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Abstract: Island tameness results largely from a lack of natural predators. Because some insular
rattlesnake populations lack functional rattles, presumably the consequence of relaxed selection from
reduced predation, we hypothesized that the Santa Catalina Island, California, USA, population of
the southern Pacific rattlesnake (Crotalus helleri, which possesses a functional rattle), would exhibit a
decrement in defensive behavior relative to their mainland counterparts. Contrary to our prediction,
rattlesnakes from the island not only lacked tameness compared to mainland snakes, but instead
exhibited measurably greater levels of defensiveness. Island snakes attempted to bite 4.7 times
more frequently as we endeavored to secure them by hand, and required 2.1-fold more time to be
pinned and captured. When induced to bite a beaker after being grasped, the island snakes also
delivered 2.1-fold greater quantities of venom when controlling for body size. The additional venom
resulted from 2.1-fold larger pulses of venom ejected from the fangs. We found no effects of duration
in captivity (2–36 months), which suggests an absence of long-term habituation of antipredator
behaviors. Breeding bird surveys and Christmas bird counts indicated reduced population densities
of avian predators on Catalina compared to the mainland. However, historical estimates confirmed
that populations of foxes and introduced mammalian predators (cats and pigs) and antagonists
(herbivorous ungulates) substantially exceeded those on the mainland in recent centuries, and
therefore best explain the paradoxically exaggerated defensive behaviors exhibited by Catalina’s
rattlesnakes. These findings augment our understanding of anthropogenic effects on the behaviors of
island animals and underscore how these effects can negatively affect human safety.

Keywords: cloacal gland discharge; island syndrome; raptors; rattling; venom expenditure; Viperidae

Key Contribution: Although island tameness is widely reported and expected of vertebrates, this
study suggests that invasive animals within an island ecosystem can dramatically reverse tameness.

1. Introduction

Many animals that live on islands exhibit a reduced antipredator response, a phe-
nomenon known as “island tameness”. This phenomenon has been recognized, at least
anecdotally, since Darwin’s time [1]. This behavior and associated shifts in the morphology,
physiology, ecology, and life history of insular animals are known collectively as “island
syndrome” [2–5]. Although reductions in the morphological, physiological, and behavioral
traits associated with antipredator defense may be beneficial in environments with few or
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no predators [6–8], island tameness has rendered many island species highly vulnerable to
introduced predators and hunting by humans, resulting in numerous extinctions [9–12].
Due in large part to this vulnerability, an estimated 95% of bird and mammal extinctions
since 1500 Common Era have occurred on islands [13], and insular reptiles have suffered as
well [14–17].

Island tameness results largely from a lack of natural predators [18–22]. In reptiles,
behavioral differences between mainland and insular populations have been attributed
not only to cognitive deficits in recognizing potential predators [23], but also to hor-
monal [24,25] and thermoregulatory [26,27] differences underlying the initiation of escape
behavior. Antipredator behaviors can also be influenced by experiential effects arising from
interactions with humans [28–30] or other introduced species [31–36]. These influences can
complicate the assessment of island tameness, especially when alien species are introduced
to an island or an island’s faunal history is unknown.

Venomous animals generally possess a suite of defensive behaviors that include, most
prominently, toxin delivery via injection [37]. Rattlesnakes, for example, exhibit a number
of antipredator behaviors, including procrypsis, escape, head-elevated coiling, rattling,
cloacal gland discharge, bluff strikes, and strikes that include a venomous bite [38–40].
Rattlesnakes use rattling as an aposematic acoustic signal [41–46] and generally resort
to the defensive strike and use of venom only as a measure of last resort [47]. Most
individuals of several insular populations of rattlesnakes lack functional rattles, which has
been interpreted as a consequence of relaxed selection resulting from isolation and reduced
predation [44]. Accordingly, one might expect most island populations of rattlesnakes to
exhibit some degree of island tameness.

The southern Pacific rattlesnake (Crotalus helleri) offers a compelling opportunity to
examine island tameness. The species ranges widely on the southern California mainland,
USA, and extends into northern Baja California, Mexico [48], possibly as far south as Bahia
San Juanico [49]. Insular populations with dwarf forms exist on two Pacific islands: Santa
Catalina Island, California, USA, and Isla Coronado Sur, Baja California, Mexico [46,50]. The
population on Isla Coronado Sur is restricted to approximately 1.5 km2 of the 3 km2 island
due to the steep sides of the island [51], whereas the population on Santa Catalina Island
ranges throughout much of the 194 km2 island. Santa Catalina Island and its rattlesnake
population should not be confused with Isla Santa Catalina in the Gulf of California,
Mexico, which harbors the rattleless rattlesnake, C. catalinensis. Fossil evidence suggests
that rattlesnakes formerly existed on two additional California Channel Islands (San Miguel
and Santa Rosa Islands) in the late Pleistocene [52,53]. Crotalus helleri is part of a larger
clade that includes at least five other species (C. cerberus, C. concolor, C. lutosus, C. oreganus,
and C. viridis) and several subspecies [54]. Most rattlesnakes within the clade are highly
defensive; when encountered, they often rattle immediately and will strike repeatedly, if
necessary, at a persistent threat, especially one that makes physical contact [55–57].

