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Abstract: Snakebite accident treatment requires the administration of antivenoms that provide effi-
cacy and effectiveness against several snake venoms of the same genus or family. The low number
of immunogenic components in venom mixtures that allow the production of antivenoms conse-
quently gives them partial neutralization and a suboptimal pharmacological response. This study
evaluates the immunorecognition and neutralizing efficacy of the polyvalent anticoral antivenom
from the Instituto Nacional de Salud (INS) of Colombia against the heterologous endemic venoms of
Micrurus medemi, and M. sangilensis, and M. helleri by assessing immunoreactivity through affinity
chromatography, ELISA, Western blot, and neutralization capability. Immunorecognition towards the
venoms of M. medemi and M. sangilensis showed values of 62% and 68% of the protein composition
according to the immunoaffinity matrix, respectively. The analysis by Western blot depicted the
highest recognition patterns for M. medemi, followed by M. sangilensis, and finally by M. helleri. These
findings suggest that the venom compositions are closely related and exhibit similar recognition
by the antivenom. According to enzyme immunoassays, M. helleri requires a higher amount of an-
tivenom to achieve recognition than the others. Besides reinforcing the evaluation of INS antivenom
capability, this work recommends the use of M. helleri in the production of Colombian antisera.

Keywords: snake venoms; antivenoms; Micrurus sp.; immunorecognition; neutralization

Key Contribution: Preclinical studies evaluating a commercial antivenom demonstrated its capacity
to recognize poorly studied Micrurus sp. venoms in Colombia by cross-immunoreactivity.

1. Introduction

The inoculation of venom after a snakebite accident introduces a variety of toxic
molecules that injure tissues and cause several pathophysiological changes in the victim [1].
In a global panorama, it is estimated that there are more than 1,800,000 new cases per year,
of which approximately 90,000 end in fatal events, with Asia, Africa, and Latin America
being the most affected geographic regions [2]. In 2022, the number of cases in Colombia
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was 5573, with an incidence of 10.8 per 100,000 inhabitants, an accumulated lethality of
0.57%, and antivenom application in 85% of cases. Therefore, snakebite accidents are
considered an event of interest in public health, in which the Orinoquía, Amazonía, Andina,
and Pacific Coast regions stand out as the most affected [3].

Colombia harbors several species pertaining to the three large families of snakes that
cause snakebite accidents: viperids, elapids, and colubrids [4]. Elapids on the American
continent are represented by the genus Micrurus, which is widely distributed from the
Southeastern United States to Northern Argentina [5]. Coral snakes are easily recognized
by their characteristic color patterns, which are allocated as monads, dyads, triads, or even
incomplete rings [6,7]. These snakes are predominantly nocturnal [8], with a diet that
includes fish, other snakes, and small reptiles [9]. To date, approximately 31 species of
Micrurus have been reported in Colombia [10], widely distributed throughout the country,
predominantly in the Pacific and Amazonía regions [5]. Coral snakes cause approximately
1% of snakebite accidents per year [11], and, although their bites are less frequent than
those of viperids, given their non-aggressive behavior [7], they are considered serious due
to the neurotoxic components that affect molecular targets at the neuromuscular junction,
leading to respiratory paralysis and even death if a patient is not treated adequately in
time [12].

An existing pragmatic classification of the genus Micrurus allows its arrangement into
groups according to color patterns. According to this classification system, M. dumerilii
and M. mipartitus are included in the monad and bicolor groups in Colombia, respec-
tively [5,13,14]. In order to increase the knowledge of the species comprised within the
groups and to determine the similarities or differences within each one, the venoms of
M. medemi and M. sangilensis were selected as examples of monadic patterns, whereas the
venom of M. helleri was selected as an example of a triadic pattern.

