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Abstract: Ciguatoxins (CTXs) are neurotoxins responsible for ciguatera poisoning (CP), which affects
more than 50,000 people worldwide annually. The development of analytical methods to prevent
CP is a pressing global issue, and the N2a assay is one of the most promising methods for detecting
CTXs. CTXs are highly toxic, and an action level of 0.01 µg CTX1B equivalent (eq)/kg in fish has been
proposed. It is desirable to further increase the detection sensitivity of CTXs in the N2a assay to detect
such low concentrations reliably. The opening of voltage-gated sodium channels (NaV channels)
and blocking of voltage-gated potassium channels (KV channels) are thought to be involved in the
toxicity of CTXs. Therefore, in this study, we developed an assay that could detect CTXs with higher
sensitivity than conventional N2a assays, using KV channel inhibitors as sensitizing reagents for N2a
cells. The addition of the KV channel inhibitors 4-aminopyridine and tetraethylammonium chloride
to N2a cells, in addition to the traditional sensitizing reagents ouabain and veratridine, increased
the sensitivity of N2a cells to CTXs by up to approximately 4-fold. This is also the first study to
demonstrate the influence of KV channels on the toxicity of CTXs in a cell-based assay.

Keywords: ciguatoxins; neuroblastoma cell-based assay; voltage-gated sodium channels; voltage-
gated potassium channels; 4-aminopyridine; tetraethylammonium chloride

Key Contribution: Ciguatoxins were detected with up to four times greater sensitivity than conven-
tional N2a assays simply by adding voltage-gated potassium channel inhibitors to the assay.

1. Introduction

Ciguatoxins (CTXs) are neurotoxins with a ladder-like polyether structure produced
by dinoflagellates of the genera Gambierdiscus [1–3] and Fukuyoa [4]. CTXs are transferred
through the food chain from herbivorous to carnivorous fish [5], ultimately threatening
the food supply. Globally, over 50,000 people suffer from these toxins annually, resulting
in a global food-borne illness called ciguatera poisoning (CP) [6]. The main symptoms
include gastrointestinal, cardiovascular, and neurological disorders, in severe cases, which
can last for months or longer [7]. The main vectors of CTXs are coral reef fish in tropical
and subtropical regions. However, in recent years, it has been reported that CTXs are
also present in deep-sea fishes [8] and invertebrates [9–11], suggesting that these marine
organisms are also part of the CTX food web. The habitat of dinoflagellates will change
owing to global warming [12], and since the 2000s, the risk of CP has expanded to the North
Atlantic [13,14]. In addition, CP occasionally occurs in fish imported into Europe [15–18].
Therefore, establishing preventive measures to identify food contaminated with toxins is of
major interest.

CTXs are classified into Pacific, Caribbean, and Indian Ocean types, based on their
basic structure. However, this is a nomenclature classification, and it has been reported that
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the classified CTXs are not restricted to their oceanic region [19,20]. CTXs from the Pacific
undergo bio-oxidation in the food chain with increased toxicity [21,22], and the number
of congeners reaches >20 [23]. For the Caribbean CTXs (C-CTXs), only the structures of
C-CTX-1/-2 isolated from fish have been long clarified [24]; all the dinoflagellates produc-
ing C-CTXs have not been identified. However, recent structural analyses using liquid
chromatography–high resolution mass spectrometry (LC-HRMS) have finally revealed
the structures of new C-CTX congeners in fish [25,26] and a precursor of C-CTX-1/-2 in
dinoflagellates [27]. On the other hand, the structures of the six compounds found in the
Indian Ocean have not yet been elucidated [28,29].

