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Abstract: Herbal remedies used in traditional medicine often contain several compounds combined in
order to potentiate their own intrinsic properties. However, herbs can sometimes cause serious health
troubles. In Belgium, patients who developed severe aristolochic acid nephropathy ingested slimming
pills containing root extracts of an Aristolochia species, as well as the bark of Magnolia officinalis. The
goal of the study was to evaluate, on a human renal cell line, Aristolochia and Magnolia extracts
for their cytotoxicity by a resazurin cell viability assay, and their genotoxicity by immunodetection
and quantification of the phosphorylated histone γ-H2AX. The present study also sought to assess
the mutagenicity of these extracts, employing an OECD recognized test, the Ames test, using four
Salmonella typhimurium strains with and without a microsomial fraction. Based on our results, it
has been demonstrated that the Aristolochia–Magnolia combination (aqueous extracts) was more
genotoxic to human kidney cells, and that this combination (aqueous and methanolic extracts) was
more cytotoxic to human kidney cells after 24 and 48 h. Interestingly, it has also been shown that
the Aristolochia–Magnolia combination (aqueous extracts) was mutagenic with a TA98 Salmonella
typhimurium strain in the presence of a microsomial liver S9 fraction. This mutagenic effect appears
to be dose-dependent.

Keywords: Aristolochia; Magnolia; mutagenicity; genotoxicity; cytotoxicity; Ames test; γH2AX

Key Contribution: Aristolochia and Magnolia are more genotoxic, cytotoxic, and mutagenic when
used together than when used separately.

1. Introduction

Following disappointment with allopathic treatments, patients may turn to other
therapies such as phytotherapy. Phytotherapy is increasingly considered by the general
public as a safe and reliable therapy. Moreover, plant derivatives (such as Magnolia officinalis
or herbal medicinal products that contain aristolochic acids) are often readily available
either in supermarkets or on the internet, and sometimes the products’ degree of purity is
not suitable for pharmaceutical use [1]. For example, mycotoxins, mainly Fusarium toxins,
are naturally present in several plants that are widely used as feedstuffs worldwide [2,3].
Although often perceived as innocuous by the general public, many herbs harbor phy-
tochemicals that are either directly reactive towards DNA, or likely to disturb cellular
homoeostasis, cell cycle, and/or genome maintenance mechanisms; this may translate into
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genotoxicity, carcinogenicity, or co-carcinogenicity [4]. When taken orally (in the form of
pills, tea, syrup, etc.), plants are excreted by the kidneys. Indeed, the excretory organs, such
as the kidney and bladder, are often the sites of toxicity. Moreover, kidney diseases often
lead to an increased risk of morbidity from cardiovascular diseases [5,6].

Genotoxicity refers to the deleterious effect of a chemical compound or a physical
event on the genetic material; such genotoxic events are considered hallmarks of cancer
risk [4].

In the early 1990s, an epidemic of rapidly progressive tubulointerstitial nephritis
was reported in young Belgian female patients who inadvertently took slimming pills
containing the bark of Magnolia officinalis Rehder & E. H. Wilson, and inadvertently the
roots of an Aristolochia species [7–9].

At that time, the causative nephrotoxic agent was identified as aristolochic acid (AA),
and the renal disease following their ingestion is now worldwide recognized as Aristolochic
Acid Nephropathy (AAN) [10,11]. Remarkably, despite the worldwide human consumption
of AA, the Materia Medica and Pharmacopoeia before 1995 failed to mention any of the toxic
effects of Aristochia spp. [12].

AA was classified as a human carcinogen Class I by the World Health Organization
International Agency for Research on Cancer in 2002 [13]. The nephrotoxic effect of aris-
tolochic acid is irreversible. AAN and associated upper urinary tract urothelial carcinoma
and bladder cancer may become a major public health threat in the next few years [4,14].

However, despite Aristolochia species prohibition in many countries, more cases
of AA intoxication have been reported all over the world, especially in Asia and in
Balkan countries [9,15]. For example, there is accumulating evidence that Balkan endemic
nephropathy (BEN) is an environmental disease caused by AAs released from the decom-
position of Aristolochia clematitis L., an AA-containing weed that grows abundantly in the
Balkan Peninsula [16,17].