M. helleri (LINNAEUS, 1758) is distributed on the eastern side of the Cordillera Ori-
ental, Orinoquía, and Amazon ecoregions of Colombia [5]; M. medemi (ROZE, 1967) also
inhabits the eastern side of the Cordillera Oriental, although it is only known to be found
in the Meta Department, being a common coral snake in the vicinity of the urban and
peri-urban areas of Villavicencio [15–17]; and M. sangilensis (NICÉFORO MARIA, 1942) is
a coral snake restricted to elevations between 800 and 2000 meters above sea level of the
Middle Magdalena River Basin, reported only in the Santander (type locality: municipality
of San Gil), Boyacá, and northern Cundinamarca Departments [18].

Clinical management requires the administration of antivenoms of equine origin [19],
which provide direct or cross-immunoreactivity against venoms from multiple species of
snakes belonging to the same family [20]. The diversification of snake venoms from the
Micrurus genus has been described in several reports, including evidence of the presence of
isoforms and the relative abundances of the main components [13,21]. For instance, the
most important components in Micrurus venoms are the three-finger toxins (3FTxs) and
PLA2s, which are ubiquitous in all Micrurus species analyzed to date [22]. The abundance
of these toxins depends on the species and may vary from 80% 3FTxs in species like
M. corallinus and M. tschudii to ca. 20% in M. dumerilii. The same variation has been
observed for PLA2s. The venoms also contain different proportions of metalloproteases,
serine proteases, LAOOs, Kuntiz-type peptides, and C-type lectins, among others [23,24].
These differences in protein proportions and chemical variations could be the result of
multicausal factors such as phylogeographic distribution, snake life stage, diet, and sexual
dimorphism, among others [25–28]. The variability in the venom contents and the molecular
characteristics of the proteins also affect their immunogenicity [29–32], causing partial or
no neutralization by existing antivenoms, as well as suboptimal pharmacological responses
in clinical management [33–35].

The assessment of antivenoms based on preclinical tests includes lethality neutral-
ization as the gold standard; however, some complementary in vivo and in vitro method-
ologies, such as the neutralization of specific toxic activities, enzyme immunoassays, im-
munochemical trials, and antivenomics, complement antivenom evaluation in a robust way,
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allowing reproducibility, high sensitivity, low cost, and the implementation of alternative
methodologies to the use of animals [36–40].

Multifactorial differences in venom composition and other factors, such as the size,
sex, and age of the snake [26], determine a patient’s response to antivenoms. The antico-
ral antivenom from the Instituto Nacional de Salud (INS) of Colombia has been proven
to neutralize the venom of most of the medically important Micrurus species, such as
Micrurus dumerilii, M. mipartitus, M. isozonus, M. surinamensis, M. medemi, M. helleri, and
M. spixii [41,42]. However, there are unresolved features regarding its scope for other exist-
ing Micrurus species. Therefore, it is necessary to complement its assessment with some
preclinical studies. This study aimed to evaluate the immunorecognition and neutralization
capacity of the INS coral snake antivenom against M. medemi, M. sangilensis, and popula-
tions of M. helleri venoms from Colombia, given the variability associated with interspecific
and geographic distribution factors. Also, this study is complementary to a previous work
that described the proteomic findings of the venoms of the same three species [23].

2. Results and Discussion
2.1. Preferential Recognition towards Complete Venoms of the Monad Group

The median effective concentration (EC50) of the INS anticoral antivenom for the
recognition of the venoms in the ELISA assay was determined by calculating the log10 of the
antivenom dilutions (Figure 1). The M. helleri venom (406.9 ± 1.5) exhibited less recognition
by the antivenom compared to M. sangilensis (1024 ± 1.8) and M. medemi (1136 ± 2.0); the
latter two showed immunogenic similarity. The mechanism of cross-recognition has been
described for the antivenom, manufactured by the Instituto Clodomiro Picado (ICP) of
Costa Rica. This antivenom immunoreacts directly against M. nigrocinctus venom and exerts
cross-immunoreactivity recognition of the venom of M. clarkii [22]. These characteristics
indicate a high degree of conserved immunogenicity between both venoms. The same
mechanism could explain the activity of the Colombian antivenom against the venoms of
the monadic species M. medemi and M. sangilensis [5–7].

