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Abstract: Bacterial lipopolysaccharide (LPS) in the aquatic environment has been reported to cause
diseases in red swamp crayfish (Procambarus clarkii). In addition, deoxynivalenol (DON) is one of
the primary mycotoxins found in aquaculture. However, the potential synergistic toxic effects of
LPS and DON on crayfish are yet to be fully elucidated. In this study, crayfish were exposed to LPS
(1 mg kg−1), DON (3 mg kg−1), and their combination (1 mg kg−1 LPS + 3 mg kg−1 DON, L+D) for
a duration of six days. Co-exposure to LPS and DON exhibited the lowest survival rate compared to
the control or individual treatments with LPS or DON alone. In the initial stage of the experiment,
the combined treatment of LPS and DON showed a more pronounced up-regulation of antioxidant
and immune-related enzymes in the sera compared to the other treatment groups, with a fold change
ranging from 1.3 to 15. In addition, the (L+D) treatment group showed a down-regulation of immune-
related genes, as well as Toll pathway-related genes in the hepatopancreas compared to LPS or DON.
Moreover, the (L+D) treatment group demonstrated a 100% incidence of histopathological changes in
the hepatopancreas, which were significantly more severe compared to the other three groups. In
conclusion, our study provides physiological and histopathological evidence that the co-exposure to
LPS and DON exerted synergistic toxic effects on crayfish. The observed effects could potentially
hinder the development of the crayfish aquaculture industry in China.

Keywords: crayfish; deoxynivalenol; lipopolysaccharide; survival; antioxidant and immune response;
histopathological changes

Key Contribution: LPS and DON exerted synergistic effects on antioxidant enzymes and immune
response and also induced severe histopathological changes in the hepatopancreas.

1. Introduction

The red swamp crayfish (Procambarus clarkii) is a freshwater crayfish species that has
adapted to a wide range of aquatic environments [1]. In China, crayfish is currently one
of the most crucial freshwater aquaculture species [2]. However, the high abundance
of bacteria, viruses, and parasites found in aquatic environments poses a severe threat
to crayfish health and production [3]. Gram-negative bacteria can trigger a systemic
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immune response, leading to sepsis, pneumonia, and gastrointestinal disease [4], partly
due tolipopolysaccharide (LPS), a heat-stable endotoxin and cell wall component of Gram-
negative bacteria [5]. LPS has been reported to activate the crayfish prophenoloxidase
activation system (proPO-activating system) and induce crayfish melanization [6,7].

Deoxynivalenol (DON), a trichothecene mycotoxin, is the most prevalent myco-
toxin found in aquafeeds, with a maximal DON concentration level of approximately
1 mg kg−1 [8]. Due to its high prevalence and widespread occurrence in livestock feeds,
DON is considered a predominant environmental risk to animal productivity [9,10]. The
European Commission has established a general recommendation of guidance values of
5 mg kg−1 DON in feedstuff (2006/576/EC) (European Commission, 2006) [11]. Con-
sequently, this mycotoxin can be transferred to aquatic environments. Previous studies
have reported that some species of fish, such as rainbow trout, are reported to be highly
sensitive to feed-borne DON [12], as well as DON can stimulate the immune response of
crustaceans [13]. A low concentration of DON in the diet of white shrimp (Litopenaeus
vannamei) can damage the intestinal mucosal structure, reduce growth rate and survival
rate, and impact muscle quality [14]. Previous studies have reported that DON in aquatic
environments can reduce metabolic activity and cell viability, as well as reactive oxygen
species (ROS) production in established permanent fish cell lines derived from rainbow
trout [15]. Additionally, DON can induce apoptosis and necrosis of neutrophils in common
carp [16]. Recently, a study reported a new mechanism of DON toxicity, revealing that
ferroptosis is involved in DON-induced intestinal damage in pigs [17]. However, the
toxicity of DON on crayfish has not yet been investigated.

Despite the fact that aquatic environments often contain a mixture of Gram-negative
bacteria, such as pathogenic Vibrio species, and feed-borne mycotoxins, few ecotoxicological
evaluations of the combined toxicity of bacterial LPS and trichothecene DON have been
conducted on aquatic animals. Current studies on the combined toxicity of LPS and DON
have demonstrated that LPS priming sensitizedmice to DON-induced proinflammatory
cytokine induction and apoptosis [18]. LPS challenge induced an up-regulation of the
proinflammatory response in the duodenum and enhanced the mucosal permeability in
the jejunum of broiler chickens [19]. However, the LPS challenge did not result in any
significant effect on the transport of DON across porcine jejunal mucosa [20]. Therefore,
further studies are required to investigate the potentially toxic effects of DON as well as
the synergistic toxic effects of LPS and DON on crayfish.