In this study, we compared the defensive behaviors of mainland and Santa Catalina
Island (hereafter referred to as Catalina) populations of the southern Pacific rattlesnake and
inferred a possible cause of the behavioral differences. Although a continental island, along
with seven other major Channel Islands off the southern California coast, Catalina has
never been physically attached to the mainland and has been separated by a broad channel
(currently 32 km) with strong currents [58]. The absence of fossils [59] and genetic analysis
preclude the dating of rattlesnake colonization(s) on Catalina. Storm-associated rafting may
have occasionally augmented the initial rattlesnake population (snakes have been observed
on floating storm debris near the island itself; J. King, pers. obs., and others, pers. comm.),
but the population has likely experienced substantial isolation since the Pleistocene, when
other rattlesnake populations existed on the northern Channel Islands [52,53]. We therefore
hypothesized that Catalina snakes would exhibit behavioral decrements in rattling, cloacal
gland discharge, capture difficulty by a human, biting propensity, and venom expenditure.
The findings showing that C. helleri on Isla Coronado Sur appears to be less risk averse
and potentially more explorative than mainland counterparts [60], and that non-venomous
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gopher snakes on two other Channel Islands exhibit a reduced tail vibration defensive
response compared to mainland counterparts [61], support our hypothesis. Nevertheless,
both natural and introduced snake predators and antagonists exist on Catalina, and these
must be taken into consideration when interpreting differences in behavior that might
be detected. Significant threats to the rattlesnakes include ophiophagous (snake-eating)
snakes, predatory birds, and all relatively large mammal species [46]. We distinguish
between predators, which consume snakes, and antagonists, which may harass and/or kill
snakes but do not consume them. Antagonists include herbivorous ungulates (deer and
other hoofed animals) that can trample rattlesnakes or even stomp them to death [46]. To
better interpret the antipredator behaviors of rattlesnakes, we compared the mainland and
island population densities of these other animals that interact with the snakes.

2. Results

We obtained data on defensive behavior from 20 mainland snakes and 10 Catalina
snakes. However, one snake from each population refused to expulse venom during venom
extraction, thereby reducing the sample size for the three measures of venom. Table 1
compares snake size and defensive behaviors between the two populations. The mainland
snakes averaged 34% larger in size (based on snout–vent length, SVL) than those from
Catalina (p ≤ 0.001; Table 1), which required us to control for body size in all analyses.

Table 1. Body size and antipredator behaviors (mean ± 1 S.E.) exhibited during venom extractions of
mainland (N = 20) and Santa Catalina Island (N = 10), California, USA, populations of the southern
Pacific rattlesnake (Crotalus helleri).

Measure Mainland
(N = 20)

Catalina Island
(N = 10)

Snout–vent length (cm) 91 ± 4 72 ± 3
Rattle before grasping (%) 50.0 50.0
Rattle during grasping (%) 90.0 80.0
Rattle during extraction (%) 80.0 70.0
Cloacal gland discharge (%) 15.0 10.0

Attempted to bite (%) 15.0 70.0
Latency to capture (s) 7.7 ± 1.0 15.8 ± 2.2

Venom expended (mg wet mass) a,b 0.13 ± 0.02 0.27 ± 0.03
Bilateral venom pulses (number) a,c 2.0 ± 0.3 2.5 ± 0.2

Venom per bite (mg) a,b 0.07 ± 0.01 0.15 ± 0.02
a N = 19 (mainland) and 9 (Catalina); one snake in each population refused to deliver venom. b Estimated marginal
means (corrected for body size) are at 85 cm for snout–vent length. c Venom pulses corresponded to a bilateral
bite (i.e., sum of pulses observed from right and left fangs, divided by two); thus, a unilateral bite (pulse from a
single fang) counted as half a bite.

2.1. Snake Rattling

The proportion of rattlesnakes that rattled increased from 50% before pinning for both
populations to 90% during capture for the mainland population and 80% for the Catalina
population (Table 1). Rattling decreased slightly during venom extraction to 80% and 70%
for individuals of the respective populations (Table 1). Logistic regression models indicated
no differences between the populations in propensity to rattle in any of the three sequential
time periods: before being grasped (captured), during grasping (capture), and during
venom extraction (Table 2). Rattling was also independent of snake length and duration in
captivity (Table 2).
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Table 2. Logistic regression models for dichotomous antipredator behaviors of mainland (N = 20)
and Santa Catalina Island (N = 10), California, USA, populations of the southern Pacific rattlesnake
(Crotalus helleri).

Predictors a B SE Wald p-Value Odds Ratio (95% C.I.)

Rattle before grasping (χ2
3 = 2.55, p = 0.47, Nagelkerke R2 = 0.11, 56.7% predicted correctly)

Population 1.08 1.24 0.93 0.336 2.95 (0.33–26.70)
Snake length −0.09 0.07 2.05 0.153 0.91 (0.80–1.04)

Duration captivity 0.002 0.05 0.00 0.961 1.00 (0.91–1.10)
Rattle during grasping (χ2

3 = 2.51, p = 0.47, Nagelkerke R2 = 0.15, 86.7% predicted correctly)
Population 2.50 2.16 1.33 0.248 12.12 (0.18–838.97)

Snake length −0.12 0.12 0.94 0.333 0.89 (0.70–1.13)
Duration captivity −0.05 0.08 0.42 0.518 0.95 (0.82–1.11)
Rattle during extraction (χ2

3 = 1.11, p = 0.78, Nagelkerke R2 = 0.06, 76.7% predicted correctly)
Population 0.30 1.18 0.06 0.800 1.35 (0.13–13.51)

Snake length 0.02 0.07 0.10 0.754 1.02 (0.89–1.17)
Duration captivity −0.05 0.06 0.70 0.402 0.95 (0.85–1.07)
Cloacal gland discharge (χ2

3 = 1.33, p = 0.72, Nagelkerke R2 = 0.08, 86.7% predicted correctly)
Population −0.60 1.74 0.12 0.729 0.55 (0.18–16.65)

Snake length 0.08 010 0.79 0.374 1.09 (0.90–1.31)
Duration captivity −0.05 0.07 0.56 0.456 0.95 (0.83–1.09)
Attempted to bite (χ2

3 = 10.55, p = 0.014, Nagelkerke R2 = 0.41, 80.0% predicted correctly)
Population −4.06 1.81 5.06 0.024 0.02 (0.00–0.59)

Snake length 0.11 0.10 1.21 0.272 1.12 (0.92–1.35)
Duration captivity −0.01 0.06 0.04 0.837 0.99 (0.88–1.11)

a Snake size and duration in captivity were treated as continuous variables.