The United States Food and Drug Administration (FDA) has proposed that CTX
concentrations of 0.01 µg CTX1B equivalent (eq)/kg and 0.1 µg C-CTX-1 eq/kg in fish
flesh are unlikely to cause CP [30]. As can be seen from these proposal levels, CTXs are
highly toxic. In addition, ciguateric fish cannot be judged based on taste or appearance.
Therefore, to prevent CP, it is essential to develop highly sensitive analytical methods
to detect CTXs at such low levels in fish. The mouse bioassay (MBA), which has been
used for a long time for CTXs’ detection, has become obsolete owing to its insufficient
detection capability and ethical concerns [31]. Therefore, alternative methods, such as
liquid chromatography with tandem mass spectrometry (LC-MS/MS) [32,33], capillary
LC-HRMS [25], sandwich enzyme-linked immunosorbent assay (ELISA) [34], receptor
binding assay (RBA) [32,35–37], neuroblastoma cell-based assay (N2a assay) [32,36,38,39],
and even portable biosensors [40–43] have been developed in recent years. The RBA and
N2a assays, which respond indistinguishably to all CTXs, complement LC-MS/MS and
sandwich ELISA, which quantify the congeners individually. The European Food Safety
Authority (EFSA) recommends that ciguateric fish should be screened using RBA or N2a
assays and confirmed by LC-MS/MS [44], and the quantitative values of these methods
have been shown to correlate with each other [45].

In 1984, one of the CTXs was shown to act on voltage-gated sodium channels (NaV
channels) to depolarize cells [46]. The N2a assay using this effect of CTXs was first
reported in the 1990s [47–49]. Specifically, the addition of CTXs to mouse neuroblas-
toma cells (N2a cells) treated with ouabain (O) (Na+/K+-ATPase inhibitor) and vera-
tridine (V) (NaV channel opener) increases intracellular Na+ levels and induces CTX
concentration-dependent cell death. Viable cells are then visualized using colorimet-
ric reagents 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or 2-(2-
methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium
salt (WST-8), which are reduced by dehydrogenase in living cells [50]. We recently showed
that the relative potency of CTX congeners against N2a cells correlates well with toxic equiv-
alency factors (TEFs) based on acute toxicity in mice using quantitative nuclear magnetic
resonance (NMR)-calibrated CTX congeners [36]. Since ciguateric fish typically contain
multiple CTX congeners, the N2a assay can evaluate the overall toxicity of CTXs in fish
in the same manner as MBA. Furthermore, in the same study, the total assay time for the
N2a assay, which previously required >48 h, was reduced to approximately 24 h without
compromising the detection capability. Although our work has made the N2a assay more
valuable as a screening method for CTXs, the remaining challenge with the N2a assay is the
interference of matrix components derived from fish flesh. The degree of the interference of
the matrix in the N2a assay depends on the lipid content of the fish, with fatty fish requiring
additional purification steps [51]. Recently, cyclodextrin polymers have been reported
to effectively remove fish-derived matrices [52]. Another effective way to reduce matrix
interference is to dilute the test solution, but to do this while maintaining the detection
capability, the detection sensitivity of CTXs in the N2a assay needs to be increased.

In the 2000s, electrophysiological experiments showed that CTX1B also acts on voltage-
gated potassium channels (KV channels) at concentrations that act on NaV channels [53,54].
KV channels open after Na+ influx into the cells, and the cells are repolarized by K+ efflux.
Thus, the inhibition of transient “A-type” potassium currents (IK(A)) and delayed-rectifier
potassium currents (IK(DR)) by CTXs contributes to cell depolarization. Currently, both



Toxins 2024, 16, 118 3 of 12

the opening of NaV channels and blocking of KV channels are thought to be involved in
the toxicity of CTXs [55]. However, cell-based assays have not demonstrated whether
inhibition of KV channels synergistically increases CTXs’ toxicity.

Therefore, the objectives of this study were: (1) to develop a more sensitive N2a
assay to CTXs than the conventional assay using only O and V, and (2) to confirm the
effect of KV channel inhibition on the toxicity of CTXs. For these purposes, KV channel
inhibitors were used in the N2a assay. The degree of inhibition of IK(A) and IK(DR) at CTX
concentrations that depolarize NaV channels is only partial. Therefore, the cytotoxicity
of CTXs to N2a cells is expected to be enhanced using KV channel inhibitors to further
strengthen their inhibition.