In this study, we aimed to assess the potentially toxic effects of bacterial LPS, a
common feed-borne mycotoxin DON, and their combination on the survival rate, activities
of antioxidant and immune-related enzymes, expression levels of immune-related genes,
and histopathology of crayfish.

2. Results
2.1. Survival Rate

At the end of the experiment, there were no deaths in the Control group. The survival
rates of crayfish were 66.67%, 33.33%, and 16.67% in the DON, LPS, and (L+D) treatment
groups, respectively. Compared to the control group, crayfish in the DON treatment group
did not show a significant difference. However, crayfish in the LPS and (L+D) groups had
significantly lower survival rates throughout the experiment. There was no significant
difference between the groups with LPS and (L+D) treatments (Figure 1).

2.2. Activities of Enzyme and Expressions of Enzyme-Related Genes

The activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT),
and glutathione S-transferase (GST)) and immune-related enzymes (alkaline phosphatase,
AKP) in sera were measured using ELISA, while the expression levels of enzyme-related
genes in the hepatopancreas of the four groups were measured using RT-qPCR analysis.
Compared to the Control group, the DON treatment group showed significantly higher
activities of SOD, CAT, GST, and AKP at both 3 and 6 h. Additionally, the enzymatic
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activities in the (L+D) treatment group were significantly higher than those in the DON or
LPS treatment groups (Figure 2A,C,E,G). Correspondingly, the expression levels of sod, cat,
gst, and akp in the (L+D) treatment group were also up-regulated and significantly higher
than those in the LPS or DON treatment groups at different time points (Figure 2B,D,F,H),
consistent with the results of enzymatic assays. Our findings suggest that acute injection of
LPS and DON synergistically stimulate oxidative stress and immune response in crayfish.
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Figure 1. The survival rate of crayfish exposure to the LPS, DON, and L+D treatments. Crayfish 
were treated with LPS (1 mg kg−1), DON (3 mg kg−1), or L+D (1 mg kg−1 LPS + 3 mg kg−1 DON) via 
injection. The death of crayfish in each group was recorded daily. Data are presented as mean ± 
SEM (n = 12). ### p < 0.001 (two-way ANOVA test), * p < 0.05, ** p < 0.01, *** p < 0.001 versus control 
(Tukey’s multiple comparison test). 
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Figure 1. The survival rate of crayfish exposure to the LPS, DON, and L+D treatments. Crayfish were
treated with LPS (1 mg kg−1), DON (3 mg kg−1), or L+D (1 mg kg−1 LPS + 3 mg kg−1 DON) via
injection. The death of crayfish in each group was recorded daily. Data are presented as mean ± SEM
(n = 12). ### p < 0.001 (two-way ANOVA test), * p < 0.05, ** p < 0.01, *** p < 0.001 versus control
(Tukey’s multiple comparison test).
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Figure 2. Antioxidant and immune-related enzymes of crayfish exposure to the LPS, DON, and L+D
treatments. The serum and hepatopancreas samples of crayfish were collected at 3 and 6 h, and the
enzyme activities (SOD (A), CAT (C), GST (E), and AKP (G)) in sera and gene expressions (sod (B),
cat (D), gst (F), and akp (H)) in hepatopancreas were measured using ELISA and RT-qPCR analysis,
respectively. Data are presented as mean ± SEM (n = 4). * p < 0.05, ** p < 0.01, *** p < 0.001 versus
control; # p < 0.05, ## p < 0.01, ### p < 0.001 (Tukey’s multiple comparison test).