Nowadays, herbal medicinal products that contain AA continue to be manufactured
and marketed worldwide with inadequate regulation, and possible environmental exposure
routes receive little attention [1].

In 2015, Nachtergael et al. showed the effect of M. officinalis on Aristolochia genotoxicity.
The high potentiation of AA genotoxicity by M. officinalis can be tentatively explained by
an increased metabolic activation into aristolactams [18].

As summarized in Table 1, major significant bioactive components isolated from the
bark of M. officinalis appear to be the polyphenolic neolignans, magnolol, and honokiol [19,20].
Different tertiary and quaternary alkaloids have also been isolated and structurally eluci-
dated [20], including (i) the aporphine alkaloids N-methylcoxylonine, (S)-magnoflorine,
magnofficine, (R)-asimilobine, corytubérine, anonaine, and liriodenine and (ii) benzylte-
trahydroisoquinoline alkaloids (R)-magnocurarine, (S)-tembetarine, lotusine, (R)-oblongine,
and reticuline [21,22]. Magnoflorine and magnocurarine are considered the major and most
potent Magnolia bark alkaloids [23].

In the present study, Magnolia effects in the AAN case were further investigated.
Following the nephrotoxicity of AA compounds, studies were performed in HK-2 kidney
proximal human tubule cells.

The goal of the present study was to evaluate, on a renal cell line, Aristolochia and
Magnolia aqueous and methanolic extracts, alone and in combination, for their cytotoxicity
by a resazurine cell viability assay, and their genotoxicity by immunodetection and quan-
tification of the phosphorylated histone γ-H2AX, a genotoxicity biomarker [24,25]. The
present study also sought to assess the mutagenicity of these compounds, using an OECD
recognized test, the Ames test, using four Salmonella typhimurium strains—TA98, TA100,
TA1535, and TA1537—with and without the S9 microsomal fraction, often used to mimic
mammal metabolism and to estimate the need for bioactivation [26].
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Table 1. Alkaloids (mainly benzylisoquinoleine alkaloids) and lignans detected in barkaqueous
and methanolic extracts of M. officinalis, respectively, by the TLC-MS negative ESI mode for lignan
detection and the positive ESI mode for alkaloid detection.

Molecules MS Detection
(m/z) Aqueous Extract Methanolic Extract

Alkaloids

Anaxagoreine 284 (M + H) +

283 + D + yes yes

Asimilobine 268 (M + H) + yes no

(S)-4-Kétomagnoflorine 356 (M) + yes yes

Corytuberine
328 (M) + yes yes

1,9,10-Trihydroxy-2-méthoxy-6,6-diméthylaporphinium

Liriodénine 276 (M + H) + yes yes

Lotusine
314 (M) + yes yes(R)-Magnocurarine

(R)-Oblongine

(S)-Magnoflorine 342 (M) + yes yes

N-Méthylcoclaurine 300 (M + H) + yes yes

Remerine 315 (M + H) + yes yes

Réticuline 330 (M + H) + yes yes

(S)-Tembetarine 344 (M) + yes yes

Lignans

Magnolol 265 (M + H) − yes yes

Honokiol 265 (M + H) − yes yes

2. Results
2.1. Plant Extract Characterization
2.1.1. Aristolochia baetica L.

The thin-layer chromatography of raw plant material and the aqueous extract of
A. baetica was used according to the European Pharmacopoeia 8.4 monograph “Test for
aristolochic acids in herbal drugs,” previously detailed by Nachtergael et al. In brief, the
following was used: an HPTLC Silica gel 60 plate F254, a mobile phase of anhydrous formic
acid, water, ethyl acetate, and toluene (3:3:30:60, v/v/v/v), an upper layer detection method
using 100 g/L Tin(II) chloride in diluted hydrochloric acid at 100 ◦C for 1 min at UV365
nm, as well as aristolochic acid I and II (Rf 0.46 and Rf 0.54) [18].

