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Abstract: The diterpene ester ingenol-3-angelate (referred to as PEP005) is derived from 
the plant Euphorbia peplus. Crude euphorbia extract causes local toxicity and transient 
inflammation when applied topically and has been used in the treatment of warts, skin 
keratoses and skin cancer. PEP005 is a broad range activator of the classical (α, β, γ) and 
novel (δ, ε, η, θ) protein kinase C isoenzymes. Direct pro-apoptotic effects of this drug 
have been demonstrated in several malignant cells, including melanoma cell lines and 
primary human acute myelogenous leukemia cells. At micromolar concentrations required 
to kill melanoma cells this agent causes PKC-independent secondary necrosis. In contrast, 
the killing of leukemic cells occurs in the nanomolar range, requires activation of protein 
kinase C δ (PKCδ) and is specifically associated with translocation of PKCδ from the 
cytoplasm to the nuclear membrane. However, in addition to this pro-apoptotic effect the 
agent seems to have immunostimulatory effects, including: (i) increased chemokine release 
by malignant cells; (ii) a general increase in proliferation and cytokine release by activated 
T cells, including T cells derived from patients with chemotherapy-induced lymphopenia; 
(iii) local infiltration of neutrophils after topical application with increased antibody-
dependent cytotoxicity; and (iv) development of specific anti-cancer immune responses by 
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CD8+ T cells in animal models. Published studies mainly describe effects from in vitro 
investigations or after topical application of the agent, and careful evaluation of the toxicity 
after systemic administration is required before the possible use of this agent in the 
treatment of malignancies other than skin cancers.  

Keywords: cancer-protein kinase C-PEP005 
 

1. Introduction 

A wide range of carcinogenesis-associated molecules are now investigated as possible therapeutic 
targets in human malignancies. These possible targets are usually mediators that show an altered 
expression in cancer cells or they affect essential cancer cell functions, e.g., regulation of proliferation 
or viability [1,2]. The pharmacological agents investigated can be either molecules known to, or 
designed to interact with the possible targets. An alternative strategy is to search for new anticancer 
agents in preparations used in traditional medicine, identify the active compound(s) and characterize 
their molecular effects [3]. 

PEP005 (ingenol 3-angelate) is derived from the plant Euphorbia peplus and crude euphorbia 
extracts have been used for centuries in traditional Thai and Australian medicine for treating various 
skin conditions, including warts, keratoses and cancers [3,4]. Fractionation of the sap yielded several 
macrocyclic diterpenes with cytotoxic activity or the ability to influence cellular differentiation, and 
ingenol-3-angelate thus emerged as a possible anti-cancer agent. This hydrophobic diterpene ester is 
now referred to as PEP005; it is strongly cytotoxic at high concentrations (100 µg/mL) [3] and at lower 
concentrations of 10–100 ng/ mL it is a selective activator of Protein kinase C (PKC) [4]. 

2. The Protein Kinase C Family 

2.1. Classification and Characterization of Protein Kinase C Isoenzymes 

The PKC family was first distinguished by their status as cyclic nucleotide-independent kinases 
[5,6] and is now a complex family of at least 11 phospholipid-dependent serine/threonine kinases with 
distinct functions and tissue distribution [7–10]. PKC isoenzymes consist of a single polypeptide chain 
with a C-terminal kinase domain and a regulatory N-terminal domain that interacts with 
phosphatidylserine, Ca2+, diacylglycerol, phorbol ester and/or other lipids [9]. The PKCs can be 
activated by a wide range of signals, including release of second messengers during lipid-mediated 
signaling, other signaling pathways like the PI3K-pathway, direct molecular binding to for example 
ceramide, crosstalk between PKC isoenzymes, reactive oxygen species or proteolytic cleavage by 
caspases (for references see [8]). PKCs have been regarded as possible participants in carcinogenesis, 
even though PKC mutations are very uncommon in human cancers [8]. Members of the PKC family 
are classified as conventional, novel or atypical PKCs, depending upon their co-factor requirements 
(Table 1) [7]. It can also be seen from the table that the various PKCs have different effects on 
apoptosis, though most isoenzymes have anti-apoptotic effects [11].  
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Table 1. Classification of PKC isoforms (8–11). 