2.2. Snake Cloacal Gland Discharge

Scent gland discharge by rattlesnakes occurred only during grasping. Just three
mainland snakes (15%) and one Catalina snake (10%) exhibited this behavior (Table 1),
which was also independent of snake length and duration in captivity (Table 2).

2.3. Snake Bite Attempts, Latency to Capture, and Venom Expulsion

Catalina snakes attempted to bite 4.7-fold more often than mainland snakes (p = 0.003;
Table 1). Logistic regression indicated that bite attempts were independent of body size
and duration in captivity (Table 2). A multiple analysis of covariance (MANCOVA) model
comparing the combined dependent variables of latency to capture, venom expended,
the number of bilateral venom pulses (sum of pulses observed from right and left fangs,
divided by two; see Methods), and venom per bite (bite = two pulses) yielded significant
effects for population (Wilks’ λ = 0.44, F4,21 = 6.77, p = 0.001, adjusted multivariate partial
η2 = 0.53) snake length (Wilks’ λ = 0.59, F4,21 = 3.65, p = 0.021, adjusted multivariate partial
η2 = 0.38). Duration in captivity had no effect (Wilks’ λ = 0.91, F4,21 = 0.54, p = 0.71, adjusted
multivariate partial η2 = 0.09).

Post-hoc univariate analysis of covariance (ANCOVA) models revealed that some
dependent variables contributed more to the MANCOVA model outcome than others.
Latency to capture the snake (Table 1) differed significantly between populations (p < 0.001)
and was independent of snake length and duration in captivity (Table 3). Catalina snakes
required 2.1-fold more time to be captured than the mainland snakes (Table 1). Venom
expenditure (Table 1) differed between populations (p = 0.002), but was positively associated
with snake length (p = 0.001; Table 3; Figure 1). When controlling for snake length, the
island snakes delivered 2.1-fold more venom when biting (estimated marginal means at
85 cm for SVL; Table 1). The number of bilateral venom pulses was similar for the two
populations (Table 1) and independent of snake size and duration of captivity (Table 3).
However, the mass of venom per bite (Table 1) differed between populations (p = 0.012)
and was positively associated with snake length (p = 0.002; Table 3, Figure 1). When
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controlling for snake length, the island snakes expulsed 2.1-fold more venom per bilateral
pulse (estimated marginal means at 85 cm for SVL; Table 1).

Table 3. Analysis of covariance (ANCOVA) models for quantitative antipredator behaviors of
mainland (N = 20) and Santa Catalina Island (N = 10), California, USA, populations of the southern
Pacific rattlesnake (Crotalus helleri).

Variables a F-Value b p-Value Partial η2

Latency to capture (s)
Population 16.62 <0.001 0.39

Snake length 0.88 0.358 0.03
Duration captivity 0.33 0.573 0.01

Venom expended (mg)
Population 11.64 0.002 0.33

Snake length 13.62 0.001 0.36
Duration captivity 0.54 0.472 0.02

Bilateral venom pulses (number)
Population 1.99 0.172 0.08

Snake length 0.04 0.843 0.00
Duration captivity 0.00 0.994 0.00

Venom per bite (mg)
Population 7.31 0.012 0.23

Snake length 12.07 0.002 0.34
Duration captivity 0.01 0.922 0.00

a One snake refused to deliver venom; thus, for the three venom variables, N = 19 and 9 for mainland and Santa
Catalina Island populations, respectively. b df = 1.26 for the latency to capture model, and df = 1.24 for the three
venom models.
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Figure 1. Wet mass of venom expended during venom extractions of mainland (N = 19) and Santa
Catalina Island (N = 9) populations of the southern Pacific rattlesnake (Crotalus helleri). Island
specimens delivered significantly more venom than those from the mainland.

2.4. Relative Head Size

A MANCOVA model including both head length and head width as the combined mea-
sure of head size revealed no differences between populations (Wilks’ λ = 1.00, F2,58 = 0.11,
p = 0.89, multivariate partial η2 = 0.00) or sexes (Wilks’ λ = 0.93, F2,58 = 2.33, p = 0.11,
multivariate partial η2 = 0.07). However, relative head size declined with an increase in
body length (Wilks’ λ = 0.11, F2,58 = 226.83, p < 0.001, multivariate partial η2 = 0.89).
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2.5. Mainland versus Island Raptor Abundance

During breeding bird surveys (BBBs) and Christmas bird counts (CBCs), only one
raptor predator of snakes was recorded on Catalina (Buteo jamaicensis), whereas three
bred (Aquila chrysaetos, B. jamaicensis, and B. lineatus) on the mainland and were joined by
six additional species during the winter (B. albonotatus, B. lagopus, B. platypterus, B. regalis,
B. swainsoni, and Parabuteo unicinctus). Raptor density (mean ± 1 S.D.) was significantly less
on Catalina compared to the mainland during both the breeding season (BBSs: 1.29 and
4.25 ± 2.89 birds per survey route, respectively; one-sample t24 = 5.11, p < 0.001, 95% C.I. of
difference = 1.77–4.16, Cohen’s d = 1.02) and winter (CBCs: 0.23 and 0.80 ± 0.33 birds per
party hour, respectively; one-sample t11 = 5.92, p < 0.001, 95% C.I. of difference = 0.36–0.78,
Cohen’s d = 1.71; Figure 2).
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2.6. Mainland versus Island Mammal Abundance