2.3. Expressions of Immune-Related Genes

The expression levels of innate immune-related genes, including anti-lipopolysaccharide
factors 8 (ALF8), crustin 4 (Cru4), cathepsin-L (PcCTSL), and β-1, 3-glucosidase related
protein (PcBGRP), were quantified in the hepatopancreas of the four groups using RT-qPCR
analysis. At both 3 and 6 h, the expressions of ALF8, Cru4, PcCTSL, and PcBGRP in the LPS
treatment group were significantly up-regulated compared to the Control group (Figure 3).
In the DON treatment group, the expressions of ALF8, Cru4, and PcBGRP were significantly
up-regulated (Figure 3A,B,D), but the expression of PcCTSL was slightly down-regulated
at 3 h compared to the Control group (Figure 3C). In the (L+D) treatment group, the
expressions of ALF8 and Cru4 were significantly down-regulated compared to the LPS or
DON treatment group (Figure 3A,B), and the expressions of PcCTSL and PcBGRP were
significantly down-regulated compared to the LPS treatment group (Figure 3C,D). However,
there were no significant differences in the expressions of PcCTSL and PcBGRP between the
DON and (L+D) treatment groups (Figure 3C,D). Taken together, the combined treatment
of LPS and DON synergistically down-regulated the expressions of immune-related genes,
thereby regulating the crayfish’s innate immune system.
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Figure 3. The expressions of immune-related genes in the hepatopancreas of crayfish exposure to the
LPS, DON, and L+D treatments. The hepatopancreas samples of crayfish were collected at 3 and 6 h,
and the gene expressions (ALF8 (A), Cru4 (B), PcCTSL (C), and PcBGRP (D)) in hepatopancreas were
measured using RT-qPCR analysis. Data are presented as mean ± SEM (n = 4). * p < 0.05, ** p < 0.01,
*** p < 0.001 versus control; # p < 0.05, ## p < 0.01, ### p < 0.001 (Tukey’s multiple comparison test).

2.4. Expressions of Toll Pathway-Related Genes

The expression levels of Toll pathway-related genes, including Toll, Spätzle, Dorsal, and
Cactus, were quantified in the hepatopancreas of the four groups using RT-qPCR analysis.
At 6 h, the expressions of Toll, Spätzle, Dorsal, and Cactus in the LPS treatment group were
significantly up-regulated compared to the Control group (Figure 4). In the DON treatment
group, the expressions of Toll and Dorsal were significantly up-regulated compared to the
control group (Figure 4A,C). In the (L+D) treatment group, the expressions of Toll, Dorsal,
and Cactus were significantly down-regulated compared to the LPS or DON treatment
group (Figure 4A,C,D), and the expression of Spätzle was significantly down-regulated
compared to the LPS treatment group (Figure 4B). However, there was no significant
difference in the expression of Spätzle between the DON and (L+D) treatment groups
(Figure 4B). Our study found that the mixtures of LPS and DON had a synergistic effect on
down-regulated expressions of Toll pathway-related genes.
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2.5. Histological Changes in Hepatopancreas 

Figure 4. The expression of Toll pathway-related genes in the hepatopancreas of crayfish exposure to
the LPS, DON, and L+D treatments. The hepatopancreas samples of crayfish were collected at 3 and
6 h, and the gene expressions (Toll (A), Spätzle (B), Dorsal (C), and Cactus (D)) in hepatopancreas were
measured using RT-qPCR analysis. Data are presented as mean ± SEM (n = 4). * p < 0.05, ** p < 0.01,
*** p < 0.001 versus control; # p < 0.05, ## p < 0.01 (Tukey’s multiple comparison test).

2.5. Histological Changes in Hepatopancreas

The histological changes in the hepatopancreas of crayfish with different treatments
were examined using H&E staining. Compared to the Control group, there was a significant
increase in inflammatory cells in the (L+D) treatment group on Day 3, and the number of
inflammatory cells was greatly increased in the DON and the (L+D) treatment groups on
Day 6 (Figure 5A,B). Although the number of inflammatory cells in the (L+D) group was
higher than that in the DON group, there was no difference between the DON and the
(L+D) groups (Figure 5B). With regard to histological alterations, the hepatic lobular space
was significantly enlarged in the (L+D) treatment group compared to that in the Control
and DON treatment groups on days 3 and 6, but there was no difference between the LPS
and the (L+D) groups (Figure 5A,C). Overall, the mixture treatment with LPS and DON
exacerbated histological changes in the hepatopancreas of crayfish.
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3. Discussion 

Figure 5. Histopathological changes in the hepatopancreas of crayfish exposure to the LPS, DON, and
L+D treatments. The hepatopancreas samples of crayfish were collected on Days 3 and 6. (A) H&E
staining, bar: 50 µm, black arrows point to inflammatory cells, and red arrows point to hepatic
interlobular spaces. The inflammatory cells (B) of crayfish were counted, and the area of hepatic
interlobular space (C) was recorded by Image-pro Plus 6.0 software; the area of hepatic interlobular
space was 100 pixels. Data are presented as mean ± SEM (n = 10). * p < 0.05, ** p < 0.01, *** p < 0.001
versus control; # p < 0.05, ## p < 0.01 (Tukey’s multiple comparison test).