 Classical isoforms 
cPKC 

Novel isoforms 
nPKC 

Atypical isoforms 
aPKC 

Members α, βI, βII, γ δ, ε, η, μ, θ ζ, ι/λ 
 

Phorbol ester 
activation 

Yes Yes No 

Regulatory cofactors Diacylglycerol 
Phosphatidyl-serine 
Ca 

Diacylglycerol 
Ca-independent 

Independent of Ca and 
diacylglycerol  
 

Effect on apoptosis Antiapoptotic: α, βI, βII 
 

Antiapoptotic: ε 
Proapoptotic: δ 

Antiapoptotic: ζ 

Although PKC mutations are very uncommon in human cancers, the expression of various PKCs, 
including PKCδ, is often altered in human cancers, as illustrated by the data summarized in Table 2  
[12–36]. Under physiological conditions triggering of phospholipase C activation leads to increased 
Ca2+ and diacylglycerol levels in the cell. These mediators can activate PKC, leading to a wide range 
of cellular events, depending on the isoenzyme activated [37,38]. In cancer, PKCα and β have been 
linked to increased invasion, proliferation, drug resistance and genetic instability [37], and like PKCε, 
they are thought to be oncogenes [39]. PEP005 is a PKC agonist primarily achieving its pro-apoptotic 
effects through PKCδ, but its effects on intracellular signaling networks will also be influenced by the 
levels and activation of the other PKCs. 

Table 2. Altered PKC expression in human cancers. 

PKC isoform Tumor Type Expression References 
Classical 
PKC-α Bladder Increased [12]  
 Brain Decreased [13]  
 Brain Increased [14] 
 Breast Decreased [15,16]  
 Ovarian Decreased [17]  
 Renal Decreased [18]  
 Colon Decreased [19]  
 T-cell leukemia Decreased [20]  

PKC-β Bladder Decreased [12]  
 Colon Decreased [21–23] 
 Prostate Decreased [24]  
 T-cell leukemia Decreased [20]  
 Melanoma Decreased [25]  
PKC-βI Bladder Decreased [26]  
PKC-βII Bladder Decreased [27]  
 Colon Decreased [28]  
 DLBCL Increased [29]  
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Table 2. Cont. 

Novel 
PKC-δ Bladder Decreased [12,26,27] 
 Brain Decreased [14]  
 Colon Increased [23]  
 Squamous cell 

carcinoma 
Decreased [30]  

PKC-ε Bladder Increased [12]  
 Brain Increased [31]  
 Breast Increased [32]  
 Colon Decreased [23]  
 Prostate Increased [24]  
 Thyroid Decreased [33]  
PKC-η Breast Decreased [34,35]  
 Colon Decreased [21]  
 Renal Increased [18] 
PKC-θ Gastrointestinal stromal 

tumor 
Increased [36]  

2.2. PKCδ and the Effects of PEP005 

PEP005 is an activator of novel and classical PKC isoenzymes but its pro-apoptotic effects in 
leukemic cells rely upon the activation of PKCδ and its translocation from the cytoplasm to the plasma 
membrane, nuclear membrane and mitochondrial membrane in CHO-K1 cells and AML cell lines [4]. 
PKCδ activation can slow cell proliferation, induce cell cycle arrest and enhance differentiation in 
various undifferentiated cell lines. It also promotes apoptosis of malignant cells through: (i) activation 
of caspases and (ii) increased stability of p53 due to activation of IκB-kinase and thereby increased 
p53 protein expression despite reduced p53 transcription [37,39–41]. In addition to these functions, 
PKCδ has been reported to phosphorylate up to 10 different signaling molecules, in addition to 
mitochondrial and nuclear proteins [39–51]. For example, it has been shown that in response to 
apoptotic stimuli such as cytarabine, PKCδ translocates to the nucleus where it co-localizes with and 
phosphorylates lamin B leading to dissolution of the nuclear lamina, and that this could be reduced 
following PKCδ inhibition. These signals can result in a broad variety of cellular effects, together 
supporting the hypothesis that PKCδ activity plays a role in regulating the balance between cell 
proliferation and apoptosis [38–51]. 

PKCδ-/- mice develop normally and are fertile, suggesting that PKCδ plays minor roles during 
development, or that its actions can be taken over by another PKC isoenzyme [42,48]. In contrast, 
PKCδ seems to play important roles in normal hematopoiesis and oncogenesis. PKC isoforms α, βI, δ, 
ε, ζ and η are all expressed in myeloid cells [38]. Recently, in vitro studies have suggested that PKCδ 
together with PKCα can be essential for monocyte differentiation [42,43]. The human PKCδ gene is 
located on the short arm of chromosome 3 in a region where there is loss of heterozygosity in many 
epithelial cancers, suggesting that down regulation of PKCδ contributes to tumor progression 
[41,43,44,51]. On the other hand, elevated PKCδ expression has been described in multiple myeloma 
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[40], and overexpression of phosphorylated-PKC is found in nearly half of acute myelogenous 
leukemia (AML) patients [42].  