Despite the low diversity of mammalian carnivores and omnivores on Catalina, their
collective density (feral cats [Felis catus]: 3.1–3.9/km2; foxes [Urocyon littoralis catalinae]:
5.7–6.9/km2; feral pigs [Sus scrofa]: 6.5–10.5/km2; Table 4) has, in recent history, proba-
bly exceeded that of natural areas on the mainland. Camera-trap studies across coastal
California suggest that among mammalian carnivores, coyote (Canis latrans; 0.3–0.4/km2

in natural areas; [62]) and bobcat (Lynx rufus; 0.25–1.5/km2; [63]) populations may be the
most dense on the mainland [64]. Estimates from individual locations can nevertheless be
much higher for some of the other carnivores [65,66], which include the American badger
(Taxidea laxus; 0.39–5.0/km2), gray fox (Urocyon cinereoargenteus; 0.4–10.0/km2), long-tailed
weasel (Mustela frenata; 0.38–38/km2), mountain lion (Puma concolor; 0.005–0.048/km2),
raccoon (Procyon lotor; 2.3–20.0/km2), striped skunk (Mephitis mephitis; 1.8–4.8/km2), Vir-
ginia opossum (Didelphis virginiana; 2–116/km2), and western spotted skunk (Spilogale
gracilis; 8.8–40/km2). Some of the smaller mainland mesopredators (e.g., weasel, raccoon,
skunks, and opossum) may pose little threat to rattlesnakes [46], though the snakes may
still respond defensively during encounters. Domestic dogs (Canis lupus familiaris) were
probably common at one time on the island [67], but because there has been no substantial
feral population in recent history, we have no estimates of population size. Feral cats and
pigs also occur in scattered locations on the mainland, but these island densities far exceed
those on the nearby mainland where, for example, areas with 3–4 pigs/km2 would be
exceptional [68].
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Table 4. Potential mammalian predators (cat, fox, and pig) and antagonists (herbivorous ungulates) of
rattlesnakes on Santa Catalina Island (194 km2), California, USA, including dates for introduction to
and removal from the island, and highest historical population estimates (N) and density (island-wide
N/km2). a All are introduced species with the possible exception of the fox.

Species Introduction Removal Highest N Highest
Density Distribution Source

Cat (Felis catus) 1800s extant 600–750 3.1–3.9 island-wide [69]

Island fox
(Urocyon littoralis catalinae) 7100–9200 years ago extant 1115–1342 5.7–6.9 island-wide [70–72]

Pig (Sus scrofa) early 1930s 2004 1260–5000 6.5–25.8 island-wide [73–76]

American bison
(Bison bison) 1924 extant 400–524 2.1–2.7 currently east end [76–79]

Black buck
(Antilope cervicapra)

1967–1973
(uncertain) 2014 <25 ~0.1 east end [80–82]

Cattle (Bos taurus) 1800s 1950s >5225 26.9 island-wide [76,78,83]

Goat (Capra hircus) early 1800s 2003 30,000–50,000 154.6–257.7 island-wide [76,84–86]

Horse (Equus caballus) 1800s unknown 240 1.2 unknown [76]

Mule deer
(Odocoileus hemionus) 1928 extant 2000–3285 5.4–16.9 island-wide [76,87,88]

Sheep (Ovis aries) 1800s 1920s 22,000 113.4 island-wide [76,78,86]
a Domestic dogs (Canis lupus familiaris) were likely common at one time [62], but currently exist in human
residential areas without a substantial feral population.

Perhaps more importantly, population densities of potential antagonists, the herbivo-
rous ungulates, have long been exceptional on Catalina (Table 4). Ungulate densities on the
island in the past two centuries have generally been in the many tens to hundreds of indi-
viduals per km2, compared to mainland (statewide) densities of deer of 4–9/km2 [76,89],
with concentrations of more than 20/km2 in relatively small areas [90,91]. Much smaller
numbers of bighorn sheep (Ovis canadensis) remain on the mainland [92], but their pop-
ulation and that of the regionally extirpated pronghorn (Antilocapra americana [93]) were
undoubtedly greater in prior centuries (no estimates exist).

Humans are both antagonists and predators of rattlesnakes. Catalina historically
supported an estimated 2000–3000 indigenous North Americans [94]. The island currently
supports a human population of 3460 (U.S. Census Bureau estimate for 2020) and close to
1 million visitors annually (Catalina Island Chamber of Commerce and Visitors Bureau,
unpublished data). Because most human activity has been on the island’s periphery,
comparisons of population density to that of the mainland population lack relevance.

3. Discussion

The results of this study unambiguously reveal substantially greater defensiveness
in Catalina rattlesnakes compared to mainland rattlesnakes. Of the nine measures of
antipredator behavior that we quantified, four differed significantly between the two
populations. Snakes from the island population attempted to bite 4.7-fold more frequently
as we endeavored to secure them by hand, and as a result, they required 2.1-fold more time
to be pinned and captured. When induced to bite a membrane-covered beaker after being
grasped, the island snakes ejected a similar number of venom pulses, but delivered 2.1-fold
greater quantities of venom. The additional venom resulted from 2.1-fold larger pulses
of venom being expulsed from the fangs during biting. Importantly, we found no effect
of duration in captivity (ranging from 2–36 months) on any aspect of defensive behavior,
which suggests an absence of long-term habituation and a negligible effect of captive
conditions on the behaviors that we quantified. In the sections that follow, we discuss
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the relevance of each of these behavioral differences and possible causes, particularly in
relation to potential avian and mammalian predators and antagonists.