We report for the first time that combining O, V, and KV channel inhibitors enables the
detection of six Pacific CTX congeners (CTX1B, CTX3C, CTX4A, 52-epi-54-deoxyCTX1B,
54-deoxyCTX1B, and 51-hydroxyCTX3C) with higher sensitivity than the conventional N2a
assay using only O and V.

2. Results
2.1. Optimization of O, V, and KV Channel Inhibitors’ (4-AP and TEA-Cl) Concentrations

In this study, 4-aminopyridine (4-AP) and tetraethylammonium chloride (TEA-Cl)
were used as inhibitors of IK(A) and IK(DR), respectively. These inhibitors are the reference
compounds used to demonstrate the inhibition of IK(A) and IK(DR) by CTXs [54]. First, the
cytotoxicity of 4-AP, TEA-Cl, and their mixture (4-AP/TEA-Cl) on N2a cells was evaluated
to minimize cell death induced by KV channel inhibitors. Furthermore, considering the
possibility of using KV channel inhibitors in combination with O and V in the N2a assay, the
cytotoxicity of KV channel inhibitors in the presence of 31.3/3.13 µM O/V (the optimized
concentration for the N2a assay that we previously reported [36]) was also evaluated.

As shown in Figure 1a,b, approximately 20% cell death was caused by 2.5 mM 4-AP
and 12.5 mM TEA-Cl. Based on these potency ratios, 4-AP/TEA-Cl was evaluated us-
ing a 1:5 mixture, and 2.5/12.5 mM 4-AP/TEA-Cl caused approximately 30% cell death
(Figure 1c). In addition, even when O/V was mixed with KV channel inhibitors, there was
almost no difference in toxicity compared to when O/V was not used (Figure 1a–c). There-
fore, the optimal O/V concentration when used with KV channel inhibitors was determined
to be 31.3/3.13 µM. For KV channel inhibitors, concentrations that caused little cell death
compared to controls (4-AP, 0.5 mM; TEA-Cl, 2.5 mM; 4-AP/TEA-Cl, 0.5/2.5 mM) and con-
centrations that caused 20–30% cell death (4-AP, 2.5 mM; TEA-Cl, 12.5 mM; 4-AP/TEA-Cl,
2.5/12.5 mM) were used in subsequent experiments.
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Figure 1. Cytotoxicity of KV channel inhibitors against N2a cells: cytotoxicity of (a) 4-AP, (b) TEA-Cl,
(c) mixture of 4-AP and TEA-Cl. +O/V indicates that 31.3 µM O and 3.13 µM V were added to N2a
cells with KV channel inhibitors. Data are the mean ± standard deviation (SD) of triplicate wells.
* p < 0.05; ** p < 0.01; *** p < 0.001, significantly different from control.



Toxins 2024, 16, 118 4 of 12

2.2. Cytotoxicity of CTX3C against N2a Cells in the Presence of KV Channel Inhibitors

For CTXs to induce N2a cell death, the addition of O and V is essential. However, it is
not known whether KV channel inhibitors alone could also cause CTX-induced cell death;
therefore, we confirmed this using CTX3C. The concentrations of KV channel inhibitors
were set to cause 20–30% cell death to confirm the results under more severe conditions.
As shown in Figure 2, within the CTX3C concentration range where a dose–response curve
could be plotted at 31.3/3.13 µM O/V, it was not possible to plot dose–response curves for
CTX3C under any KV channel inhibitor condition.
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Figure 2. Cytotoxicity of CTX3C against N2a cells in the presence of KV channel inhibitors: in the
presence of (a) 4-AP, (b) TEA-Cl, (c) mixture of 4-AP and TEA-Cl, (d) 31.3/3.13 µM O/V (no KV

channel inhibitors added). Data are the mean ± SD of triplicate wells.

