceous
vegetation) and is part of one of the most biodiverse ecosystems in the world [85]. Caatinga, the biome
in which Aulosira, Calothrix, Chroococcidiopsis, Cyanospira, Fischerella, Lyngbya, Nostoc, and Phormidium
strains (No. 17–43 in Table S1) were isolated, is a semiarid region with singular adapted species that is
largely neglected by conservation policies in Brazil [54]. Lastly, Alkalinema, Geminocystis, Leptolyngbya,
Nodosilinea, Nostoc, Pannus, and Pantanalinema strains (No. 1 and 46–59 in Table S1) were isolated
from the Pantanal, which is the largest continental wetland on the planet and is colonized by unique
cyanobacteria [54]. The strains are maintained in the UHCC culture collection of the University of
Helsinki, Helsinki, Finland, and the culture collection of CENA/University of São Paulo, Piracicaba,
São Paulo, Brazil.

5.2. DNA Extraction and Sequencing, and Phylogenetic Analyses

Total genomic DNA of the strains was extracted from 3-weeks old cultures according to the method
by Fiore et al. [86]. The 16S rRNA genes were obtained by PCR using the set primer 27F-23S30R [87].
PCR products were cloned and sequenced, and the resulting reads were assembled into contigs using
the Phred/Phrap/Consed package [88–90].

The evolution model GTR + I + G was selected as the best-fit model by jModelTest 2 v0.1.1 [91,92]
and was therefore used for inferring the 16S rRNA phylogenetic tree. In total, 141 cyanobacterial
nucleotide sequences were implemented in MrBayes v3.2.6 [93] with 5,000,000 generations.

5.3. Cyanobacterial Extracts

The Brazilian strains selected for the bioactivity assays (Table S1) were cultivated in 3 L of Z8 [94]
medium (with or without 0.467 g/L of NaNO3 as nitrogen source; see Table S5) under constant light
of 10 ± 1 µmol m−2 s−1 at 20 ± 1 ◦C. Cells in exponential phase of growth (21–28 days of cultivation)
were freeze-dried, and 100 mg was used for methanol extraction. To perform the extraction, 1 mL of
methanol and glass beads (0.5-mm diameter, Scientific Industries INC, Bohemia, NY, USA) were added
to the cell matter to be disrupted in a plastic tube using a FastPrep™-24 homogenizer (Fastprep®-24,
MpBiomedicals, Irvine, CA, USA) for three times of 30 s at 6.5 m/s. The sample tubes were centrifuged
at 10,000× g for 5 min, and the supernatant was reserved in a new tube. The extraction was repeated.
The supernatant from both extractions was combined and dried using a vacuum concentrator (RVC
2–18 CDplus, Martin Christ, Osterode, Germany). Samples were resuspended in 500 µL of methanol
(Sigma-Aldrich, San Luis, MO, USA) by vortexing and pipetting. Dichloromethane (Merck) and milli-Q
water were added 1:1 v/v (500 µL:500 µL), and the samples were inverted to mix the solvents. The
samples were then centrifuged at 10,000× g for 5 min at 20 ◦C. The aqueous and organic phases were
collected, placed in different tubes, and left with the lid open at room temperature in a laboratory
fume hood overnight. The aqueous phase was evaporated in a speed-vac (Eppendorf) at 30 ◦C. Dried
samples were stored at−20 ◦C. Organic-phase extracts were resuspended in 75 µL of dimethyl sulfoxide
(DMSO, Sigma-Aldrich, ≥99.9%, A.C.S. spectrophotometric grade), while the aqueous phase was
resuspended in 300 µL of 25% DMSO (25 DMSO:75 milli-Q water). Samples were stored at −20 ◦C.

Frieze-dried cells (100 mg) were extracted twice with 1 mL of methanol and centrifuged as
described above. The extracts (300 µL) were added to discs and evaporated overnight. The discs were
used for antibacterial and antifungal assays. A volume of 40 µL of filtered (22 µm) extract was mixed
with 160 µL of methanol to be analyzed by mass spectrometry and stored at −20 ◦C. Frieze-dried
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cells (10 to 24.3 mg) from 10 cyanobacteria (Table S3) were extracted once with 1 mL of methanol as
described above, and 200 µL of the extract was filtered and reserved for mass spectrometry analysis.