2.1.2. Magnolia officinalis Rehder & E.H. Wilson

Alkaloid and lignan detection was made using HPTLC-MS. As described by Estevez
et al., mass spectrometry can indeed be used to characterize and identify components from
toxins [27].

Alkaloids

Following several protocols, the most appropriate mobile phase was selected for the
M. officinalis extracts.

Each plate was revealed using a Draggendorff reagent. We found that, follow-
ing Japanese Pharmacopoeia XVI, the most suitable mobile phase composition was bu-
tanol/water/acetic acid (at a proportion of 4/2/1).
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Lignans

According to European Pharmacopoeia 8.4, a methanol/ethyl acetate/toluene mobile
phase (4/8/120, v/v/v) was used and observed using vanillin reagent.

Both lignans, magnolol and honokiol, and almost 15 different alkaloids were detected
in methanolic and aqueous extracts (see Table 1).

2.2. Cytotoxicity of the Plant Extract Alone or in Combination

The cytotoxicity of Aristolochia and Magnolia aqueous and methanol extracts was
investigated on HK-2 cells by following resazurin viability curves after 24 and 48 h of
exposure to each material alone, or in combination. Results are presented in Figure 1 and
Table 2.
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Figure 1. Resazurin assay for HK-2 cell survival evaluation after incubation for 24 h and 48 h with 
methanolic or aqueous extracts of Aristolochia baetica or Magnolia officinalis, respectively, alone or in 
combination (means +/− SD from three separate experiments in duplicate (n = 6)). 

Figure 1. Resazurin assay for HK-2 cell survival evaluation after incubation for 24 h and 48 h with
methanolic or aqueous extracts of Aristolochia baetica or Magnolia officinalis, respectively, alone or in
combination (means +/− SD from three separate experiments in duplicate (n = 6)).
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Table 2. Cell viability was determined by the resazurin assay on HK-2 cells. Curves have been fitted
to the data from three separate experiments (n = 6) and have been fitted with nonlinear regression
(log(inhibitor) vs. normalized response—variable slope).

Resazurin Assay and IC50

Aqueous Extracts Methanolic Extracts

After 24 h After 48 h After 24 h After 48 h

Aristolochia baetica 4.8 mg/mL 1.7 mg/mL 0.3 mg/mL 0.3 mg/mL

Magnolia officinalis 0.7 mg/mL 0.2 mg/mL 0.5 mg/mL 0.5 mg/mL

Aristolochia–Magnolia (1:1) 0.7 mg/mL 0.2 mg/mL 0.2 mg/mL 0.1 mg/mL

One-way ANOVA (Dunnett’s multiple comparison test; p < 0.01; n = 6) confirmed that
the viability more significantly decreased with the Magnolia than the Aristolochia extracts,
after 24 and 48 h of exposure. The combination of both plant extracts resulted in a more
significant deleterious effect on cell viability.

2.3. Genotoxicity throughout γ-H2AX Detection

The measurement of the phosphorylated histone γ-H2AX is increasingly considered
as an attractive biomarker for either DNA damage or DNA repair. H2AX is a eukaryotic
histone protein that, depending on the organism and cell type, constitutes 2–25% of the
mammalian histone H2A. Interestingly, this histone is phosphorylated on its 139th serine
residue in the presence of DNA damage, mainly a double-strand break, to yield γ-H2AX.
The latter form nuclear domains, named “DNA damage foci”, can be visualized cytologi-
cally using fluorescence microscopy [18,24,25]. γ-H2AX detection by immunofluorescence
in HK-2 cells demonstrated that treating cells with bleomycin for 24 and 48 h induced an
increase in γ-H2AX foci at all tested concentrations: 50, 100, and 200 µg/mL (data not
shown). By comparison with these positive controls, cells treated with the aqueous extract
at a 1 mg/mL concentration of a Aristolochia–Magnolia combination (1:1 ratio) demonstrate
an increase in γ-H2AX foci, while the Aristolochia or the Magnolia aqueous extracts used
alone did not induce any significant increase in γ-H2AX foci (Figure 2). Cells treated with
a combination of Aristolochia and Magnolia aqueous extracts at 0.25 and 0.5 mg/mL did not
significantly increase the number of γ-H2AX foci (data not shown).