3. Discussion

DON is highly water-soluble and relatively stable in aquatic environments, making
it a potential source of water environmental pollutants in crayfish culture. Despite this,
the combined toxicity of LPS and DON has only been studied in terrestrial animal models,
such as mice, chickens, and pigs [18–20]. In this study, we found that both LPS and the
combination treatment of LPS and DON significantly reduced the survival rate of crayfish,
while there was no significant effect on the mortality of crayfish treated individually with
DON compared to the control group. Consistently, previous studies have reported a 20%
mortality rate of white shrimp (Litopenaeus schmitti) within 24 h of LPS injection [21], as
well as an increased mortality rate of mice within 40 h of combined treatment of LPS and
DON. However, LPS treatment did not affect the survival of mice [22]. This difference may
be due to the different modes of LPS administration as well as the different species used in
the studies. To the best of our knowledge, this is the first report documenting the combined
toxicity of LPS and DON on aquatic animals. Therefore, both the DON and LPS released
from dividing and dead bacteria may pose a threat to the health of crayfish.
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Although DON did not have a significant effect on the mortality of crayfish, it has
been reported to alter the levels of primary antioxidant enzymes, such as SOD, CAT, and
GST, in various species or cell lines [23]. In this study, the levels of SOD, CAT, and GST in
sera, as well as the transcription of enzyme-related genes in the hepatopancreas, which is
an important immune and metabolic organ in crayfish [24], were significantly increased in
the DON treatment group. Our results were consistent with those of a study on human
hepatocellular carcinoma HepG2 cells treated with DON [25]. Additionally, the combined
treatment of LPS and DON significantly induced the highest activities of SOD, CAT, GST,
and AKP among the different treatment groups, as well as relative gene expression, par-
ticularly for the unconventional immune protein AKP. This leads us to hypothesize that
the combined treatment of DON and LPS may have an impact on the immune response of
crayfish. The intestinal microflora performs many crucial functions essential for the host’s
health [26]. Lucke et al. found that the combined treatment of LPS and DON could change
the composition of microflora; volatile fatty acids in the chicken cecum could reduce the
diversity of microflora [27]. Similarly, in our study, treatment with (L+D) decreased the
intestinal microbial diversity and changed the composition of the intestinal flora. Inter-
estingly, sudden changes in the abundance of inherent microflora in the intestinal tract
have been reported to induce intestinal and systemic immune diseases [28,29]. Further-
more, treatment with (L+D) can significantly decrease the abundance of beneficial bacteria
Candidatus_Bacilloplasma [30] and inherent microflora Bacteroidetes and Tenericutes, while
the number of disease-related bacteria such as Proteobacteriacan, Citrobacter, Vibrio, and
Shewanella is significantly increased [31,32]. This shows that the combined treatment of LPS
and DON may change the diversity of the intestinal flora of crayfish by changing the ratio of
harmful and beneficial bacteria in the intestinal flora of crayfish and disrupting the internal
balance of the intestine. In a nutshell, up-regulation of the activities of immune enzymes
and down-regulation of the expression of immune genes in the (L+D) treatment group
resulted in hepatopancreatic injury and, ultimately, death of crayfish; LPS and DON exert a
synergistic toxic effect on crayfish. However, the specific mechanism underlying the effects
of LPS and DON on the immune cells of aquatic animals warrants further investigation.

Innate immunity is crucial for crayfish, which lack an adaptive immune system [33]
and is primarily activated through the Toll pathway and immune-deficiency (IMD) path-
way [34]. It is widely recognized that ALF8, Cru4, PcCTSL, and PcBGRP are important
immune effector molecules, while Spätzle, Dorsal, and Cactus are related to the Toll signal-
ing pathway in crustaceans. Our results correspond to previous studies which reported
that LPS challenge up-regulated the expression levels of immune effector molecules, such
as PcCTSL and PcBGRP, in the hepatopancreas of crayfish [35,36]. In a previous study, the
intestinal permeability of the duodenum in broiler chickens treated with LPS and DON
was altered, and the expressions of the Toll signaling pathway and inflammation-related
genes were up-regulated [19]. However, in our study, the transcription of Toll, Spätzle,
Dorsal, and Cactus related to the Toll signaling pathway, as well as the expressions of
inflammation-related genes (ALF8,Cru4, PcCTSL, and PcBGRP), were down-regulated in
the (L+D) treatment group. The down-regulation of immune-related gene expression in the
hepatopancreas of crayfish may be attributed to histological alterations and the impairment
of the innate immune system of crayfish resulting from the combined treatment of LPS and
DON [37].