2.3. Cytotoxicity of CTX Congeners against N2a Cells in the Coexistence of O, V, and KV
Channel Inhibitors

Since the KV channel inhibitors alone did not increase the sensitivity of CTX3C to
N2a cells in contrast to O/V, the effects of the KV channel inhibitors were examined in the
presence of 31.3/3.13 µM O/V. When comparing the dose–response curves for CTX3C at
concentrations of KV channel inhibitors that induced little cell death, all curves with KV
channel inhibitors almost overlapped with the O/V-only curve (Figure 3).
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Figure 3. Cytotoxicity curves of CTX3C in the coexistence of O, V, and KV channel inhibitors (low
concentration conditions). Data are the mean ± SD of triplicate wells.

In contrast, at concentrations that cause 20–30% cell death (4-AP, 2.5 mM; TEA-Cl,
12.5 mM; 4-AP/TEA-Cl, 2.5/12.5 mM), shifts of the sigmoidal curves to lower concentra-
tions were observed for all six CTX congeners compared to the O/V-alone condition. The
degree increased in the order of TEA-Cl, 4-AP, and 4-AP/TEA-Cl, except for CTX1B and
51-hydroxyCTX3C (which showed almost no difference between 4-AP and 4-AP/TEA-Cl)
(Figure 4). The half-maximal effective concentrations (EC50s) are listed in Table 1.
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Figure 4. Cytotoxicity curves of CTX congeners in O/V alone and in the coexistence of O/V and KV

channel inhibitors (high concentration conditions): (a) CTX1B, (b) CTX3C, (c) CTX4A, (d) 52-epi-54-
deoxyCTX1B, (e) 54-deoxyCTX1B, (f) 51-hydroxyCTX3C. Data are the mean ± SD of triplicate wells.

Table 1. EC50 values of CTX congeners calculated from dose–response curves.

Congeners O/V Only
(pg/mL)

O/V + TEA-Cl
(pg/mL)

O/V + 4-AP
(pg/mL)

O/V + 4-AP + TEA-Cl
(pg/mL)

CTX1B 1.16 ± 0.09 0.74 ± 0.05 *** 0.30 ± 0.03 *** 0.28 ± 0.04 ***
CTX3C 1.96 ± 0.28 1.52 ± 0.11 * 0.90 ± 0.07 *** 0.62 ± 0.07 ***
CTX4A 11.7 ± 1.88 8.27 ± 0.78 ** 4.59 ± 0.27 *** 2.82 ± 0.26 ***

52-epi-54-deoxyCTX1B 2.86 ± 0.23 1.88 ± 0.15 *** 1.05 ± 0.06 *** 0.84 ± 0.10 ***
54-deoxyCTX1B 2.91 ± 0.29 1.91 ± 0.20 *** 0.98 ± 0.07 *** 0.87 ± 0.09 ***

51-hydroxyCTX3C 1.09 ± 0.07 0.75 ± 0.08 *** 0.42 ± 0.04 *** 0.45 ± 0.06 ***

The values are the mean ± SD of triplicate wells. * p < 0.05; ** p < 0.01; *** p < 0.001, significantly different from
O/V-only condition for each congener.

3. Discussion

This study focused on K+ efflux, whereas the conventional N2 assays focus only on
Na+ influx. Using KV channel inhibitors to increase the intracellular concentration of K+

may increase the sensitivity of N2a cells to CTXs.
First, we examined the effects of KV channel inhibitors (4-AP and TEA-Cl) on N2a