γ-H2AX fluorescence detection has been quantified by measuring total fluorescence
and total fluorescence relative to the number of nuclei. Statistical significance could not be
demonstrated for extracts used alone. However, statistical significance could be highlighted
by using a combination of the two plants (see Figure 3).

We further investigated which component could explain this increasing genotoxicity.
We performed the same experiment with aristolochic acids (I and II), magnolol, honokiol,
magnoflorin, and a combination of all of them over 24 h and 48 h exposure. Unfortu-
nately, we did not observe any increase in the presence of γ-H2AX after these different
experimental conditions (Figure 4—data not shown for 48 h).

2.4. Genotoxicity and Mutagenicity throughout the Ames Test

An Ames test was run using four strains of histidine-deficient Salmonella typhimurium:
TA-100, TA-98, TA-1535, and TA-1537, with and without the S9 fraction. The number of
revertants was recorded for each sample and compared to a positive control.

With the TA-100 strain, A. baetica seems to be mutagenic at every concentration from
0.25 mg/mL, without the S9 microsomal fraction. In the presence of the S9 fraction, only
the concentration of 10 mg/mL was mutagenic. The TA-1535 strain, on its side, does not
seem to be sensitive to Aristolochia or Magnolia extracts (data not shown). A statistically
significant increase in the mutagenicity induced by Aristolochia extracts alone, as well as the
Aristolochia–Magnolia combination, was found with the strain TA-98, but only with the S9
microsomial liver fraction. The TA-98 strains reveal frameshift mutations, meaning that the
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genotoxicity is based on a genetic mutation caused by the indels (insertions or deletions) of
a number of nucleotides in a DNA sequence. Moreover, this mutagenic effect appears to be
dose-dependent (Table 3).
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Figure 3. (A) Total fluorescence (RFU) and (B) total fluorescence per nucleus (RFU) after 24 h of
HK-2 cells exposure (n = 4) to aqueous extracts of Aristolochia (1 mg/mL), Magnolia (1 mg/mL),
and a Aristolochia–Magnolia combination at the same concentration (1:1 ratio), respectively. Each
analysis corresponds to the 3000 microscope fields counted. A one-way ANOVA test was followed
by Dunnett’s multiple comparison test with the control. ns: not significant vs. negative control.
** p < 0.01; *** p < 0.001.
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Table 3. Results of the Ames tests performed on Salmonella typhimurium strains TA-98 and TA-100
with and without the S9 fraction, after exposure to aqueous extracts of Aristolochia, Magnolia, or a
combination of both plants. Baseline = Mean ± 1 SD. A t-test was performed (p-values, 1-sided,
based on unpaired data). Level of significance: p ≤ 0.05 (n = 3). Values ≥ 2.0 are considered to be
positive (mutagenic).

Dose (mg/mL) Baseline Fold Increase over
the Baseline

Significant Increase Compared to
Concurrent Vehicle Control (t-test)

TA-98 strain

Aristolochia—S9 activation

0

1.24

10 0.80 0.3217
5 3.48 0.0212
1 2.41 0.0124

0.5 1.61 0.0581
0.25 1.07 0.1151
0.05 0.27 0.2593

Magnolia—S9 activation

0

5.55

10 0.24 0.2383
5 0.66 0.3120
1 1.14 0.0745

0.5 1.08 0.1072
0.25 0.66 0.3036
0.05 0.36 0.3744
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Table 3. Cont.

Dose (mg/mL) Baseline Fold Increase over
the Baseline

Significant Increase Compared to
Concurrent Vehicle Control (t-test)