5.4. Cell-Based Assay

The acute myeloid leukemia (AML) cell line MOLM-13 (ACC, 554; [95]) and rat kidney epithelial
cell line NRK (ATCC, CRL-6509) were used. Aqueous (4 µL) and organic (1 µL) cyanobacterial extracts
were cultured in RPMI or DMEM medium, respectively, and both were supplemented with fetal
bovine serum (FBS, F7524, Sigma-Aldrich) and penicillin and streptomycin (P0781, Sigma-Aldrich).
The MOLM-13 cells were maintained at concentrations between 105 and 8 × 105 cells/mL. NRK cells
were detached by mild trypsin treatment at 70–90% confluence and reseeded at 30–50% confluence.
The cells were incubated in a humified atmosphere at 37 ◦C and 5% CO2. To test for cytotoxicity,
extracts were added in 96-well plates (NunclonTM Delta Surface, Thermo Scientific) and MOLM-13 cell
suspensions (25–40 × 105 cells/mL) were added to a final volume of 0.1 mL in each well. NRK cells
were seeded in wells the day before the experiment (7–8 × 104 cells/mL) and left overnight to attach.
Fresh medium containing the cyanobacterial cell extracts were added to the wells. Both cell lines
were incubated at 37 ◦C for 24 h before the cells were fixed by adding 100 µL of 3.7% formaldehyde
in phosphate-buffered saline buffer, pH 7.4. The DNA-specific dye Hoechst 33342 (0.01 mg/mL) was
then added. Plates were kept at 4 ◦C overnight, and nuclear morphology was assessed as previously
described [96] using a Zeiss Axio Vert.a1 microscope. In brief, we scrutinized Hoechst-stained nuclei
and scored them as normal or abnormal. Normal nuclei were moderately stained and bean-shaped,
whereas nuclei from dead (apoptotic or necrotic) cells were typically hypercondensed, fragmented,
and not bean-shaped. See Figure 2 and Reference [96] for examples and details. The numbers of
normal and abnormal nuclei were used to determine the percentage of cell death. At least 100 cells
were counted to determine cytotoxicity.

The extracts were first screened for cytotoxic potential, and based on the cytotoxic potential of
those inducing more than 50% cell death (50–70%, 70–90%, and above 90%), dilutions series were
made to estimate EC50 values. All extracts were tested in duplicates. EC50 values were calculated,
and dose-response curves were created using the nonlinear regression function of GraphPad Prism
8 (GraphPad Software, La Jolla, CA, USA). The program was also employed for calculating p-value
using the extra-sum-of-squares F test.

5.5. Antifungal and Antibacterial Assays

The activity of crude extracts obtained from Brazilian cyanobacteria were tested for
antifungal (Candida albicans HAMBI484) and antibacterial (Staphylococcus aureus HAMBI66) activities.
The antifungal test was performed as previously described [32]. PDA and BHI media were used
for the growth and activity assay of Candida albicans HAMBI484 (at 35 ◦C) and Staphylococcus aureus
HAMBI66 (at 37 ◦C), respectively. Microbial cells grown overnight on solid media were added to
sterile water in a sterile tube, and turbidity was measured at 530 nm to approximately McFarland 0.5.
The S. aureus HAMBI66 inoculum (800 µL) was spread onto BHI plates and dried for 30 min in sterile
conditions. C. albicans HAMBI484 inoculum was spread using a sterile swab. The discs containing dry
cyanobacterial cell extracts were added to the plates and incubated at 35 ◦C or 37 ◦C overnight, after
which the inhibitions zones were measured. Nystatin (25 µg) and kanamycin (1000 µg, Abtek biological)
were used as positive controls against C. albicans HAMBI484 and S. aureus HAMBI66, respectively.

5.6. Liquid Chromatography-Mass Spectrometry (LC-MS)

Samples were injected into an Acquity UPLC system (Waters, Manchester, UK) equipped with a
Kinetex® C8 100 LC Column (50 × 2.1 mm, 1.7 µm, 100 Å). The UPLC was operated with a flow-rate of
0.3 mL/min in gradient mode at a temperature of 40 ◦C. Solvents used in the gradient were A: 0.1%
formic acid in water and B: 0.1% formic acid in acetonitrile/isopropanol (1:1). The initial conditions of
the linear gradient were A: 95% and B: 5% and the conditions were changed to A: 0% and B: 100%
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in 5 min. The injection volume was 0.5 µL. Mass spectra were recorded with a Waters Synapt G2-Si
mass spectrometer (Waters, Manchester, UK). Measurements were performed using positive and
negative electrospray ionization (ESI) in resolution mode. Precursor ions were scanned in the range
from m/z 400 to 2000 and productions from m/z 50 to 2000. MS analyses were performed with scan
times of 0.1 s and MS/MS analyses with scan times of 0.2 s. The capillary voltage was 1.5 kV (2.0 kV in
negative ionization), source temperature was 120 ◦C, sampling cone was 40.0, source offset was 80.0,
desolvation temperature was 600 ◦C, desolvation gas flow was 1000 L/h, and nebulizer gas flow was
6.5 Bar. Leucine-encephalin was used as a lock mass, and calibration was performed with sodium
formate and Ultramark 1621.