The molecular structure of the PKCδ isoenzyme is shown in Figure 1 [45]. The intracellular 
compartmentalization of PKCδ depends upon its post-transcriptional modulation, and PKCδ-mediated 
signaling has pro-apoptotic effects through several pathways (Figure 2) [11,46,47]. Briefly, 
translocation of the enzyme from the cytoplasm to the nucleus seems crucial to its pro-apoptotic 
actions. Initial phosphorylation of the enzyme on tyrosine residues occurs in response to apoptotic 
stimuli and activated PKCδ accumulates in the nucleus together with activated caspase 3. PKCδ is 
cleaved by this caspase and a catalytic fragment is thereby formed. This fragment has constitutive 
activity, remains in the nucleus and induces apoptosis possibly through phosphorylation of apoptosis-
regulating proteins. An alternative pro-apoptotic pathway is mediated through the endoplasmic 
reticulum and mitochondria (Figure 2). 

Figure 1. The molecular structure of PKCδ (adapted from [45]). The molecule has a 
regulatory and a kinase domain. The Novel C2 domain of the regulatory part is Ca2+ 
insensitive in contrast to the conventional PKC’s C2 domains. The C1a and C1b parts can 
bind diacylglycerol (DAG) as well as phorbol esters. The pseudosubstrate (PS) domain has 
structural similarities to the substrate of the kinase domain and binds to the active site of 
the kinase domain. Binding of C2 and C1 to membrane structures will release the PS 
domain from the active site and make substrate binding possible. The Hinge domain is the 
cleavage site for Caspase 3, this cleavage occurs in the nucleus and results in the release of 
the δ-catalytic fragment (δCF) that corresponds to the kinase domain. Phosphorylation of 
several tyrosine and serine residues both in regulatory and kinase domain has been 
described. The overall phosphorylation pattern determines the intracellular 
compartmentalization of the enzyme. Among the kinases involved in phosphorylation of 
PKCδ are the non-receptor tyrosine kinases Abl and Src like kinase-Lyn. 

 

Several PKC isoenzymes show altered expression in human cancers as summarized in Table 2  
[12–36]. Moreover, as some of these isoenzymes can have anti-apoptotic effects, whereas PKCδ is 
regarded as an important pro-apoptotic mediator, the ultimate outcome of altered expression will 
depend upon the balance between the activity of pro- and anti-apoptotic PKCs. [11,46,47]. In these 
models PKCα and PKCβ had anti-apoptotic effects, and suppression of these enzymes caused 
induction of apoptosis with upregulation of pro-apoptotic PKCδ [46]. However, overexpression of 
PKCδ alone was not sufficient for induction of apoptosis. These observations clearly illustrate that the 
crosstalk between pro- and anti-apoptotic PKC isoforms is important, and the final effect of the  
PKC-agonist PEP005 may therefore depend upon the balance between the various isoenzymes present 
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within a tumor and the drug may be less effective in those tumors with increased levels of the  
anti-apoptotic isoforms (Table 2). 

Figure 2. Intracellular compartmentalization of PKCδ. Phosphoinositide dependent kinase 
1 (PDK1) is responsible for the initial activating phosphorylation of PKCδ; this enzyme 
can also phosphorylate PKCα and PKCβ as an initial activating event for these enzymes. If 
a pro-apoptotic signal is involved the activated PKCδ is thereafter translocated either to the 
nucleus or to the endoplasmic reticulum (ER). After nuclear translocation caspase 3 
cleavage results in the formation of the δCF fragment that has a pro-apoptotic effect either 
(i) via upregulation of Bax and subsequent mitochondrial release of cytochrome c, or (ii) 
via the cytoplasmatic mediators STAT1 and p73. Alternatively, the activated PKCδ can be 
exported from the nucleus by a mechanism involving dephosphorylation and subsequent 
molecular stabilization by Heat shock protein 70 (HSP70). The translocation to ER is 
initiated through cytoplasmatic association of activated PKCδ with the Abl kinase; this 
results in PKCδ phosphorylation and translocation of the p-PKCδ-Abl complex to ER 
where pro-apoptotic signaling is initiated either through Bax or through further 
translocation of the complex to the mitochondria [11,45–47]. 