Toxins 2024, 16, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Cross-immunorecognition through ELISA assay of INS polyvalent anticoral antivenom 
against the crude venoms of Micrurus helleri, M. medemi, and M. sangilensis. IgG of non-immunized 
horses was used as negative control {C(−)}. p-value= 0.05. Each point represents the average of three 
measurements. 

2.2. High-Molecular-Weight Components Are Better Immunogens 
In order to assess the effects of molecular weights and the immunoreactivity against 

some of the specific components of the three venoms tested, an SDS-PAGE along with a 
Western blot analysis were performed (Figure 2a,b). The results showed a degree of im-
munorecognition by the antivenom, exhibiting immunoaffinity towards certain bands. 
This analysis shows that the antivenom recognizes components of the three venoms tested 
in the 40–100 kDa and 12–15 kDa ranges. However, the bands in the 10 kDa and the 15–37 
kDa range seem not to be recognized (Figure 2b). 

The recognition and the neutralizing activity of an antivenom are also related to some 
characteristics of the immunogenic compounds in the venom, such as the molecular 
weight of proteins. Low-molecular-weight proteins (e.g., 3FTx) [48,49] show lower immu-
nogenicity than proteins with a higher molecular weight (e.g., PLA2, LAAO) [43]. The 
bands corresponding to medium-molecular-weight proteins from the venoms of M. 
medemi and M. sangilensis were mostly recognized by the INS antivenom, specifically in 
the 45–75 kDa and 10–15 kDa ranges. In contrast, the high-molecular-weight components 
of the same venom were weakly recognized (Figure 2b). This was corroborated by a den-
sitometry quantitative analysis (Figure 2c). The high-molecular-weight bands (>50 kDa) 
are related to proteases and LAAOs [50]. In a previous work [23], the high-molecular-
weight fraction of M. sangilensis venom represents ca. 27%, a fraction that is recognized at 
approximately 38% by the antivenom. Likewise, this fraction represents approximately 
27% of M. helleri venom, although it exhibited only 10% antivenom recognition. The me-
dium-molecular-weight components (∼14 kDa) comprise PLA2 and C-type lectins and rep-
resent a venom composition of ca. 40% for M. helleri and 50% for M. medemi, with 55% and 
40% antivenom recognition, respectively. The M. sangilensis low-molecular-weight frac-
tion (∼12 kDa) did not exhibit antivenom recognition; however, its low-molecular-weight 
fraction (∼10 kDa) showed 60% antivenom recognition. This fraction represents ca. 18% of 
the proteome and includes 3FTxs [23]. These results were also supported by the ELISA 
values (Figure 1), where the M. helleri venom showed less recognition than the M. medemi 
and M. sangilensis venoms. 

Figure 1. Cross-immunorecognition through ELISA assay of INS polyvalent anticoral antivenom
against the crude venoms of Micrurus helleri, M. medemi, and M. sangilensis. IgG of non-immunized
horses was used as negative control {C(−)}. p-value = 0.05. Each point represents the average of three
measurements.

The differential immunoreactivity observed for antivenoms is related to the inter-
specific variations in the venoms, as reported by Rodríguez et al., 2023, in a proteomic
approach study [23]. Larger proteins (with higher immunogenicity) will generate different
immune response profiles to antivenom [43,44]. These interspecific differences have been
reported for the Probiol antivenom [45], also produced in Colombia, which is capable of
neutralizing the effect of the venom of M. dumerilii but not M. mipartitus venom [46]. An
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interesting fact is the neutralizing effect observed for the Australian polyvalent antielapidic
antivenom, which is mostly used to treat Oxyuranus scutellatus, Pseudechis australis, and
Notechis scutatus bites. Despite the fact that Micrurus snakes are endemic to the American
continent, this antivenom shows marked effectiveness against most venoms from Micrurus
species, except for M. spixii venom, due to important differences in its composition [47].