Aristolochia–Magnolia combination—S9 activation

0

1.24

10 4.29 0.0300
5 3.75 0.0163
1 5.09 0.0095

0.5 2.14 0.0066
0.25 0.54 0.5000
0.05 1.61 0.0581

TA-100 strain

Aristolochia—S9 activation

0

4.00

10 2.17 0.0029
5 1.67 0.0127
1 1.33 0.0286

0.5 0.75 0.5000
0.25 0.58 0.3351
0.05 0.92 0.2459

Aristolochia—Without S9 activation

0

1.91

10 3.84 0.0016
5 3.66 0.0000
1 2.44 0.0121

0.5 2.27 0.0079
0.25 1.92 0.0176
0.05 0.52 0.3217

3. Discussion

The bark of M. officinalis Rehder & Wilson, known under the pinyin name “Hou Po,”
has been traditionally used in Chinese and Japanese medicines for the treatment of anxiety,
asthma, depression, gastrointestinal disorders, and headaches. Many pharmacological ac-
tivities, including antioxidant, anti-inflammatory, antibiotic, and antispasmodic effects [20],
as well as its alleviating effect on depression in postnatal women [28], have been reported
for this herb and its major compounds. Many of these activities have been attributed to the
lignans magnolol and honokiol, two major constituents of the plant.

In the present in vitro study, we first demonstrated that the M. officinalis aqueous and
methanolic extracts show a higher cytotoxicity after 24 and 48 h than the aqueous and
methanolic extracts of Aristolochia baetica. Combining both plant extracts resulted in the
most deleterious effects.

However, we were not able to identify which component association actually increased
the generation of γH2AX foci. Therefore, it seems that lignans (i.e., Magnolol and Honokiol)
and the tested alkaloid magnoflorin are not the agents responsible for the increased toxicity
of Aristolochia. Considering the characterization of our Magnolia officinalis extracts, we can
hypothesize that many other components could be candidates for these effects, mainly
alkaloid compounds.

Concerning the mutagenic assessment of our extracts, we performed the Ames test.
The Ames test is one of the most frequently applied tests in toxicology [29]. Following the
OECD guidelines, almost all new pharmaceutical substances and chemicals used in the
industry are tested by this assay [30]. The Ames test, or the so-called Salmonella/microsome
test, is widely used in investigating the mutagenic effects of chemicals. Not only is it one
of the most reliable short-term bacterial test systems, but it is also cheap and provides
results rapidly [31,32]. Each herbal extract was tested on four different strains. TA100 and
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TA1535 were used to detect base substitution mutations, and TA98 and TA1537 were used
to detect frameshift mutations. The liver S9 fraction is useful for imitating the mammalian
metabolism that activates pro mutagens [26,31–33].

The Salmonella strain TA-98, in the presence of the S9 fraction, showed that the Magnolia
and Aristolochia aqueous extract combination is more mutagenic than both aqueous extracts
tested separately. This result suggests that the combination generates frameshift mutations
and that this effect is dose-dependent. The need for the S9 fraction proves that the combi-
nation of plant extracts has to be metabolized by hepatic enzymes to be mutagenic. This
pathway is related to the fact that AAN patients ingested root extracts as slimming pills.
After oral intake, these pills, following the pharmacokinetic features, were metabolized by
the liver before targeting the kidneys where they generated their toxicity.

Although AA might directly cause nephropathy, the enzymatic activation of AAI is
required to exert its genotoxic effect. The reduction of the nitro group is now considered to
be the major activation pathway of AA [16]. NAD(P)H:quinone oxidoreductase (NQO1)
and microsomal enzyme NADPH:cytochrome P450 oxydoreductase are the main enzymes
responsible for the metabolic activation of AA in aristolactams by reduction of the nitro
group, and they may be involved in the bioactivation of AA, but its exact roles are still a
matter of debate [16,34–37]. Interestingly, in 2013, Cui et al. showed in a mouse model that
kidney NQO1 was significantly increased following treatment with an ethanolic extract of
Magnolia officinalis bark [38].

It has been recently demonstrated, for the first time, that cell lines deficient in nu-
cleotide excision repair (NER) machinery accumulated higher adduct levels, indicating that
NER is the major mechanism responsible for the repair of these lesions [39].

Following our results, the high potentiation of AA genotoxicity by Magnolia officinalis
could then be tentatively explained by an increased metabolic activation into aristolactams.
More investigations are needed to determine which components could be responsible for
the increase in DNA damage.