cells and clarified the following three points: (1) the KV channel inhibitors caused the death
of N2a cells at concentrations in the mM range, with a potency ratio of TEA-Cl and 4-AP of
1:5, which is approximately the concentration ratio that inhibits K+ currents in dorsal root
ganglion neurons in electrophysiological experiments [54]; (2) the cytotoxicity of KV channel
inhibitors to N2a cells was not enhanced by the coexistence of 31.3/3.13 µM O/V, the
optimized concentration used in our previous work [36]; and (3) N2a cells were insensitive
to CTX3C upon stimulation with KV channel inhibitors alone. These results suggest that
the combined use of O/V and KV channel inhibitors is an appropriate condition to increase
the sensitivity of CTXs in the N2a assay. Under these conditions, both Na+ and K+ were
likely to be retained in the cells at higher concentrations. As expected, high concentrations
of KV channel inhibitors (4-AP, 2.5 mM; TEA-Cl, 12.5 mM; 4-AP/TEA-Cl, 2.5/12.5 mM)
increased the sensitivity of N2a cells to CTXs. The degree of shift of the sigmoidal curves
to lower concentrations was similar for most congeners, with some exceptions, increasing
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in the order of TEA-Cl (1.3–1.6 fold), 4-AP (2.2–3.9 fold), and 4-AP/TEA-Cl (2.4–4.1 fold).
The magnitude of the shifts and the relative potency of the congeners before and after
the changes are noteworthy. The detection sensitivity of CTX1B and CTX3C in N2a cells
with lower sensitivity to O and V (OV-LS N2a cells in the literature) was 1.3-fold and
2.6-fold higher than that of the original N2a cells, respectively [39]. In this study, the
mixed conditions of TEA-Cl and 4-AP using the original N2a cells showed more significant
improvements in detection sensitivity than those using OV-LS N2a cells. In addition,
this literature showed that CTX1B was more sensitive than CTX3C in the original N2a
cells, reflecting the order of TEFs, whereas these sensitivities were reversed in OV-LS N2a
cells. In contrast, sensitization with KV channel inhibitors maintained a relative potency
similar to that of the original condition with only O and V. We recently reported that the
relative potency of CTX congeners in the N2a assay with only O and V correlated well
with TEFs [36]. Therefore, we emphasize that the sensitive N2a assay using KV channel
inhibitors also correlates well with TEFs and can accurately assess the overall toxicity of
CTXs. Table 2 summarizes the relative potencies of the CTX congeners under the four
conditions investigated in this study, along with the TEFs in Reference [44].

Table 2. Relative potency of CTX congeners in the four conditions.

Congeners O/V Only O/V + TEA-Cl O/V + 4-AP O/V + 4-AP + TEA-Cl TEFs [44]

CTX1B 1.0 1.0 1.0 1.0 1.0
CTX3C 0.6 0.5 0.3 0.5 0.2
CTX4A 0.10 0.09 0.07 0.10 0.1

52-epi-54-
deoxyCTX1B 0.4 0.4 0.3 0.3 0.3

54-deoxyCTX1B 0.4 0.4 0.3 0.3 0.3
51-hydroxyCTX3C 1.1 1.0 0.7 0.6 1.0

Each relative potency was calculated with CTX1B as 1.0.

Furthermore, since low concentrations of KV channel inhibitors (4-AP, 0.5 mM; TEA-Cl,
2.5 mM; 4-AP/TEA-Cl, 0.5/2.5 mM) did not increase the sensitivity of N2a cells to CTXs,
the degree of shift of the sigmoidal curves to lower concentrations seems to be dependent
on the concentration of KV channel inhibitors. Therefore, further optimization is expected
to improve the sensitivity of this assay. Higher sensitivity allows for a higher dilution of the
test solution, thus eliminating the need for pretest purification steps. It has been reported
that CP can occur at concentrations just above the FDA action level of 0.01 µg CTX1B eq/kg
in fish flesh [56,57], but it is difficult to accurately measure such low concentrations in fish
with high lipid content, which is likely to cause matrix interference in the N2a assay [51].
Therefore, this method may allow for easier purification and highly sensitive measurement
in many fish species, regardless of their lipid content. However, unlike the assay using
OV-LS N2a cells, which has already been confirmed to detect CTXs even in the presence
of fish-derived matrices, this assay has not yet been validated using fish samples. The
possibility that using KV channel inhibitors may also increase sensitivity to matrices should
be confirmed.