China is the world’s largest crayfishproducer, contributing to over 90% of the global
annual output [38]. In 2022, the total economic output of crayfish aquaculture reached
458 billion yuan, solidifying the position of crayfish as the most significant freshwater
aquaculture species in the country. Based on our findings, the treatment with LPS and
DON showed a significant decrease in crayfish survival. If such situations occur in crayfish
aquaculture, it could lead to economic losses amounting to billions of yuan and pose a
severe threat to the industry. Given the demonstrated potential of bacterial toxins, such
as LPS and mycotoxins, such as DON, to adversely affect crayfish culture, implementing
effective measures to control the contamination of DON or LPS becomes crucial for safe-
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guarding the crayfish industry. We recommend implementing the following strategies in
crayfish aquaculture to address the issue: Firstly, it is essential to conduct regular mycotoxin
detection in the feed before feeding it to crayfish. This step ensures that the feed is free
from mycotoxin contamination, minimizing the risk of negative impacts on crayfish health.
Secondly, maintaining strict control over the water environment is crucial. This control
helps to prevent the proliferation of pathogenic bacteria and subsequently reduces their
bioproduction. By adopting these strategies, the contamination of mycotoxins such as
DON, and bacterial toxins such as LPS, can be minimized, thereby protecting the crayfish
industry in China.

4. Conclusions

Physiological and pathological analyses were conducted to evaluate the acute com-
bined toxicity of LPS and DON on crayfish. The results showed that a mixture of LPS
and DON had synergistic toxic effects on crayfish. Specifically, co-exposure to LPS and
DON significantly up-regulated the antioxidant enzymes and down-regulated the immune-
related and Toll pathway-related genes compared to those with exposure to LPS or DON
alone. Moreover, the (L+D) treatment caused severe tissue injury in the hepatopancreas,
resulting in increased mortality of crayfish, with toxicity proportional to treatment time.
However, to fully understand the cytotoxic mechanism of LPS and DON on crayfish, further
investigation using molecular biology and immunological methods is warranted.

5. Materials and Methods
5.1. Animals and Chemicals

The crayfish used in this study were obtained from a crayfish farm in Jingzhou, China,
and had an average weight of 15 ± 1.2 g (mean ± SEM). The crayfish were fed commercial
aquafeeds once a day and were cultured in an aquarium (120 cm × 30 cm × 65 cm, L:W:H)
at 24 ± 2 ◦C under a photoperiod of 14: 10 h (light:dark cycle) for seven days. LPS from E.
coli O55:B5 (≥500,000 EU/mg) was purchased from Biosharp (Guangzhou, China), and
DON with a purity of >99.0% was purchased from Pribolab (Qingdao, China). The LPS and
DON working solutions were prepared by diluting them with 0.9% sterile saline solution.

5.2. Experimental Protocol

During the six-day experiment, the crayfish were fed commercial aquafeeds once a
day. The crayfish were divided into four treatment groups: a control group (saline, Control),
an LPS treatment group (1 mg kg−1 BW, LPS) [35], a DON treatment group (3 mg kg−1 BW,
DON) [39], and an LPS + DON treatment group (1 mg kg−1 LPS + 3 mg kg−1 DON BW,
L+D). Each group consisted of four tanks (25 L), with each tank containing 12 crayfish. Each
crayfish was injected with 100 µL of saline, LPS, DON, or a combination of LPS and DON
solutions. LPS was injected eight hours before the time point of DON injection (day 0) [18],
using the method provided by Rodríguez et al. [21]. The injections, consisting of saline,
LPS, DON, or a combination of LPS and DON solutions, were administered into the coxes
of the third pair of pereiopods of the crayfish using a 100 µL Hamilton syringe.

5.3. Survival Rate

During the six-day experiment, the number of crayfish deaths in each group (=12) was
recorded daily, and the survival rate was calculated as the number of surviving crayfish
divided by the initial number of crayfish [40].