 

2.3. The Phenotype of PKCδ Null Mice 

As stated above PKCδ-/- mice develop normally and are fertile [42–44]. However, studies using 
PKCδ null mice (PKCδ-/-) have given important insight into the role of PKCδ in vivo. Studies by 
Leitges and colleagues showed that vein segments from PKCδ-/- mice, subsequently grafted onto the 
carotid arteries of recipient mice (either PKCδ-/- or PKCδ+/+), lead to more severe atherosclerosis than 
was seen with PKCδ+/+ vein grafts [44]. The authors went on to show that atherosclerotic lesions in 
PKCδ-/- mice contained significantly more smooth muscle cells (SMCs) than were found in the wild-
type animals, and that this increased number of cells correlated with decreased SMC death in the 
lesions of PKCδ-/- mice [44]. Finally, the authors demonstrated that SMCs from PKCδ-/- mice were 
resistant to cell death after treatment with a number of apoptosis-inducing stimuli, including UV light, 
H2O2, and TNF-α [44]. A more recent study by Humphries and colleagues showed that γ-irradiation 
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induced apoptosis of parotid glands was reduced by 60% in PKCδ-/- mice when compared to wild-type 
mice [48]. It was shown that primary parotid cells from PKCδ-/- mice were defective in mitochondrial 
dependent apoptosis, as shown by a suppression of etoposide-induced cytochrome-c release. 
Moreover, apoptotic responsiveness was restored by re-introduction of PKCδ [49]. Both of these 
studies demonstrate a pro-apoptotic role of PKCδ in vivo. Other work with PKCδ-/- mice has 
demonstrated a role for PKCδ in the negative regulation of B-cell proliferation [50]. In this study, mice 
that lacked PKCδ exhibited an expansion of B-lymphocytes leading to the formation of germinal 
centres in the absence of stimulation, and the rate of proliferation of B-lymphocytes in response to 
stimulation was greater in the PKCδ-/- mice [49–50]. Similar studies showed that PKCδ deficiency 
prevented B-cell tolerance, allowing maturation and terminal differentiation of self reactive B-cells in 
the presence of tolerizing antigens [50]. Whether this was due to diminished apoptosis was  
not investigated.  

3. The Importance of Neutrophil Recruitment and Humoral Immunity after Topical Application 
of Pep005 for Skin Cancer 

Human neutrophils express the conventional PKCs α, βI, βII, the novel PKC δ and the atypical 
PKCζ, and PKCs are important in neutrophil function [9]. PKC is involved in the activation of 
integrins as well as other adhesion molecules; it associates with several cytoskeletal components and 
thereby forms a functional bridge between the plasma membrane and the cytoskeleton.  

3.1. PEP005 EFFECTS on Endothelial Cells 

The recruitment of neutrophils to sites of inflammation usually occurs across the endothelial cells in 
postcapillary venules [52–54]. PEP005 induces the expression of IL1β, TNF-α and the neutrophil 
chemotactic chemokine CXCL8 in mouse normal skin and skin tumors as well as in human 
keratinocytes, fibroblasts and melanoma cells [55]. These cytokines may then: (i) activate neighboring 
endothelial cells and thereby favor adhesion and transendothelial migration of circulating leukocytes; 
and (ii) create a chemotactic CXCL8 gradient that favors local recruitment of neutrophils [56].  

An additional mechanism for PEP005-induced recruitment of neutrophils could be direct effects on 
the endothelial cells with increased expression of adhesion molecules and/or the induction of 
neutrophil-chemotactic cytokines. A recent study described increased transcriptional upregulation of 
the expression of E-selectin, ICAM-1 and CXCL8 in umbilical vein endothelial cells after exposure to 
PEP005 [56]. When using a flow-based adhesion assay PEP005 then caused increased adhesion of 
neutrophils to a level that was comparable to endothelial cells activated with TNF-α. The adhesion was 
dependent on E-selectin, was accompanied by a translocation of PKCδ from the cytosol to the 
perinuclear membrane, and siRNA knockdown of PKCδ abolished neutrophil recruitment [56].  

Taken together these results suggest that PEP005 causes local recruitment of neutrophils through: 
(i) direct effects on endothelial cells with increased adhesion; (ii) indirect effects on the endothelial 
cells through local release of activating cytokines from neighboring cells; and (iii) the release of 
neutrophil chemotactic CXCL8 by endothelial cells and perivascular cells. Although one cannot 
exclude that umbilical cord and microvascular endothelial cells show functional differences, it seems 
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likely that all three mechanisms contribute to the inflammatory response to topical application  
of PEP005. 

3.2. The Anticancer Effect of Neutrophils after Topical Application of PEP005 

Topical treatment of skin tumors with PEP005 induces cancer cell necrosis followed by local 
inflammation characterized by neutrophil infiltration and release of reactive oxygen species [55]. The 
treatment also increases the levels of antitumor antibodies and thereby enhances tumor cell killing by 
antibody-dependent neutrophil cytotoxicity. The following observations have been made after 
implantation of tumor cells in mice followed by topical PEP005 treatment [3,55]: 

- Topical application of PEP005 can cure implanted skin cancers without later relapse in the T 
cell deficient Foxn1nu mice. This effect is associated with local macroscopic inflammation due 
to leukocyte infiltration dominated by neutrophils. After antibody-depletion of neutrophils 
topical PEP005 treatment caused a similar initial ablation, but tumors later re-emerged. 