2.2. High-Molecular-Weight Components Are Better Immunogens

In order to assess the effects of molecular weights and the immunoreactivity against
some of the specific components of the three venoms tested, an SDS-PAGE along with
a Western blot analysis were performed (Figure 2a,b). The results showed a degree of
immunorecognition by the antivenom, exhibiting immunoaffinity towards certain bands.
This analysis shows that the antivenom recognizes components of the three venoms tested
in the 40–100 kDa and 12–15 kDa ranges. However, the bands in the 10 kDa and the
15–37 kDa range seem not to be recognized (Figure 2b).
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Figure 2. Electrophoretic and immunorecognition profiles. (a) SDS-PAGE, 15% of the three venoms
under reducing conditions (MWM: Molecular Weight Marker); (b) Western blot of INS polyvalent
anticoral antivenom against the venoms of three Colombian Micrurus snakes. Micrurus medemi
(lane 1), M. helleri (lane 2), and M. sangilensis (lane 3). (c) Western blot densitometry analysis using
GelAnalyzer software v. 23.1.1 (available at www.gelanalyzer.com by Istvan Lazar Jr., PhD and Istvan
Lazar Sr., PhD, CSc).

The recognition and the neutralizing activity of an antivenom are also related to some
characteristics of the immunogenic compounds in the venom, such as the molecular weight
of proteins. Low-molecular-weight proteins (e.g., 3FTx) [48,49] show lower immunogenic-

www.gelanalyzer.com
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ity than proteins with a higher molecular weight (e.g., PLA2, LAAO) [43]. The bands
corresponding to medium-molecular-weight proteins from the venoms of M. medemi and
M. sangilensis were mostly recognized by the INS antivenom, specifically in the 45–75 kDa
and 10–15 kDa ranges. In contrast, the high-molecular-weight components of the same
venom were weakly recognized (Figure 2b). This was corroborated by a densitometry
quantitative analysis (Figure 2c). The high-molecular-weight bands (>50 kDa) are related to
proteases and LAAOs [50]. In a previous work [23], the high-molecular-weight fraction of
M. sangilensis venom represents ca. 27%, a fraction that is recognized at approximately 38%
by the antivenom. Likewise, this fraction represents approximately 27% of M. helleri venom,
although it exhibited only 10% antivenom recognition. The medium-molecular-weight com-
ponents (~14 kDa) comprise PLA2 and C-type lectins and represent a venom composition
of ca. 40% for M. helleri and 50% for M. medemi, with 55% and 40% antivenom recognition,
respectively. The M. sangilensis low-molecular-weight fraction (~12 kDa) did not exhibit
antivenom recognition; however, its low-molecular-weight fraction (~10 kDa) showed 60%
antivenom recognition. This fraction represents ca. 18% of the proteome and includes
3FTxs [23]. These results were also supported by the ELISA values (Figure 1), where the M.
helleri venom showed less recognition than the M. medemi and M. sangilensis venoms.

2.3. Hydrophobicity and Large Molecular Size as Determinants of Recognition by the
INS Antivenom

Affinity chromatography matrices were coupled with 30 mg of INS antivenom. Over-
all, 95% of the total protein was not retained (data not shown), which means that the
immunospecificity control did not show significant recognition. The fractionation of the
coral snake venoms by RP-HPLC showed retention percentages of 15, 62, and 68% for the
M. helleri, M. medemi, and M. sangilensis venoms, respectively (Figure 3). Also, RP-HPLC
allows for the classification of venom components into three groups (Figure 3). The first
group is covered within the first ~38 min when the small hydrophilic molecules appear,
such as three-finger toxins (3FTx). Within the following 12 min, the second group, medium-
sized molecules with intermediate hydrophobicity, are eluted from the column, such as
PLA2, C-type lectins, serine proteases, cysteine-rich secretory proteins, and growth factors.
The third group of molecules is eluted after minute 50 and includes the most hydrophobic
proteins, such as metalloproteases, L-amino acid oxidases, and hyaluronidases, among
others, in elapid venoms [13,14,50].