3.1. Rattling

The rattle of rattlesnakes most likely evolved under pressure from predation to be-
come an aposematic acoustic signal [41,42,44–46,95]. Several island populations in the
Gulf of California (genus Crotalus [44]) and a mainland species of rattlesnake (Sistrurus
miliarius [95]) are largely lacking functional rattles, which has been attributed to relaxed
selection on the interlocking lobes and grooves of adjacent segments, thereby resulting
in loss of the older segment during ecdysis. The theory of relaxed selection, however, is
problematic because morphological vestigialization (loss) of the rattle has been decoupled
from the behavioral and physiological expression of rattling, which still persists in island
populations of rattlesnakes lacking rattles [44]. We expected the Catalina specimens to
rattle less frequently, in part due to comments that we heard from those who live on the
island and from those who have captured them. However, our results provide evidence of
yet another island population showing no decrement in rattling behavior.

3.2. Cloacal Gland Discharge

Snakes occasionally discharge their cloacal gland in a defensive context, though the
function remains unclear. Often coupled with tail rubbing, presumably to spread the
exudate [96], cloacal discharges serve as a noxious defense that may render the snake
unappetizing to a potential predator [46,97]. Cloacal discharge may disrupt or delay the
predatory sequence, or serve as an emetic [98], but while it may deter potential feline
predators [99], it apparently has a negligible effect on potential canine predators [100]. It
may also serve as an alarm pheromone for intraspecific communication [38], particularly
among aggregated gravid females [96]. In garter snakes (genus Thamnophis), cloacal dis-
charge frequency was consistent across variations in predation pressure, environmental
conditions, and snake body size; however, musking propensity differed between the two
species examined, as it occurred more frequently in females than males and was positively
associated with body condition [101]. We noted no difference in propensity to discharge
the scent gland between mainland and island rattlesnakes, and individuals from neither
population relied often on this strategy (10–15% of trials). Studies of defensive behavior
in another crotaline snake, the Cottonmouth (Agkistrodon piscivorus), similarly reported
infrequent use of this tactic [102–104].

3.3. Biting and Venom Expenditure

Rattlesnakes and venomous snakes in general depend heavily on their venomous
bite to defend themselves. Reliance on biting (venom injection) for defense can vary
with the snake’s body size, internal state (e.g., body temperature, recent ingestion, or
pregnancy), microhabitat, proximity to resources (e.g., refugia or recently born young),
environmental conditions (e.g., temperature, cloud cover, and season), perception of threat
intensity, accumulated experience, and other factors [47,102–110]. Under the conditions
tested, Catalina snakes attempted to bite more frequently when we tried to pin and grasp
the snake, which resulted in a greater latency to capture the snake. We consider our actions
toward the snake reasonably comparable to those of a natural predator which might seek to
subdue a snake. Although venomous snake bites may be ineffective against some enemies,
particularly those that possess physiological resistance to the venom [111,112], the bites
can still be painful and fatal bites are sometimes delivered [46,113,114].

When grasped by the head and induced to bite a target, the Catalina snakes expulsed
more venom than mainland snakes when body size was controlled for (Figure 1). The
greater mass of venom injected by Catalina snakes resulted from the delivery of more
venom per pulse rather than by increasing the number of pulses through multiple bites.
These unexpected findings could result from three non-mutually exclusive possibilities:
(1) differences in relative head size, and therefore quantities of venom available to be in-
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jected; (2) a behavioral response corresponding to the level of defensiveness; or (3) selection
favoring the delivery of larger venom doses to compensate for the comparatively smaller
body size of the island snakes. The quantity of venom that rattlesnakes deliver in a bite
corresponds strongly to body size, and therefore head and venom gland size [55,115], but
morphological comparisons revealed no difference in relative head size between the insular
and mainland populations; thus, the first explanation based on differences in relative head
size seems unlikely. Rattlesnakes make decisions about how much venom to inject and
appear to do so in a threat-sensitive manner [55,57], so the second explanation invoking
behavioral modulation of venom delivery seems reasonable. Two additional measures of
defensive behavior were similarly elevated in the island snakes (the number of bite attempts
and latency to capture the snake), supporting our interpretation that venom expenditure
corresponds to the levels of defensiveness. Further investigation is necessary to assess the
third possibility, that the island snakes deliver larger quantities of venom during defensive
bites because of their smaller body size.

3.4. Possible Causes of Increased Defensiveness

After we determined that rattlesnakes from Catalina exhibit paradoxically heightened
levels of defensiveness, we turned our attention to the possible causes. Historically, low
levels of predation pressure on the island can be inferred, for example, from the former
existence of a flightless duck on the island [116]. Although antipredator behaviors of
rattlesnakes [44,117] and other vipers [118] may persist on islands under conditions of
relaxed selection, possibly due to the presence of at least some of the mainland predators
(the multipredator hypothesis [119]), something has caused an exaggerated antipredator
response on Catalina relative to the mainland. Among the naturally occurring candidates
responsible for the exaggerated defensiveness in Catalina rattlesnakes, we can immediately
rule out ophiophagous snakes, which are likely to be no more common than on the main-
land and elicit antipredator responses (head-hiding and body-bridging [120,121]) that are
very different to those we observed and measured. We can also rule out avian predators,
since our analyses of BBS and CBC data confirm that the only significant raptor predators
exist at much lower densities on Catalina than on the mainland. We are left, then, with
the most likely explanation that exceptionally high densities of introduced mammalian
predators and antagonists (Table 4) are responsible for the increased defensive behavior
in Catalina rattlesnakes. Current densities of these animals on Catalina substantially ex-
ceed those of the mainland. Although we do not know historic densities of ungulates on
the mainland, they were unlikely to have approached those in the past two centuries on
Catalina, which have substantially denuded the vegetation and at times exceeded carrying
capacity [76,84,122–124].