- The neutrophil extravasation into the inflamed sites is severely impaired in CD18-deficient 
mice; topical treatment of implanted tumors in these animals was associated with initial cure 
followed by a weak local inflammation and later tumor relapse. 

- NK cells and macrophages are present in Foxn1nu mice, and macrophages are seen in PEP005 
induced infiltrates. The local inflammation and relapse rate were not altered by depletion of NK 
cells. Neither inflammation nor relapse risk was altered for tumors implanted in 
Csfmop/Csfmop mice that lack functional M-CSF and therefore are severely monocytopenic.  

- The effect of topical PEP005 was investigated for LK2 tumors implanted in SCID mice that 
lack a humoral immune system [55]. Tumors grew at similar rates and the initial tumor-ablative 
effect and local inflammatory reactions were similar to Foxn1nu mice, but a high relapse rate 
was observed for the B cell-depleted mice. 

Taken together these results suggest that topical application of PEP005 to skin tumors mediates 
anticancer effects through three distinct phases (Figure 3). Firstly, the initial tumor ablation is caused 
by a direct effect of the drug and local production of inflammatory cytokines [55]. The second phase is 
characterized by local inflammation due to neutrophil infiltration. During the third and last phase 
tumor-reactive antibodies are induced and relapses are avoided through antibody-dependent neutrophil 
cytotoxicity that eliminates remaining cancer cells [55]. 

3.3. Clinical Studies of PEP005 in the Treatment of Skin Cancer 

Two randomized studies have investigated the short-course use of topical PEP005 in the treatment 
of actinic keratosis, a premalignant lesion that can progress to invasive squamous cell carcinoma 
[57,58]. Both studies concluded that topical application was effective and caused by local induction of 
necrosis and inflammation. The safety profile seems favorable, and treatment-related scarring was not 
a major problem. Thus, these studies support the conclusions from animal studies that topical PEP005 
in the treatment of skin cancer is safe and effective and without systemic toxicity [3]. 
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Figure 3. Effects of PEP005 in experimental skin cancer. (LEFT) Topical application of 
PEP005 causes high local drug concentrations with two direct effects; endothelial cell 
activation with neutrophil adhesion; and (ii) direct induction of necrosis in the malignant 
cells. (MIDDLE) There is transmigration and local neutrophil recruitment with a local 
inflammation. (RIGHT) Finally there is an antitumor humoral immune response leading to 
antibody-dependent cytotoxicity and eradication of residual cancer cells. 

 

4. Antileukemic Effects of Pep005 

4.1. Effects of PEP005 on Acute Myelogenous Leukemia Cells 

Acute myelogenous leukemia (AML) is the human malignancy where the effects of low-dose 
PEP005 have been most extensively studied [59,60]. In most of these experiments PEP005 was used at 
a final concentration of 20 nM. The following effects were described for primary AML cells [59,60]: 

- Chemokine release. Primary human AML cells show constitutive release of a wide range of 
chemokines [61,62]. PEP005 causes increased release of both CCL and CXCL chemokines, 
including CXCL8 that also was released at increased levels by skin cells after topical 
application (see above). The chemokines released at increased levels are pro-angiogenic and 
chemotactic not only for neutrophils but also for T cells and monocytes. 

- Chemokine receptor expression. PEP005 has only minor effects on the expression of most CCR 
and CXCR receptors (CCR1-3, CCR5, CXCR2, 3), the only exception being CXCR4 that 
shows decreased expression. CXCR4 is one of the two receptors for the CXCL12 chemokine 
that is usually not released or only released at low levels by primary human AML cells [61]. 
However, it is released by bone marrow stromal cells [62]. The CXCL12/CXCR4 system is 
important for AML cell migration and CXCR4 expression seems to have an adverse prognostic 
impact in AML [63]. For this reason the PEP005 induced reduction in CXCR4 expression 
should possibly be regarded as an anti-leukemic effect. 
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- Cytokine release. Other cytokines are also released at higher levels, including Hepatocyte 
growth factor (HGF) and Granulocyte-macrophage colony-stimulating factor (GM-CSF) 
[59,60]. 

- Differentiation. PEP005 decreases the expression of stem cell markers (including CXCR4) and 
increases the expression of lineage-associated markers, an observation consistent with 
differentiation induction. 