4. Conclusions

Plants are interesting from a health point of view but can be toxic. Moreover, these
toxicities are not always direct but can occur months or years later. This further complicates
the identification of the origin of these adverse reactions. This study demonstrated that
Magnolia officinalis, often described as safe, seems to be relatively cytotoxic, mainly to kidney
cells, but also seems to have antibacterial activity (significantly cytotoxic and mutagenic
to Salmonella typhimurium TA-100 strains at 10 mg/mL). Moreover, the genotoxicity to the
kidney of the association of Aristolochia baetica and Magnolia officinalis extracts is significantly
higher compared to the individual plant extracts. This was also confirmed by an Ames
test, an OECD-recommended mutagenicity assessment assay. The high potentiation of AA
genotoxicity by M. officinalis could be an explanatory factor for Chinese herb nephropathy
cases observed in Belgium in the 1990s. Furthermore, plants are, in most cases, used in
combination rather than alone. This study proves that plant combinations can be more
toxic under specific conditions.

5. Materials and Methods
5.1. Herbal Extraction

As previously performed by Nachtergael et al. [18], dried Magnolia officinalis Rehder &
E. H. Wilson cortices were obtained from Phytax (Schlieren, Switzerland). A certificate of
analysis was obtained from the company, indicating a sample free from aflatoxins (detection
limit: 0.4 µg/kg) and heavy metals (detection limit: 10 µg/kg). Instead of the Aristolochia
fangchi Y. C. Wu ex L. D. Chow & S. M. Hwang from the initial prescription, now prohibited
in Belgium, Aristolochia baetica L. radix was used in the present study. It is deposited at
the National Herbarium of Morocco (Scientific Institute of Rabat) under the voucher name
RAB 78463. Further investigations proved that A. baetica L. also contains quite similar
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aristolochic acid composition [18]. Each herbal extract has been prepared using polar
solvents (water and methanol) (Table 4).

Table 4. Aqueous and methanolic extraction yields.

Plants Pictures Aqueous Decoction Time
(min) Lyophilization Yields Methanolic

Extraction Yields

Magnolia officinalis
Rehder & E.H.
Wilson Cortex
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For both aqueous and methanolic extracts, the maximal concentration tested was
1 mg/mL. Plant combinations were assessed in a 1:1 ratio. Indeed, the initial prescription
followed the typical formula: 100—200 mg of Stephania (adulterated by the roots of an
Aristolochia species, probably A. fangchi), 100–200 mg of Magnolia (bark of Magnolia officinalis
Rehder & E. H. Wilson), 2 mg of Belladona dry extract, 45 mg of acetazolamide, 20 mg of
fenfluramine, 20 mg of diethylpropion, and 50 mg of meprobamate. The two plants were
present in slimming pills at the same concentration, and this is why a 1:1 mixture was
selected for use.

The common dosages for Magnolia officinalis and Aristolochia species are 3–9 g and
4.5–9 g, respectively [40]. A study showed that, following a 240 mL dose of water, the
intestinal liquid volume ranges from 67 ± 17 to 93 ± 24 mL, respectively, 2 and 45 min after
ingestion [41]. The liquid volume is divided into water pockets, where 60% of the total
volume is contained in a small number of large pockets (>20 mL), and 40% is contained in
a large number of the smallest pockets (0.5–20 mL). Regarding the 100–200 mg of plants
ingested in the Belgian cohort patients, the concentration reached in the small intestine can
be coarsely estimated at around 100–200 mg/100 mL, or 1–2 mg/mL, for each plant. The
concentration used in the present study is in line with the estimated concentration of plants
in the small intestine after the ingestion of slimming pills.

5.1.1. Aqueous Extraction

Each material was decocted in water, following the traditional instructions in the
Chinese Materia Medica [40]. The decoction was filtered on cellulose 3 times, and the filtrate
was lyophilized (Heto PowerDry LL1500, Thermo Fisher Scientific Inc., Waltham, MA,
USA) and stored at −20 ◦C until further use. The extracts were dissolved and diluted with
a complete culture medium to the required concentrations.