Humans are believed to have arrived in the Channel Islands approximately 13,000 years
ago [125] and to have populated Catalina roughly 8000 years ago [94]. Although human
interaction as a contributing factor to snake behavior change seems plausible, as has been
postulated for the elevated wariness or defensiveness of Orange-throated Whiptail Lizards
(Aspidoscelis hyperythra) on islands in the Sea of Cortez [29] and of Aegean Wall Lizards
(Podarcis erhardii) on islands in the Mediterranean Sea [32], we lack information on how
snake–human interactions might differ between the island and the mainland. However,
humans brought with them to the Channel Islands a wealth of mammalian predators and
antagonists (Table 4) whose potential impacts on rattlesnakes are well known [46]. As we
have documented, the collective population density of these mammals has likely exceeded
that of the mainland in recent centuries and up to the present day.

Whether the population differences in behavioral defensiveness resulted from under-
lying genetics or phenotypic plasticity remains unclear. Evidence for both genetic and
experiential mechanisms of island tameness exists for other snakes [105,126,127]. Elevated
wariness and defensiveness in human-hunted populations of the Japanese mamushi (Gloy-
dius blomhoffii), and demonstrated heritability of these behaviors [30], suggests the capacity
for rapid evolution of antipredator behaviors in viperid snakes. Because the snakes that we
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subjected to behavioral tests were all adults acquired from the wild, prior experiences of the
snakes may have contributed to the differences that we measured. However, we found a
negligibly small effect of duration in captivity on defensiveness, suggesting that the behav-
iors that we analyzed were minimally affected by a history of infrequent disturbance and
handling. We therefore suggest that Catalina snakes, in recent centuries, have interacted
with introduced mammals in ways that have enhanced their innate defensiveness. Because
behavior can expose organisms to or protect them from novel selection pressures, behavior
often evolves faster than other traits [128–130]. Thus, behavior has been called the “pace-
maker of evolution,” as it can influence the evolution of morphological, physiological, life
history, and other traits. In the curious case of insular rattlesnakes, enhanced defensiveness
(demonstrated in this study) may evolve more rapidly in a predator- and antagonist-rich
environment than relaxed defensiveness in a relatively predator- and antagonist-free envi-
ronment [44]. Yet under relaxed selection with few predators, morphological changes in
the rattle have appeared to occur more rapidly than behavioral changes associated with
rattle use [44], a finding that seems counterintuitive and invites further investigation.

One additional potential cause for the heightened defensiveness of Catalina rat-
tlesnakes merits consideration. These snakes, which average smaller in size than those
on the mainland, frequently prey upon several rodent species [131] that average larger
in body size than those on the mainland: the native Catalina California ground squir-
rel (Otospermophilus beecheyi nesioticus) [132] and the native or possibly introduced deer
mouse (Peromyscus maniculatus catalinae) [133,134]. Feeding on relatively large rodents
with formidable teeth and claws poses tangible risks to snakes, including injury and
even death [135,136]. To minimize the risks of retaliatory injury, rattlesnakes and other
vipers have evolved unique strategies to acquire dangerous prey, including the release
of prey immediately after the envenomating bite, followed by chemosensory searching
to relocate their meal, which often travels several meters or more before succumbing to
the venom [137,138]. This size differential between predator and prey may have resulted
in selection for relatively larger quantities of venom injected during bites for the island
snakes, and perhaps even heightened defensiveness to protect against retaliation by enven-
omated prey or by adult rodents defending their pups. Further investigation is needed to
examine this possibility. Other explanations for increased rattlesnake defensiveness exist
that we cannot speculate on, including selection for niche specialization in general, mate
competition, and pigmentation (melanin production and aggression are physiologically
linked via the melanocortin system) [139]. Rattlesnake defensiveness might also vary with
environmental and/or social attributes [140].

4. Conclusions

Island ecosystems have provided a wealth of important insights into numerous ecolog-
ical and behavioral phenomena. Among the various expressions of island syndrome, island
tameness as a behavioral trait might be the first to respond to environmental change. Here,
we have shown that an insular population of southern Pacific rattlesnakes exhibits para-
doxically increased defensiveness relative to mainland conspecifics, and we have attributed
it to human introductions of non-native mammalian predators and antagonists. Although
island tameness is widespread among animals, including reptiles [4,19,20,35,36,141], our
study adds to a limited but growing body of evidence that island tameness may be re-
versed when environments undergo anthropogenic changes [29–32]. Our findings further
underscore the need to shift attention from decrements in defensiveness to increments in
defensiveness in island animals, including comparisons of their evolutionary rates.

Anthropogenic changes in animal behavior can have important implications for human
health and can result from three major routes. First, through selective breeding, we have
induced behavioral changes in companion and consumption animals that have been both
beneficial and detrimental to human emotional and nutritional health [142,143]. Second,
our impacts on the environment have altered the behaviors of certain disease hosts or
vectors in ways that have enhanced disease transmission [144]. Third, our impacts on the
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environment have also exacerbated food stress, habituation, and direct conflict in large
predators, herbivores, and primates, resulting in increased attacks on humans [145,146].
Rattlesnakes differ from animals of the third category in that they only bite defensively as a
measure of last resort. Indeed, deliberate provocation is associated with nearly half (45.8%)
of human envenomations by mainland southern California rattlesnakes [147]. Because
the rattlesnakes on Catalina possess a dangerous venom [148,149], their tendency to bite
more readily and inject larger quantities of venom increases the risks associated with
humans interacting with snakes from this population and potentially suffering severe or
even fatal envenomation. Thus, by introducing mammalian predators and antagonists to
Catalina, humans have made encounters with the rattlesnakes more dangerous, a fact that
should be appreciated by those who currently oppose the removal of introduced deer from
Catalina [150]. We suspect the same may be true for islands elsewhere that support both
venomous snakes and high densities of introduced snake predators and antagonists.