- Apoptosis regulation. PEP005 increases the expression of Bax and the activation of caspase 3. 
These pro-apoptotic effects are seen over a wide concentration range, whereas no induction of 
apoptosis was evident for normal CD34+ hematopoietic cells when testing concentrations up to 
200 nM. 

- Intracellular signaling. The effect in AML cells is mediated through a PKCδ agonistic effect. 
The ERK1/2 pathway then seems to be important for the increased chemokine release together 
with increased expression of the NFκB subunits p50, p52 and p65. 

Thus, the effect of PEP005 at these relatively low concentrations is mediated through induction of 
apoptosis and differentiation.  

4.2. The Role of PKC in Other Leukemias 

The effect of PEP005 has been investigated only in AML, but various PKC isoenzymes also seem 
to be important in other leukemias as reviewed by Redig and Platanias [8]. In chronic lymphocytic 
leukemia (CLL) several PKCs are expressed in cells from most patients, including PKCβ, PKCγ, 
PKCδ and PKCζ and for some patients also PKCα, PKCι and PKCε. Global PKC inhibition induces 
apoptosis in CLL cells. So far there is no evidence for an important role of PKCδ in CLL and PKCα 
seems to be more important in regulation of proliferation and apoptosis in these cells [64]. Thus, the 
balance between pro- and anti-apoptotic isoforms may be important not only in solid tumors (Table 2) 
but also in hematological malignancies. The possible importance of PKC for disease development or 
chemosensitivity in other leukemias remains to be clarified. 

5. Effects of PEP005 in Solid Tumors 

5.1. Pharmacological in Vitro Studies 

The studies described above demonstrate that PEP005 has an anticancer effect in different 
malignancies, but it should be emphasized that human cancer cells can also be generally resistant or 
the pro-apoptotic effect may be context-dependent [65]. In a recent study the effect of PEP005 on 
TRAIL (Tumor necrosis factor related apoptosis inducing ligand)-induced apoptosis was examined in 
human melanoma cell lines [66]. Enhancing or inhibitory effects on TRAIL-induced apoptosis were 
then observed depending on the cell line investigated, and the authors suggested that the effect of 
PEP005 in these models is not dependent on PKCδ alone but also on low expression of PKCε.  

Another study described induction of senescence in melanoma cells after in vitro exposure to 
PEP005; this additional pharmacological effect was observed for 20% of the cell lines [67]. This 
growth arrest involved signaling through ERK, the same pathway that seems responsible for the pro-
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apoptotic and chemokine-increasing effects in AML cells (see above). The growth arrest seen with 
PEP005 treatment consisted of accumulation of cells in G1 phase for up to 24 hours after in vitro 
exposure. Optimal combination of PEP005 with conventional cytotoxic drugs therefore seems to 
require a lag-time between exposure to the different drugs [67]. 

Resistance mechanisms to PEP005 have also been investigated in colon cancer cell lines that were 
cross-resistant to several chemotherapeutics [68]. PEP005 resistance seemed dependent on high 
expression of the small vasoactive peptide E1 that stimulates proliferation of colorectal cancer cells via 
the ETRA receptor. Other studies in colon cancer cells suggest that PEP005 can affect signaling 
through several pathways with increased phosphorylation of PKCδ, Raf1, ERK1/2, c-jun, p38, 
mitogen-activated protein kinase (MAPK) and PTEN [69]. These authors also described that PEP005 
reduced the expression of PKCα and reduced the levels of the active phosphorylated form of Protein 
kinase B.  

Taken together these observations suggest that PEP005 can affect several intracellular signaling 
pathways and that resistance may occur dependent upon the differential activity of pro- and anti-
apoptotic pathways in individual patients and between different malignancies.  

5.2. Studies in Animal Models 

The effect of topical PEP005 has also been tested for other malignancies after skin implantation in 
Foxn1nu mice [70]. These experiments demonstrated that PEP005 was effective not only against 
squamous cell carcinoma cells but also cells derived from human and murine melanoma, murine lung 
carcinoma, human prostate cancer and human cervical carcinoma [3]. Additional in vitro studies 
demonstrated that the drug could kill human breast cancer cells and T-leukemia cells, and for all these 
cell types the LD90s seemed comparable. The mechanisms behind the effects seem to be 
destabilization of endocytosed vesicles followed by endosome disruption with release of calcium into 
the cytoplasm and thereby mitochondrial swelling, disturbed energy metabolism, loss of mitochondrial 
membrane potential, rapid plasma membrane perturbation and cell death due to necrosis [3]. 