5.1.2. Methanolic Extraction

Following the Japanese Pharmacopoeia, 13th Edition (1996), each plant was macerated
in a known volume of methanol for 24 h in the dark. Plants were mixed with a Polymix PX-
MFC 90 D mixer (1.0 mm diameter). The solvent from the resulting mixture was harvested
and removed from the extract by the rotary evaporator (Rotavapor R-210, Vacuum pump
V-700, Vacuum controller V-850, Heating Bath B-491).
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5.2. Extract Characterizations

The raw and lyophilized herbal materials and the methanolic extracts were analyzed
by HPTLC thin-layer chromatography according to the European Pharmacopoeia 8.4
monographs “Magnolia officinalis bark” and “Test for aristolochic acids in herbal drugs.”
Comparable amounts of raw herbs and extracts (calculated from the lyophilization yield)
were applied on HPTLC plates (HPTLC silica gel 60 F254 glass plates).

Magnolia officinalis was also analyzed for alkaloids according to the Japanese Pharma-
copoeia, 16th Edition (1996), using HPTLC-MS (Camag TLC-MS interface). Standards of
aristolochic acid mixtures of AAI and AAII (HPLC purity: 98.7%; Acros Organics) were
purchased from Thermo Fisher Scientific (Geel, Belgium). Magnolol (HPLC purity: 100.0%)
and honokiol (HPLC purity: 100.0%) were purchased from Extrasynthèse (Genay, France).
Magnoflorine was purchased from Sigma-Aldrich (reference SMB00377).

5.3. Cell Culture of HK-2 Kidney Proximal Human Tubule Cells

HK-2 cells, originating from human RPTECs, were obtained from American Type Cul-
ture Collection (CRL-2190, ATCC, Manassas, VA, USA), and grown in low-glucose DMEM
containing 10% fetal bovine serum (FBS PAA Clone, PAA laboratories, Pasching, Austria),
2 mM L-glutamine, and 1% penicillin-streptomycin. Cells were sub-cultured or harvested
for experiments when reaching about 90% confluence. For experimental purposes, cells
were used between Passage 6 and 25, harvested by trypsinization, and seeded on 12-well
plates (1 × 105 cells), 8-well chambered slides (Lab-Tek II, Nunc, Rochester, NY, USA)
(2 × 104 cells), or 96-well plates (1 × 104 cells). Next, cells were incubated for 24 h in an
FBS-containing medium, rinsed twice with DMEM, and treated with test substances at a
concentration from 0.0625 to 16 mg/mL in an FBS-depleted medium.

Preliminary cytotoxicity assays were performed by Bunel et al. [12] to determine the
working doses of each compound. Based on their recognized cytotoxicity in vivo, AA
was used at IC25 (≈50 µM); maximum concentrations of magnolol and honokiol were the
highest non-lethal doses (10 µM).

Aristolochic acids were a 50:50 mixture of AAI and AAII (HPLC purity: 98.7%; Acros
Organics, Thermo Fisher Scientific, Geel, Belgium). Magnolol (HPLC purity: 100.0%) and
honokiol (HPLC purity: 100.0%) were purchased from Extrasynthèse (Genay, France).
Magnoflorine was purchased from Sigma-Aldrich (reference SMB00377).

5.4. Cell Viability Assay by a Resazurin Assay

As described by Bunel et al. [12], wells were treated with test compounds in 96-well
plates, washed twice with PBS, and assessed for their viability (metabolic activity) by
incubation with 0.44 mM resazurin solution (Sigma-Aldrich, St. Louis, MI, USA) for 1.5 h
at 37 ◦C. Absorbances were measured at wavelengths 540 and 620 nm and percentages of
reduced dye were calculated with the following formula:

(εOX)λ2·Aλ1− (εOX)λ1·Aλ2
(εRED)λ1·A′λ2− (εRED)λ2·A′λ1

where εOX is the molar extinction coefficient of resazurin (47.6 at 540 nm and 34.8 at
620 nm); εRED is the molar extinction coefficient of resorufin (104.4 at 540 nm and 5.5 at
620 nm); A is the absorbance of the test wells; A’ is the mean absorbance of the blank wells;
λ1 = 540 nm; λ2 = 620 nm. Metabolic activity was normalized against the control condition.