In order to quantify antibody recognition, we calculated the ratio of retained (RET)/
unretained fractions (NR) (% NR relative abundance/% RET relative abundance), where
values tending toward 0 show the best antibody recognition. The venoms from M. medemi
and M. sangilensis had a mean retention ratio of 0.53, while M. helleri had a retention ratio
of 5.47. According to the RP-HPLC retention times described above, the best recognition
for smaller proteins was observed for M. sangilensis (34%), compared to M. medemi (22%)
and M. helleri (12%). Therefore, it is possible to assume that small toxins, like the 3FTxs of
M. sangilensis, besides being higher in quantity in the venom [23], are better immunogens
than those present in the venom of M. helleri since their recognition was higher. Fraction
6 from M. sangilensis venom was also recognized (95%), and it could be related to 3FTx. It is
known that venom neurotoxins of closely related elapid species, such as M. dumerilii and M.
mipartitus, have differences in their chromatographic elution time because of slight amino
acid variations in their sequences, suggesting changes in antigenic groups and variability
in their recognition by antibodies [51,52].

The average recognition for the second group of molecules in the three venoms was
0.64, indicating a high recognition for medium-sized proteins. The tendency toward
antibody recognition was consistent. The venom from M. sangilensis showed the highest
percentage of recognized proteins (26%); however, the antibody recognition of the other
two venoms was around 18%. It is notable that medium-sized proteins, most likely PLA2
proteins, which are abundant within the venoms (from 30 to 43%), showed notorious
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antibody recognition. Yet, fraction 15 from the M. helleri venom showed an antibody
recognition of 57%.
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the immunorecognition of venom fractions by the anticoral antivenom. The immunorecognition
percentages for the three venom fractions by RP-HPLC from the immunoaffinity column are based
on calculated relative abundances. (a) M. medemi, (b) M. helleri, and (c) M. sangilensis.

On the contrary, the best recognition in group three of venom components was ob-
served for M. helleri (69%), followed by M. medemi (60%) and M. sangilensis (40%). These
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values of antibody recognition may be the consequence of larger-molecular-size proteins
that show more immunogenicity due to their exposition to more antigenic regions. The best
recognized antibody fractions were fraction 22 from M. helleri (76%), fraction 25 from M.
medemi (84%), and fraction 16 from M. sangilensis (94%), which are fractions mainly related
to PLA2 and proteases [37,50]. It is important to note that the venom of M. helleri contains
large proteins such as serine proteases, metalloproteases, and L-amino acid oxidases, which
represent almost 27% of the M. helleri proteome [23] and promote higher antibody recogni-
tion. Figure 3 also shows a heat map of the retained fractions eluted from the affinity and
RP-HPLC columns, displaying a schematic representation of the presence or absence of
fractions according to their size, retention time, and hydrophobicity.

2.4. Observed Immunoreactivity against M. sangilensis and M. medemi Is Confirmed by the In
Vivo Neutralization Assay

The INS antivenom showed cross-neutralization against the three heterologous ven-
oms (Table 1), exhibiting ED50 values even higher than for homologous venoms such as
Micrurus dumerilii (ED50: 0.36 mg of venom/mL antivenom) and M. surinamensis (ED50:
0.31 mg/mL) but lower compared to M. mipartitus (ED50: 0.94 mg/mL) and M. isozonus
(ED50: 2.24 mg/mL) venoms [42], given the amount of venom that is neutralized per
milliliter of antivenom. Nevertheless, the INS antivenom shows a larger neutralization ef-
fect compared to some monovalent and polyvalent antivenoms manufactured in the region;
that is, the ED50 for the INS antivenom varies between 3 and 37 times more than the other
antivenoms for Micrurus dumerilii, M. mipartitus, M. isozonus, M. surinamensis, M. helleri, M.
medemi, and M. spixii venoms [42]. For instance, the Instituto Butantan antivenom against
M. corallinus and M. frontalis showed cross-neutralization against M. helleri in a proportion
of ED50 eight times less than that shown with the INS anticoral antivenom [33,35,42].