5.3. The Possibility of Topical Application for Other Cancers  

Another possibility for topical treatment is bladder cancer [3]. The experience so far is limited, but 
in vitro studies suggest that normal urothelial cells may be less sensitive than bladder cancer cells. 
However, initial animal studies will be required because frequent inspection of the local inflammation 
is not possible in bladder cancer, and if severe hematuria occurred this complication may require 
specific therapeutic intervention.  

6. Immunomodulatory Effects of PEP005 

The increased release of chemotactic chemokines that enhance recruitment of various leukocytes by 
PEP005 treated AML cells must be regarded as an immunostimulatory effect (Figure 3). The effects on 
neutrophils are described above. In addition PEP005 has direct T cell effects in AML derived cells 
resulting in: (i) increased proliferative T cell responses in cells from patients with untreated disease 
and patients with severe chemotherapy-induced panleukopenia, including severe T lymphopenia 
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[3,71]; and (ii) increased release of several cytokines by activated T cells, including IFNγ, GM-CSF, 
IL-2, IL-10, IL-13 and TNF-α, in cells from AML patients with chemotherapy-induced cytopenia (72). 
Thus, PEP005 in vitro seems to have both anti-leukemic and immunostimulatory effects in cells from 
AML patients and if this is extended to the in vivo situation, the immunostimulation could also include 
indirect effects through increased T cell recruitment [59] and direct T cell stimulatory effects [71,72]. 

Even though the early animal studies concluded that elimination of implanted tumors in mice were 
dependent on neutrophils and B cells (see above), a recent report reported that specific T cell responses 
can also be induced following local treatment [73]. Induction of a tumor-specific CD8+ response by 
PEP005 was observed, and this response contributed to regression of distant metastases. PEP005 was 
also found to have adjuvant properties and upregulated the expression of T cell costimulatory 
molecules CD80 and CD86 on dendritic cells. These observations further demonstrate that PEP005 has 
a broad immunostimulatory effect (Figure 4). 

Figure 4. A summary of direct and indirect anticancer effects of PEP005. PEP005 has 
direct effects on malignant cells leading to either necrosis or apoptosis depending on the 
drug concentration. High concentrations are relevant for topical application, whereas lower 
concentrations are more relevant for leukemic disease. The indirect effects that may 
contribute to the anticancer effects are: (i) increased T cell reactivity, including increased 
cytokine release; (ii) local recruitment of neutrophils, endothelial cell activation contributes 
to this; (iii) induction of anticancer humoral immune responses with enhanced antibody-
dependent cellular cytotoxicity (ADCC). 

 

7. Concluding Remarks: Efficiency versus Toxicity in the future Use of PEP005 in Cancer 
Treatment  

The overall literature described above suggests that PEP005 can mediate anticancer effects in 
different malignancies (Figure 4), but it should be emphasized that except for local application in skin 
tumors most of the present evidence comes from experimental in vitro studies. In contrast, the 
immunostimulatory effect is documented both in experimental models, in vitro studies of human T 
cells and after topical application in humans. In systemic therapy the immunostimulatory effects 
represent a beneficial effect with regard to anticancer activity but also a potential risk of toxicity if pro-
inflammatory effects predominate. Testing of PEP005 in animal models of leukemia is now required to 
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determine if the compound applied systemically can achieve its anti-leukemic effects without 
significant toxicity.  

7.1. Combination of PEP005 with Conventional Chemotherapy 

PEP005 has been used as a single agent therapy in the topical treatment of skin diseases. 
Preclinical studies suggest that a combination of PKCδ agonists with conventional chemotherapy 
should be considered in human cancer therapy. PKCδ activation is induced after exposure of leukemia 
cells to etoposide, this is also observed after exposure of myeloid leukemia cells to Interferon-α, and in 
addition PKCδ seems important for anthracyclin-induced pro-apoptotic signaling [74,75]. Both 
etoposide and anthracyclines are widely used in the treatment of several other malignancies, including 
lymphomas and solid tumors, and combination therapy may therefore result in additive or supra-
additive effects. 

7.2. The proinflammatory Effects of PEP005, A Possible Risk during Systemic Therapy 

The proinflammatory effect of PEP005 is clearly seen after topical therapy and involves 
neutrophils, B cells and T cells. Generally, great care should be taken if a drug with known 
proinflammatory effects is tried in systemic therapy. A dramatic example was the monoclonal antibody 
TGN1412, an anti-CD28 specific IgG4 antibody [76–79]. Its preclinical screening showed no evidence 
for severe proinflammatory reactivity, but the phase I study in healthy volunteers resulted in severe 
multiorgan failure within hours after administration. The pathogenesis was massive cytokine release. 
Similar reactions have also been observed in other patients and with other agents, e.g., the use of the 
CD20 specific antibody rituximab in the induction treatment of patients with lymphocytic leukemia 
[80]. Thus, such reactions are not specific for the TGN1412 antibody but can also be seen with other 
agents. PEP005 is a drug with known proinflammatory effects, and for these reasons systemic 
administration of PEP005 has to be done with great care. 