Absorbances were measured with an iEMS Reader MF spectrophotometer (Thermo
Labsystems, Breda, The Netherlands). The positive control (bleomycin, 0.8 to 200 µg/mL)
or negative control (supplemented medium) was added.

5.5. IF 96-Well on the HK-2 Kidney Cell Line

Cells were seeded in 96-well plates (10,000 cells per well) and grown at 37 ◦C for
24 h before plant extracts, AA, lignans (both or separately), magnoflorine, or a positive
(bleomycin, 200 µg/mL) or negative control (supplemented medium) were added.
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After 24 h or 48 h, the cells were washed with PBS for 5 min, fixed with 100 µL/well of
4% PFA for 20 min, washed 4 times consecutively with tap water, distilled water, PBS with
triton (0.01%), and PBS alone (100 µL/well) for 5 min. The cells were incubated overnight
at 4 ◦C with 100 µL/well of a 1/1000 dilution of the anti-γ-H2AX primary antibody (goat
anti-serum, 20%) for 1 h at room temperature. The cells were washed with 100 µL/well
PBS twice. Cells were then incubated overnight on a mild rotative shaker at 4 ◦C with
30 µL/well of a 1/1000 dilution of the DyLight 488 conjugated secondary antibody (Mouse
Phospho-Histone H2A.X pSer140 Antibody (3F2)-species reactivity: mouse, human, and
bovine, Thermo Scientific®® ref MA1-2022) in goat serum, washed with PBS twice for 5 min
(100 µL/well).

Work henceforth progressed in the dark. Cells were mounted using a few microliters
of ProLong mounting medium with DAPI. A coverslip was added (Cover Glasses, 6 mm
diameter, thickness n.0 VWR-Cat. 631-0168), and plates were recovered by adhesive film
for microplates (VWR-Ref. 391-1254). Plates were conserved in aluminum at 4 ◦C.

The fluorescence was quantified using a microscope Axio Observer Z.1 (Zeiss) and
Image J.

5.6. Bacterial Reverse Mutation Test or Ames Test

An Ames test was run using five strains of histidine-deficient Salmonella typhimurium—
TA-100, TA-98, TA-1535, and TA-1537—with and without the liver S9 fraction. This liver
S9 fraction is used to imitate mammalian metabolism [26]. The Ames test is one of the
most frequently applied tests in toxicology. Almost all new pharmaceutical substances and
chemicals used in industry are tested by this assay. Each herbal extract was tested on four
different strains. TA100 and TA1535 were used to detect base substitution mutations, and
TA98 and TA1537 were used to detect frameshift mutations. This strain was purchased from
Xenometrix (Anaria) (Ames MPFTM 98/100/1535/1537 kit). The positive controls used
were 2-nitrofluorene (2 µg/mL, Xenometrix® (AA01-410)), N4-aminocytidine (100 µg/mL,
Xenometrix®), 4-nitroquinoline-N-oxide (0.1 µg/mL, Xenometrix®), and 9-aminocridine
(15 µg/mL, Xenometrix®) (Table 5).

Table 5. Salmonella thyphimurium strains and parameters detected by the Ames test.

Strain Mutation Mutation Detected Target Positive Control

TA98 hisD3052 Frameshifts GCGCGCGC 2-nitrofluorene
(2-NF)

TA100 hisG46 Base–pair substitution GGG 4-nitroquinoline N-oxide
(4-NQO)

TA1535 hisG46 Base–pair substitution GGG N4-aminocytidine
(N4-ACT)

TA1537 hisC3076 Frameshifts +1 frameshift (near C-C-C run) 9-aminocridine (9AA)

Sample concentrations assayed were from 0.05 to 10 mg/mL. The mutagenic effect
of different herbal extracts was assessed after 48 h of incubation with the 4 strains (TA98,
TA100, TA1535, and TA1537) in triplicate, with and without the S9 fraction.

A t-test was performed (p-values, 1-sided, based on unpaired data). The level of
significance was p ≤ 0.05.

6. Statistical Analysis

Statistical analysis was performed with GraphPad Prism 5 software (GraphPad Soft-
ware, La Jolla, CA, USA). A probability level of p < 0.05 was considered significant.
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