5.4. Enzyme Activity Analysis

At 3 and 6 h, four crayfish were randomly chosen from each group, and blood samples
were taken from the pericardial cavity of the crayfish. The sera were collected by centrifu-
gation at 3000× g for 10 min and stored at −80 ◦C until analysis [41]. After the sera were
thawed on ice, the activities of SOD, CAT, GST, and AKP were measured using commercial
kits in accordance with the manufacturer’s instructions (Nanjing Jiancheng Bioengineering
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Institute, Nanjing, China). Each sample was analyzed in triplicate, and blank and standard
controls were included in each analysis to validate the findings and maintain consistency.

5.5. RNA Isolation and Quantitative RT-qPCR

At 3 and 6 h, four crayfish were randomly chosen from each group, and hepatopancreas
samples were obtained from the crayfish. The samples were washed twice with ice-
cold PBS (pH 7.4), and the total RNA was extracted using TriPure Isolation Reagent
(Roche, Indianapolis, IN, USA). The RNA quantity was measured using the NanoDropTM

2000 spectrophotometer (Thermo Fisher Scientific, Wilmington, NC, USA), while the quality
was evaluated through formaldehyde agarose gel electrophoresis. The total RNA was
reverse transcribed into cDNA, and the housekeeping gene 18S rRNA (GenBank: AF436001)
was used as an internal control. The relative gene expression levels were determined using
the 2−∆∆CT method [42]. Real-time PCR was conducted using the LightCycler® 480 Real-
Time PCR System (Roche Diagnostics GmbH, Mannheim, Germany). The primer pair
sequences are shown in Table 1.

Table 1. Primers of P. clarkii used in the experiment.

Name Sequence (5’-3’) Reference

Toll sense GCTGTTGCTGCTTAGGCTCA
[43]Toll antisense TCCTCCACAGCTCTTCATTCC

Cactus sense CTTGTGAGAGAGCCGTGTG
[43]Cactus antisense CAGTACAAGCAGCAGCAGCA

Spätzle sense GTCGGCAGCAACGACATACA
[43]Spätzle antisense GGTGTCATGGTTGGCTGTGA

PcBGRPRT sense CCCACGCTGACTATTCGG
[36]PcBGRPRT antisense GGTTGTCCAGGGAGTTGTCG

Dorsal sense TCACTGTTGACCCACCTTAC
[44]Dorsal antisense GGAAAGGGTCCACTCTAATC

ALF8 sense GGGGGAAGCGATGACGAG
[45]ALF8 antisense GACGGGTTGGCACAAGAGC

gst sense ACTTAGAGACGGACTTCCAG
[46]gst antisense CGAGGGCGAACTTCACGG

PcCru4 sense CTCTGACTGCCAGGTGTTT
[47]PcCru4 antisense TGCGAGCTGTGATGGTTAG

akp sense CCACACTACGTGGCAGCAGCGAC
[48]akp antisense GCCAGTGAAGAGGTGGGCATGG

cat sense GCTGAGGTGGAACAGATGGCA
[49]cat antisense AAGGGAATCAGACCGTGAGTGATC

sod sense CAAATCAGTGGCAGGCTGGAAA
[49]sod antisense CAAATCAGTGGCAGGCTGGAAA

PcCTSL sense CGGATCACTGGAGGGTCAAACACTT
[35]PcCTSL antisense GCAATTTTCATCCTCGGCATCAT

18S sense TCTTCTTAGAGGGATTAGCGG
[50]18S antisense AAGGGGATTGAACGGGTTA

5.6. Histopathological Analysis

On days three and six, hepatopancreas samples were collected for histopathological
analysis. The samples were excised and fixed in 40 g L−1 paraformaldehyde at 4 ◦C
overnight [51]. The samples were then dehydrated in ethanol, cleared in dimethyl benzene,
and embedded in paraffin. The paraffin-embedded sections (5 µm) were sliced with a
paraffin slicer (Leica, Wetzlar, Germany) and stained with hematoxylin and eosin (H&E).
Finally, the sections were observed under a light microscope to identify histological changes
(Leica, Wetzlar, Germany) [52].
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5.7. Statistical Analysis

The survival rate was analyzed using the log-rank test, and the curve was generated
using the Kaplan–Meier method. The data are presented as mean ± SEM. Two-way
analysis of variance (ANOVA) was used to determine the significant difference in the four
treatment groups at different time points. For the same time point, one-way analysis of
variance (ANOVA) was performed for the four treatment groups, followed by Tukey’s
multiple comparison test. Results with p-values less than 0.05 were considered statistically
significant. The data were analyzed using GraphPad Prism ver. 501 statistical software
program (GraphPad Software, San Diego, CA, USA).
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