The clinical studies of topical PEP005 therapy showed no evidence for systemic effects. However, 
when using topical application to other body surfaces the risk of increased absorption must be 
considered. As an example, PEP005 is now considered for the treatment of bladder cancer [3]. The 
absorption from a relatively large urothelial surface may differ from the skin, and the risk of systemic 
effects has to be considered in the design of future clinical studies.  

The increased chemokine release by AML cells after PEP005 exposure will also affect NK cells 
that express receptors for several CCL and CXCL chemokines [81]. It is not known whether this 
potentially proinflammatory effect will increase the risk of systemic toxicity when tried in AML.  

7.3. Cancer-Directed Delivery of PEP005 in Systemic Therapy 

One possible approach to avoid severe adverse events during systemic administration of 
proinflammatory drugs could be to direct the drug release towards the disease compartment. Several 
strategies may then be possible. In hematological malignancies the disease is usually detected 
throughout a large part of the body. These disorders often infiltrate diffusely throughout the bone 
marrow or affect several lymph node regions. Coupling of drugs to a disease-reactive monoclonal 
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antibody has been used to direct anticancer therapy, e.g., coupling to antibodies against the myeloid 
marker CD33 or the CD20 lymphoid marker [82–84]. Another possibility is to administer the drug in a 
form where drug release is only seen after therapeutic intervention; examples are drug release in a 
visualized tumor though local ultrasound treatment or photochemical therapy [85,86]. 

7.4. Sequential Treatment with Intensive Chemotherapy and PEP005; Decreased Risk for 
Proinflammatory-Induced Adverse Events? 

Another possibility to avoid adverse events due to proinflammatory effects would be to administer 
the drug to severely immunocompromised cancer patients. Patients receiving treatment for acute 
leukemia develop a period of 2-3 weeks with severe leukopenia, and the risk of developing severe side 
effects may be less in such patients [87]. Furthermore, conventional cytotoxic drugs are often most 
effective against proliferating cells, and due to its antiproliferative effects PEP005 should possibly be 
administered sequentially with conventional chemotherapy to achieve a maximal anticancer effect. 
However, it should be emphasized that even patients with severe chemotherapy-induced cytopenia 
have an operative immune system [88], and a risk of proinflammatory side effects, though much 
reduced, is probably present even in such patients. 

7.5. PEP005 effects on the Chemokine System–Advantage or Disadvantage? 

Several chemokines that show altered release after PEP005 exposure have angioregulatory effects 
[59], but whether the drug will have pro- or anti-angiogenic effects will probably depend on several 
factors including: (i) additional local chemokine release by stromal cells, (ii) the overall cancer cell 
chemokine release profile, (iii) genetic polymorphisms within chemokine or chemokine receptor 
genes; and (iv) the concomitant expression of chemokine decoy receptors [59,61,89–93]. Matrix 
metalloproteinase (MMP) 2, 9 and 10 can also be constitutively released by primary human AML cells 
and may also contribute to leukemia-associated bone marrow angiogenesis, but PEP005 has only 
minor effects on this release [94]. 

The increased chemokine release may have proinflammatory effects that may represent a risk of 
toxicity. However, in certain clinical contexts the combination of anticancer and proinflammatory 
effects may be an advantage. Antileukemic immune reactivity is important for the reduced relapse risk 
after allogeneic stem cell transplantation, and increased T cell reactivity may then strengthen this 
antileukemic effect [90,93,95]. Whether modulation of the chemokine system will alter humoral 
immune reactivity is not known [90,96]. Finally, the possible leukemia-enhancing effect by increased 
CXCL12/CXCR4 expression may be counteracted by specific inhibitors [97], and this may become 
true also for other chemokines/chemokine receptors. 

7.6. Final Comment 

PEP005 has both anticancer and proinflammatory effects (Figure 4). These dual effects are an 
advantage in topical skin application, but it is not known whether the proinflammatory effects will 
represent an advantage or a disadvantage with risk of severe systemic toxicity after systemic therapy. 
Only extensive preclinical evaluation in relevant experimental models and careful design of clinical 
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studies can clarify whether systemic use of this drug will be acceptable with regard to the risk of 
toxicity.  
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