Table 1. Neutralization effectiveness of the Instituto Nacional de Salud anticoral antivenom against
M. helleri, M. medemi, and M. sangilensis.

Venom Median Effective Dose (ED50) *

Micrurus helleri 0.58
(0.4–0.84) **

Micrurus medemi 0.68
(0.44–1.06) **

Micrurus sangilensis 0.75
(0.53–1.07) **

* ED50 values are expressed in mg of venom/mL antivenom; ** in brackets, the 95% confidence limits.

In this study, the venoms from M. helleri, M. medemi, and M. sangilensis were better
neutralized by the INS anticoral antivenom (Table 1) compared to the ICP antivenom
from Costa Rica against M. dumerilii with an ED50 of 0.2 mg/mL (antivenom against M.
nigrocinctus, M. carinicaudus, and M. fulvius) [53], but it showed less activity compared to
the Bioclon antivenom from Mexico (against M. nigrocinctus) [54] and the INBPA antivenom
from Argentina (against M. pyrrhocryptus) [55] against M. surinamensis, with an ED50 of
0.03 and 0.4 mg/mL, respectively. However, to date, there are no studies for other anticoral
antivenoms produced in Latin America [56] against venoms from M. helleri, M. medemi, and
M. sangilensis.

3. Conclusions

The INS antivenom showed cross-immunoreactivity against the three elapid venoms,
M. helleri, M. medemi, and M. sangilensis, towards most of their components, with M.
sangilensis being the venom that presented the highest antigen–antibody recognition and
neutralization in all the assays. The INS antivenom showed marked predilection for high-
molecular-weight proteins and partial recognition for medium/low-molecular-weight
proteins in the M. sangilensis venom. Although the cross-reactivity of some anticoral
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antivenoms has been evaluated against other Micrurus species, little is known concerning
species from Colombia. Therefore, this work shows the cross-reactivity and efficacy of the
INS polyvalent antivenom in the clinical management of the envenoming caused by three
Colombian Micrurus, including different populations of M. helleri.

It is important to implement strategies to improve antivenom recognition/neutralization.
One of these strategies is to perform neutralization assays with different coral snake species
to establish an integrative overview of antivenom efficacy and subsequently reevaluate its
recommendation for clinical regions in Colombia.

4. Materials and Methods
4.1. Venoms and Antivenom

The freeze-dried venom pools of Micrurus helleri (Villagarzón—Putumayo, Ama-
zonía region), M. medemi (Villavicencio—Meta, Orinoquía region), and M. sangilensis
(Sutamarchán—Boyacá, Magdalena Medio region) were provided by the Instituto Na-
cional de Salud de Colombia (INS). An equine-origin IgG, liquid presentation antivenom,
manufactured by the INS using Micrurus dumerilii, M. mipartitus, M. isozonus, and M.
surinamensis venoms, was used as a probe (Batch No. 19AMP02, expiration October/2023).

4.2. Protein Quantification

The protein concentration of venoms was determined by the BCA (bicinchoninic acid)
method using bovine serum albumin (BSA) as a standard. All the fractions separated in the
RP-HPLC were quantified with a nanodrop instrument (Thermo Scientific™ NanoDrop
One©, Wilmington, DE, USA).

4.3. Polyacrylamide Gel Electrophoresis (SDS-PAGE)

The SDS-PAGE gel electrophoresis (15%) was performed according to [57,58]. A Biorad
Precision Plus Protein Dual Xtra (2–250 kDa) molecular weight standard was used as a
marker. Gels were stained with Coomassie R-250 and analyzed using Bio-Rad’s Image Lab
6.1 software (Bio-Rad Laboratories, Inc., Berkeley, CA, USA, 2020).