5.7. Molecular Network

The data obtained with LC-MS was converted to mzXML using MSConvert [97]. A molecular
network was obtained using the GNPS: Global Natural Products Social Molecular Network website [98].
The data was filtered, peaks with + or −17 Da of the precursor were removed, and peaks throughout
the spectrum other than the top six +/−50 Da were filtered out. The data were then clustered with
MS-Cluster with a parent mass tolerance of 0.2 Da and a MS/MS fragment ion tolerance of 0.2 Da
to create consensus spectra. Consensus spectra that contained less than two spectra were discarded.
A network was then created where edges were filtered to have a cosine score above 0.7 and more than
six matched peaks. Further edges between two nodes were kept in the network only if each of the
nodes appeared in each other’s respective top 10 most similar nodes. The spectra in the network were
then searched against the GNPS spectral libraries. The library spectra were filtered in the same manner
as the input data. All matches kept between network spectra and library spectra were required to have
a score above 0.7 and at least six matched peaks.

The in silico peptidic natural product dereplicator tool from the GNPS website was used to search
for potential known compounds produced by Brazilian cyanobacteria. The precursor and fragment
ion mass tolerance selected was 0.02 Da, and a search for analogs was performed (VarQuest).

5.8. Data Availability Statement

The 16S rRNA or 16S-23S rRNA sequence accession numbers in NCBI are Nostoc spp. CENA67
(MN551902), CENA69 (MN551252), CENA216 (MN551255), CENA238 (MN551905), CENA239
(MN551906), CENA259 (MN551911), CENA261 (MN551256), CENA269 (MN551912), CENA271
(MN551257), CENA274 (MN551914), CENA278 (MN551915), CENA281 (MN551916), and CENA294
(MN551920); Leptolyngbya CENA293 (MN551919); Fischerella spp. CENA71 (MN551253) and CENA
72 (MN551254); Cyanospira sp. CENA215 (MN551903); Limnothrix sp. CENA217 (MN551904);
Chroococcidiopsis spp. CENA240 (MN551907) and CENA246 (MN551908); Sphaerospermopsis sp.
CENA247 (MN551909); Calothrix sp. CENA250 (MN551910); Aulosira spp. CENA272 (MN551913),
CENA283 (MN551258), CENA288 (MN551917), CENA291 (MN551918), and CENA295 (MN551921);
Nostocales CENA296 (MN551922); and Brasilonema spp. UFV-L1 (MN551259) and UFV-27 (MN551260).

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/1/12/s1,
Figure S1: Dose-response curves of the selected cyanobacterial extracts on NRK (Blue) and MOLM-13 (red) cell
lines: These were the basis for estimating EC50 values, Figure S2: Complete molecular networking of cyanobacterial
extracts from Brazilian (purple) and control (green) strains: Known compounds are indicated (see also Tables
S3 and S4). Node numbers represent mass/charge ratios (m/z), Figure S3: MS/MS spectra of puwainaphycins
identified in Aliinostoc sp: CENA535 using the dereplication tool (GNPS). See Table S4 for further information,
Figure S4: Spectra of potentially new compounds produced only by Brazilian strains (see also Figure 4 and File
S3), Table S1: List of Brazilian cyanobacterial isolates tested for the synthesis of anticancer and antimicrobial
compounds: The accession number of their 16S rRNA sequences and the habitat, site, city, and state from where
the samples were collected are indicated, Table S2: Human leukemia MOLM-13 cells apoptosis caused by crude
extracts of aqueous and organic cyanobacterial cell extracts (average of two parallel measurements indicated in
%). Dilutions (0.3×, 0.1×, and 0.01×) are indicated in the table, and samples not tested in different dilutions are
indicated with (−). Red color indicates high amounts of apoptotic cells, and green indicates high amounts of
normal cells. The error (Er) indicates the difference value of the average with one of the duplicates, Table S3: List
of cyanobacteria used as a control in the LC-MS analysis to compare the previously discovered compounds with

http://www.mdpi.com/2072-6651/12/1/12/s1
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the molecules produced by Brazilian strains, Table S4: Dereplicator analysis of Brazilian cyanobacteria cell extracts.
Predicted compounds are organized by p-value (cutoff of 10−11); FDR cutoff of 15%. Compounds found in previous
studies are in bold, File S1: Pictures of the antifungal activity essays using Candida albicans HAMBI484: The use of
sterile water may have influenced the susceptibility of the fungal cells, File S2: Pictures of the antibacterial activity
essays using Staphylococcus aureus HAMBI66: The use of sterile water may have influenced in the susceptibility of
the bacterial cells, File S3: Retention times of chlorinated compounds detected in Fischerella sp. CENA72, Table S5:
Culture media used for the cultivation of the strains: The addition of nitrogen refers to 0.467 g/L of NaNO3.
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