Another highlight of this study is that the cell-based assay demonstrated that inhibition
of KV channels increased the cytotoxicity of CTXs. This study could not determine whether
the blockade of KV channels at CTX concentrations that cause CP enhances the cytotoxicity
of CTXs in concert with the opening of NaV channels. However, the finding that the
more significant inhibition of IK(A) and IK(DR), partially blocked by CTXs, enhanced the
cytotoxicity of CTXs in N2a cells suggests the involvement of KV channels in the toxicity
of CTXs. In N2a cells, outward potassium currents are increased by O, which inhibits
Na+/K+-ATPase; however, this effect can be canceled by 4-AP [58]. This seems to be one
of the reasons why the combination of KV channel inhibitors with O/V is effective in
increasing the cytotoxicity of CTXs to N2a cells. Regarding this discussion on cytotoxicity,
it should be noted that N2a cells were used in this study. This is because it has been pointed
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out that N2a cells are transformed cell lines and are not suitable for pharmacological
studies. Their receptor expression levels differed significantly from those of the parental
cell type [59]. For example, the expression level of NaV channels in N2a cells is only
1/20 that in primary cultures of cerebellar granule neurons (CGNs), and N-methyl-D-
aspartate (NMDA) receptors expressed in CGNs are absent in N2a cells. Thus, NMDA
receptor-mediated extracellular Ca2+ influx resulting from the activation of NaV channels
by C-CTX-1 occurs in CGNs but not in N2a cells. In addition, brevetoxins, neurotoxins
that share the binding site on NaV channels with CTXs, have been reported to cause cell
death mainly through this mechanism [60], indicating that Ca2+ influx through NMDA
receptors plays an essential role in neuronal toxicity. Ca2+ influx via this mechanism also
occurs upon the inhibition of KV channels in CGNs by 4-AP [61]. Taken together, the use of
KV channel inhibitors should result in extracellular Ca2+ influx through NMDA receptors
and contribute to cell death, but in this study using N2a cells lacking NMDA receptors,
this mechanism is unlikely to contribute to the increased cytotoxicity of CTXs. Conversely,
enhancing CTXs’ cytotoxicity by adding KV channel inhibitors to primary cells expressing
NMDA receptors may be more significant.

Recently, it has been reported that the combination of CTX3C and deltamethrin, an
insecticide that prolongs the open state of NaV channels, has synergistic effects on reducing
the maximum peak inward sodium currents and hyperpolarizing the activation voltage
of NaV channels [62]. In this study, the effect of KV channels on the toxicity of CTXs
was observed, thus raising interest in the synergistic effect of CTXs and gambierol on CP.
Gambierol is a ladder-shaped polyether produced by Gambierdiscus toxicus together with
CTX3C and CTX4A [2,3,63] and is a potent inhibitor of IK(A) and IK(DR) [61,64], resulting in
NMDA receptor-mediated Ca2+ influx [65]. Gambierol itself is not as toxic as CTXs [66],
and its detection in fish flesh has not been reported; therefore, its involvement in CP is
inconclusive. However, since gambieric acid, which is produced by Gambierdiscus toxicus as
well as gambierol [67], has been detected in fish flesh together with CTXs [29,68], it is natural
to consider the possibility that other polyether compounds may coexist with CTXs in fish.
The results of this study suggest that the coexistence of gambierol and CTXs may increase
the toxicity of CTXs owing to the ability of gambierol to block KV channels. Therefore,
verifying this possibility using cell-based assays and clarifying whether gambierol coexists
with CTXs in fish will be necessary in the future.