4.4. Reverse-Phase Liquid Chromatography (RP-HPLC)

RP-HPLC was performed as described in [50]. Briefly, the complete venoms of the
affinity column fractions were resuspended in 1 mL of water containing 0.1% trifluoroacetic
acid (TFA) (solution A). Subsequently, these samples were subjected to reverse-phase
chromatography in a Shimadzu SPD-10A instrument (UV/Vis detector SPD 10) using a
Zorbax Eclipse XDB C18 column (4.6 × 250 mm, 5 µm). The samples were eluted with a
linear gradient of acetonitrile/TFA 0.1% (solution B) as follows: 0% over 15 min, 0–15%
over 15 min, 15–45% over 60 min, 45– 70% for 10 min, 70% for 10 min, 70–100% for 5 min,
and sustained at 100% for 5 min. The absorbance was monitored at 215 nm.

4.5. Antivenom Assessment
4.5.1. Affinity Chromatography

A second-generation antivenomic technique was used [39]. The venom–antigen
coupling was made as described in [59] with some modifications. CNBr-activated sepharose
4B (0.3 g) was packed with 3 mL of prewash buffer (HCl, 1 mM) under stirring for 15 min
at room temperature. The matrix was then washed with HCl (1 mM), and a coupling buffer
(0.2 M of NaHCO3, 0.5 M of NaCl; pH 8.3) was added until pH > 8.5. Subsequently, 30 mg
of the INS anticoral antivenom was added in a 1:10 (v/v) ratio with the resin, previously
dialyzed against the coupling buffer, and it was stirred continuously overnight at 4 ◦C. The
supernatant was collected for quantification. The column was then washed with a coupling
buffer, blocked with blocking buffer (0.1 M of Tris-HCl; pH 8.0), and left stirring at room
temperature for 4 h. To remove the unbound antibodies from the column, six interspersed
washes were carried out with a buffer (0.1 M of acetic acid/sodium acetate, 0.5 M of NaCl).
The final pH was neutralized with 10 mM of Tris-HCl, pH 8.0. For specificity control,
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the same procedure was carried out, with IgG from non-immunized horses and M. helleri
venom used.

A solution of 300 µg of protein from each venom in 400 µL of 10 mM Tris-HCl at pH
8.0 as a buffer was passed thrice through the matrices. The non-retained fraction was eluted
with 10 mM of Tris-HCl at pH 8.0; the retained fraction 1 was eluted with 0.1 M of acetic
acid (pH 2.4) and neutralized with 1 M of Tris-HCl buffer (pH 8.0); and the retained fraction
2 was eluted with 50 mM of sodium hydroxide. All fractions were neutralized with the
same buffer. Each fraction was centrifuged at 13,000 rpm for 2 min. The supernatant was
separated and concentrated by ultrafiltration in an Amicon® centrifugal filter device (3 kDa
MW cutoff).

4.5.2. Western Blot

Each venom (10 µg of protein) was loaded onto a 15% SDS-PAGE gel under reducing
conditions. Subsequently, the protein bands were transferred to a nitrocellulose membrane
for 1 h at a constant current of 400 mA in a semi-humid chamber. The membrane was
blocked at 4 ◦C overnight in a blocking buffer (5% skim milk powder, in PBS/0.5% Tween
20; TBST 1X). The membrane was washed three times with TBST 1X and incubated with
the primary antibody (INS antivenom) at a dilution of 1:500 in TBST to a final volume of
10 mL under rotating agitation for 1 h at room temperature. Later, the membrane was
washed again three times with TBST 1X and incubated with the secondary antibody (KPL
Peroxidase-Labeled Antibody to Horse IgG (H+L) Produced in Goat, 0.5 mg), prepared at a
dilution of 1:1000 in TBST 1X, and left under rotary agitation for 1 h at room temperature.
Finally, the membrane was washed thrice with TBST 1X, and 1 mL of TMB blotting solution
was added to reveal [60].