5. Materials and Methods
5.1. Snake Subjects

We obtained data from two groups of snakes. We initially collected morphological data,
as part of a separate study, from 46 snakes from the mainland (30–112 cm SVL; 23 males
and 23 females) and 18 snakes from Catalina (27–95 cm SVL; 16 males and 2 females). These
data, obtained by digital calipers, included measures (to nearest 0.1 mm) of head length
from the rostral to the inflection of the neck, and head width at the widest point. We later
subjected those specimens that remained in our collection and some additional mainland
snakes to behavioral tests, which included 20 snakes from the mainland (52–117 cm SVL;
14 males and 6 females; 2–36 months in captivity) and 10 snakes from Catalina (64–88 cm
SVL; 9 males and 1 female; 12–24 months in captivity). Mainland snakes were obtained
from six southern California counties, including Los Angeles (N = 43 for morphology,
15 for behavior), Riverside (15, 2), San Bernardino (14, 3), San Diego (9, 8), Santa Barbara
(2, 0), Ventura (0, 1), and unknown (0, 1). Snakes were housed in terrariums of varying
size (968–5547 cm2 floor space) with either newspaper or pine shavings as a substrate,
and maintained in rooms at 24–28 ◦C. Snakes were regularly fed mice or small rats every
2–3 weeks, and water was provided ad libitum in a small container. We withheld food
from all subjects for 22 d prior to each behavioral trial.

5.2. Snake Behavioral Trials

A trial began when one investigator (always CEP) removed the snake from its home
cage using a snake hook and placed it on a piece of carpet on the floor. Another investigator
(always WKH, who was “blind” to which population the snake was from except for the
largest snakes, which were always from the mainland) pinned the snake with a snake
hook, leaned over to grasp the snake by the head and neck, and then induced the snake
to bite a Parafilm-covered beaker secured to a ring stand [151]. We videotaped each
venom extraction using a Logitech Orbit AS web cam (Logitech, Lausanne, Switzerland;
30 fields/s). While wearing gloves, we subsequently transferred the venom to a pre-
weighed 1.5 µL microcentrifuge tube, which was weighed again to determine the wet mass
of the venom (nearest 0.01 mg) on an electronic analytical balance (model R-160P; Sartorius
Research, Bohemia, NY, USA).

While removing each snake from its cage, we noted all attempts by the snake to bite
and any tail rattling. Once the snake was on the carpet, we recorded the time required
(nearest 1 s) to pin the snake and grasp it, and noted whether the snake ejected musk from
its cloacal glands and again any bite attempts and rattling. During venom extraction, we
also recorded the occurrence of rattling and musk ejection. During field-by-field video
review of the venom extractions, we observed that snakes sometimes delivered unilateral
bites (a venom pulse from a single fang only) in addition to bilateral bites (a venom pulse
from both fangs). We recorded the number of venom pulses corresponding to a bilateral
bite (sum of pulses observed from the right and left fangs, divided by two; [152]). We
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then computed venom expended (wet mass, nearest 0.01 mg) per bilateral venom pulse or
bite [56].

5.3. Populations of Snake Predators and Antagonists

We used existing databases to compare the relative abundance of potential snake
predators and antagonists on Catalina and the mainland. Relevant population data are
lacking for reptile predators, but ample data exist for birds and mammals.

Among reptiles, two ophiophagous snakes occur on Catalina: Diadophis punctatus and
Lampropeltis californiae. Their relative abundance is unlikely to match that of the larger guild
of six ophiophagous snakes on the mainland: Coluber constrictor, Coluber flagellum, Coluber
lateralis, D. punctatus, L. californiae, and Lichanura trivirgata. More importantly, rattlesnakes
exhibit very distinctive antipredator responses to ophiophagous snakes (e.g., head-hiding
and body-bridging) that were neither observed nor measured in this study [120,121]. Thus,
we can rule out predatory snakes as an explanation for any differences in the defensive
behaviors that we measured between mainland and island rattlesnakes.

Among birds, the only southern California taxa likely to exert significant preda-
tory pressure on rattlesnakes are the greater roadrunner (Geococcyx californianus) and an
assortment of raptors, including the golden eagle (A. chrysaetos), hawks of the genera
Buteo and Parabuteo, and the great horned owl (Bubo virginianus) [46]. Of these, only the
hawks reside on Catalina. We obtained the relative population density of island and main-
land raptors (golden eagles and hawks of the genera Buteo and Parabuteo) from breeding
bird survey (http://www.mbr-pwrc.usgs.gov/bbs/bbs.html; accessed on 11 February
2015) and Christmas bird count (http://netapp.audubon.org/CBCObservation/Historical/
ResultsByCount.aspx#; accessed on 4 February 2015) data. Standardized BBS protocols
record all birds detected within 3 min and 0.4 km of 50 points spaced at 0.8 km intervals
along a 39 km route during peak breeding season (May–June). We compared BBS mean
annual raptor counts from Catalina (conducted for nine years during the period 1988–2013)
and all 25 mainland locations from Los Angeles, Orange, Riverside, San Bernardino, San
Diego, Santa Barbara, and Ventura Counties (each conducted from 9 to 36 years during
the period 1966–2013). The CBCs comprise single-day counts by groups of birders within
a 24 km radius during the winter (December–January). We compared CBC mean raptor
counts per party hour from Catalina (54–73 party hours for each of the six years of data
collection during the period 2000–2006) and 12 arbitrarily selected mainland locations from
the same aforementioned counties (8–444 party hours for each of 5–14 years during the
period 2000–2013). No data were available for comparing raptor populations during spring
and fall migration.