4. Conclusions

This is the first study to apply KV channel inhibitors in N2a assays. CTXs were
detected with higher sensitivity than the conventional N2a assay using only O and V
simply by adding KV channel inhibitors to the assay. The effect increased in the order of
TEA-Cl, 4-AP, and 4-AP/TEA-Cl, reaching a maximum of approximately four-fold. This
new sensitive N2a assay allows fish flesh extracts to be more diluted before the assay,
potentially simplifying the complex purification steps to remove fish-derived matrices.
Furthermore, the relative potency of CTX congeners to N2a cells in this assay correlated
well with TEFs based on acute toxicity in mice, as well as in the conventional O/V-only
assay, making it suitable for accurate assessment of the overall toxicity of CTXs. This is
also the first study to demonstrate the influence of KV channels on the toxicity of CTXs in a
cell-based assay, which brings further interest to elucidating the role of KV channels in CP.

We plan to further optimize this new N2a assay and demonstrate that it can reliably
detect fish flesh at the FDA action level of 0.01 µg CTX1B eq/kg.

5. Materials and Methods
5.1. Chemicals

Water was Milli-Q ultrapure grade with 18.2 MΩcm resistivity. 4-AP and TEA-Cl were
purchased from FUJIFILM Wako Pure Chemical Industry, Ltd. (Osaka, Japan). Fetal bovine
serum (FBS) was purchased from Thermo Fisher Scientific Inc. (Waltham, MA, USA). All
other reagents were purchased from Nacalai Tesque Inc. (Kyoto, Japan).
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5.2. Reference CTXs

CTX1B, CTX3C, CTX4A, 52-epi-54-deoxyCTX1B, and 51-hydroxyCTX3C were cali-
brated using quantitative NMR at Japan Food Research Laboratories [69]. Hirama and
coworkers synthesized 54-deoxyCTX1B at Tohoku University [70] and it was calibrated
using sandwich ELISA [34] with reference to quantitative NMR-calibrated CTX1B.

5.3. N2a Assay Using KV Channel Inhibitors
5.3.1. Passaging of the Cell Line

The N2a cell line was obtained from the European Collection of Cell Cultures (EC89121404,
ECACC, Salisbury, UK). N2a cells were maintained and passaged according to previously
described procedures [36]. Briefly, N2a cells were cultured in RPMI 1640 medium contain-
ing 10% FBS, 1 mM L-glutamine, 1 mM sodium pyruvate, 100 units/mL penicillin, and
100 µg/mL streptomycin (N2a medium) at 37 ◦C in a 5% CO2 humidified atmosphere. The
seeding density was 1 × 105 cells mL−1 (for the assays after 2 days) or 5 × 104 cells mL−1

(for the assays after 3 days) in 75 cm2 tissue culture flasks (Sumitomo Bakelite, Tokyo,
Japan). The trypan blue-stained cells were subjected to a TC20TM automated cell counter
(Bio-Rad, Hercules, CA, USA) immediately before the assay to determine the number of
viable cells and cell viability. When the cell viability was ≥85%, the assays were performed.

5.3.2. Optimization of O, V, and KV Channel Inhibitors’ (4-AP and TEA-Cl) Concentrations

4-AP and TEA-Cl were dissolved separately in the N2a medium, and two-fold serial
dilutions from 20 mM to 0.1563 mM for 4-AP and from 200 mM to 1.563 mM for TEA-
Cl were prepared in the same medium. In addition, 4-AP and TEA-Cl were dissolved
together in the N2a medium at a ratio of 1:5, and two-fold serial dilutions from 4-AP/TEA-
Cl = 20/100 mM to 0.156/0.7813 mM were prepared in the same medium.

In addition to the KV channel inhibitor-only solutions, mixtures of O/V (final con-
centration of 31.3/3.13 µM, previously optimized in [36]) and KV channel inhibitors were
also prepared. Briefly, stock solutions of O (10 mM in water) and V (1 mM in 10 mM HCl)
were diluted with N2a medium to prepare a 62.5/6.25 µM O/V solution. Next, 4-AP and
TEA-Cl were dissolved separately in the O/V solution, and then the solutions were diluted
with the O/V solution to prepare 4-AP concentrations of 1.25 mM and 5 mM, and TEA-Cl
concentrations of 6.25 mM and 25 mM. In addition, 4-AP and TEA-Cl were dissolved
together in the O/V solution at a ratio of 1:5, and the solution was diluted with the O/V
solution to produce 4-AP/TEA-Cl concentrations of 1.25/6.25 mM and 5/25 mM.