Densitometry gel analysis was performed using GelAnalyzer software v. 23.1.1 (avail-
able at www.gelanalyzer.com by Istvan Lazar Jr., PhD and Istvan Lazar Sr., PhD, CSc,
accessed on 26 January 2024). The quantitative values of each band were obtained using
the volume values of all bands. The corresponding recognition values were calculated by
dividing the volume value of each band by the total venom volume.

4.5.3. Enzyme-Linked Immunosorbent Assay—ELISA and EC50 Determination

The samples were prepared in a sensitization buffer (100 mM of carbonate/bicarbonate,
pH 9.5) at a concentration of 5 µg/mL. Each sample (100 µL) was seeded in each well in
duplicate and incubated at 37 ◦C for 1 h. The content was discarded, and each well was
washed thrice with 200 µL of washing buffer (Tris-HCl: 50 mM, pH 8,0; NaCl: 150 mM).
Then, 200 µL of blocking buffer (50 mM of Tris-HCl, pH 8.0, 5 mg/mL of gelatin, 0.02%
Tween 20) was added and left at 4 ◦C overnight. INS antivenom was prepared in 50 mM
of Tris-HCl buffer (pH 8.0, 0.5 M of NaCl, 1 mg/mL of gelatin, 0.05% Tween 20) at a
concentration of 700 µg/mL. Then, 100 µL was seeded per well, making serial 1:3 dilutions
with the vehicle buffer. Each well was previously washed thrice with 200 µL of washing
buffer, then left in an incubator at 37 ◦C for 1 h. All wells were washed thrice with
200 µL of washing buffer, and 100 µL was placed in each well with the secondary antibody
preparation (KPL Peroxidase-Labeled Antibody to Horse IgG (H+L) Produced in Goat,
0.5 mg) and dissolved in the vehicle buffer at a 1:4000 dilution. The samples were left in
an incubator at 37 ◦C for 1 h. The plate was washed with washing buffer, and the reaction
was developed with ABTS in 70 mM of a citrate–phosphate buffer at pH 4.2 and 0.02 µL of
H2O2. The absorbance was measured with a spectrophotometer at 405 nm 60 min later.

The EC50 (half-maximal effective concentration) was calculated as follows: the data
obtained from the ELISA procedure were analyzed by nonlinear regression using the
sigmoidal dose–response equation of the Prism software (Graph Pad Prism v. 8.3.0, San
Diego, CA, USA). Titers were calculated from the midpoint of the curve and correspond to
the antivenom dilution for half of the maximal recognition.

www.gelanalyzer.com
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4.5.4. In Vivo Neutralization

The neutralization capacity of INS anticoral antivenom was determined using the
median effective dose (ED50), following WHO guidelines [61,62] and INS standard internal
protocols. Solutions containing different concentrations of the antivenom were mixed
with three median lethal doses (3LD50) per mouse of each species’ venom, as described
in the lethality assays shown in [42]. Samples were preincubated at 37 ◦C for 30 min
and then injected intraperitoneally into mice (n = 5 per dose, 500 µL/mice). Five to six
different dilutions of the antivenom were tested. The dilution factors ranged between
2.6 and 3.3, attaining concentrations of 0.08 to 32.93 mg/mL. Two negative controls (one
with antivenom and one with saline solution, 500 µL/mice) were used. Additionally, a
positive control was used (3LD50 of venom/mice). The survival time of each animal was
recorded for 48 h. The ED50 was expressed in milligrams (mg) of venom per milliliter (mL)
of antivenom.

4.6. Statistical Analysis

A slope-variable nonlinear regression analysis was carried out in order to perform
the ELISA assay. All statistical analyses, i.e., determination of mean values, standard
deviations, variation coefficients, and 95% confidence intervals, were calculated using
Prism 9.0 software (GraphPad, La Jolla, CA, USA). The ED50 was determined using the
Spearman–Kärber method [63–65].
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