Among mammals, the diversity of native snake predators and antagonists is clearly
depauperate on Catalina compared to the mainland [153]. Only the endemic Santa Catalina
Island fox (U. littoralis catalinae) may be native, though some evidence suggests that hu-
mans introduced it from the northern Channel Islands during the middle Holocene [154].
Foxes on the island rarely prey upon snakes [155]; anecdotal reports and photographs
have been shared on social media, though gray foxes (U. cinereoargenteus) on the mainland
occasionally do so [46], and rattlesnakes might still react defensively during encounters.
Three additional predators have been introduced to Catalina, all of which occasionally
prey upon snakes [46]: domestic dogs (C. lupus familiaris), which accompanied the first
human settlers and were likely common at one time [67], though they no longer comprise
a feral population; domestic cats (F. catus), which exist as a substantial feral population
(Table 4); and feral pigs (S. scrofa), which are omnivorous ungulates that were abundant
prior to their recent extirpation in 2004 (Table 4). Six species of herbivorous ungulates have
also been introduced, some of which have been extirpated in recent decades (Table 4). For
mammalian predators and antagonists, we compiled data on the dates of introduction for
island populations and population density estimates of both mainland and island popula-
tions from the published literature. We gleaned additional data from unpublished reports
submitted to the Catalina Conservancy and to the Santa Cruz Island Foundation. Humans

http://www.mbr-pwrc.usgs.gov/bbs/bbs.html
http://netapp.audubon.org/CBCObservation/Historical/ResultsByCount.aspx#
http://netapp.audubon.org/CBCObservation/Historical/ResultsByCount.aspx#
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as both predators and antagonists may have affected to some extent the behavior of main-
land and/or island snakes, but we lack meaningful comparative data to draw inferences.
Nevertheless, we summarize our understanding of human populations on Catalina.

5.4. Analyses

We conducted all statistical analyses using SSPS 13.0 for Windows (Statistical Package
for the Social Sciences, Inc., Chicago, IL, USA), with alpha set at 0.05. We rank-transformed
all quantitative variables (SVL, time in captivity, latency to capture snake, mass of venom,
number of bites, and venom per bite) for the behavioral analyses to conform to parametric
assumptions of normality and homoscedasticity. No transformations were needed for the
analyses of snake morphology and raptor density. We did not apply Bonferroni adjustments
to control for experiment-wise error, because doing so overemphasizes the importance of
null hypothesis testing when effect size is more meaningful, and unacceptably increases
the probability of making type II errors [156].

For rattlesnake behaviors, we analyzed the dichotomous variables (rattle before grasp-
ing, rattle during grasping, rattle during venom extraction, cloacal gland discharge, and
attempted to bite) using binomial logistic regression [157], which allowed us to control for
body size (SVL) and duration in captivity (months) while comparing behaviors between
the two populations. We subjected the continuous variables (latency to capture, venom
expended, bilateral venom pulses, and venom per bite) to general linear models, beginning
with a MANCOVA model [157] that tested the effects of population (between-subjects
factor), SVL (covariate), and duration in captivity (covariate) on the combined dependent
variables of latency to capture, mass of venom, number of bites, and venom per bite. We
then conducted follow-up univariate ANCOVA models [157] for each dependent variable
using the same independent variables (population, SVL, and duration in captivity). We
included SVL as a covariate because defensive behaviors and their habituation in captivity
can vary with snake size [40,104], and the mass of venom expended by snakes is strongly
affected by body size [115]. We also included duration in captivity as a covariate to con-
trol for potential habituation or other effects, though the results were identical when we
excluded it. To test the ANCOVA assumption of homogeneity of regression slopes, we
first tested each model with the inclusion of the interactions between population and the
two covariates, and then removed these terms from the final model since no significant
interactions existed.

To examine relative head size of the two snake populations, we used another MAN-
COVA model that included head length and head width as the combined dependent
variable, sex and population as independent variables, and SVL as a cofactor. Because
relationships were linear and the data met parametric assumptions, we applied no data
transformations. We omitted the interactions of population and sex with SVL from the final
model because we met the assumption of homogeneity of regression slopes.

For mainland versus island comparisons of raptor abundance, we used separate one-
sample t-tests [158] for the BBS and the CBC data. Each test compared the mean for all
mainland BBSs or CBCs to the corresponding values for Catalina.

We further computed effect sizes for all tests, which are independent of sample size
(in contrast to statistical significance), biologically more meaningful, and can be more
readily compared among different data sets and different studies [159]. For one-sample
t-tests, we computed Cohen’s d, with values of 0.2, 0.5, and 0.8 corresponding loosely to
small, medium, and large effects, respectively [160]. For logistic regression, we calculated
odds ratios, which indicate the probability of a switch from one binary state to another
with each unit of change in the independent variable(s). Values smaller or larger than
1.0 correspond to increasingly less likely or more likely events, respectively [157]. For the
general linear models, we computed multivariate partial (for MANCOVA) or partial (for
ANCOVA) eta-squared (η2), with values of ~0.01, ~0.06, and ≥0.14 loosely deemed small,
moderate, and large effects, respectively [160]. Because η2 is upward-biased [161], the η2
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values for main effects summed to >1.0 in the MANCOVA model for behavior; accordingly,
we adjusted the values by dividing each η2 value by the sum of all η2 values [162].
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