The assays for these test solutions followed our previously described procedure [36].
Briefly, 100 µL of cell suspension in the N2a medium was seeded into 96-well cell culture
plates (Corning, Corning, NY, USA) at 5 × 104 cells/well. Next, 100 µL of the test solution
was added to the corresponding wells, and the plates were incubated for 22 h at 37 ◦C and
5% CO2. Finally, 10 µL of Cell Counting Kit-8 (Dojindo, Kumamoto, Japan) was added to
each well and the plates were incubated for 3–4 h at 37 ◦C and 5% CO2. Absorbance at
490 nm was measured using an iMarkTM microplate reader (Bio-Rad). The cell viability
of the control wells (N2a cells only, no inhibitors added) was defined as 100%, and the
cell viability for each inhibitor concentration was calculated. Statistical analyses were by
one-way ANOVA with Dunnett’s multiple comparison tests. All data were considered
statistically significant at p < 0.05.

5.3.3. Cytotoxicity of CTX Congeners against N2a Cells in the Presence of KV Channel
Inhibitors and the Coexistence of O, V, and KV Channel Inhibitors

4-AP and/or TEA-Cl were dissolved in the N2a medium to prepare 5 mM 4-AP, 25 mM
TEA-Cl, and 5/25 mM 4-AP/TEA-Cl solutions. A stock solution of CTX3C in DMSO was
then serially diluted (1:2) with these KV channel inhibitor solutions to obtain CTX3C test
solutions ranging from 0.994 to 63.6 pg/mL.

In addition to KV channel inhibitor-only test solutions, mixtures of 62.5/6.25 µM O/V
and KV channel inhibitor (O/V + KV) test solutions were also prepared. The 62.5/6.25 µM
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O/V solution was prepared as described in Section 5.3.2. Subsequently, 4-AP and/or
TEA-Cl were dissolved in the O/V solution to prepare 5 mM 4-AP, 25 mM TEA-Cl, and
5/25 mM 4-AP/TEA solutions with 62.5/6.25 µM O/V. In addition, 1 mM 4-AP, 5 mM TEA-
Cl, and 1/5 mM 4-AP/TEA-Cl solutions with 62.5/6.25 µM O/V were similarly prepared
as lower concentration conditions of KV channel inhibitors. At lower concentrations,
only CTX3C was tested, whereas at higher concentrations, all the CTX congeners were
tested. Each DMSO stock solution of CTXs (CTX1B, 6.5 ng/mL; CTX3C, 6.36 ng/mL;
CTX4A, 27.55 ng/mL; 52-epi-54-deoxyCTX1B, 5.84 ng/mL; 54-deoxyCTX1B, 4.89 ng/mL;
51-hydroxyCTX3C, 4.53 ng/mL) was diluted 100-fold with 62.5/6.25 µM O/V alone (for
comparison with the conventional condition) or O/V + KV solutions, which were then
serially diluted (1:2.5) nine times with the exact solutions.

The test solutions for each condition were assayed in the same manner as in Sec-
tion 5.3.2, to obtain dose–response curves for the CTX congeners under each inhibitor
condition. The cell viability of the control wells (N2a cells + inhibitors, no CTXs added)
was defined as 100%, and the cell viability for each CTX concentration was calculated.
The EC50s were determined by curve fitting with a variable slope–four parameter logistic
regression model using GraphPad Prism version 10.0.2 (GraphPad Software, San Diego,
CA, USA), according to the following Equation (1):

Y = Bottom + (Top − Bottom)/(1 + 10ˆ((LogEC50 − LogX) × HillSlope)) (1)

Statistical analyses for EC50s were by one-way ANOVA with Dunnett’s multiple
comparison tests. All data were considered statistically significant at p < 0.05.
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