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Abstract: Consumption of cruciferous vegetables has been associated with a reduced risk 

in the development of various types of cancer. This has been attributed to the bioactive 

hydrolysis products that are derived from these vegetables, namely isothiocyanates. Erucin 

is one such product derived from rocket salads, which is structurally related to 

sulforaphane, a well-studied broccoli-derived isothiocyanate. In this review, we present 

current knowledge on mechanisms of action of erucin in chemoprevention obtained from 

cell and animal models and relate it to other isothiocyanates. These mechanisms include 

modulation of phase I, II and III detoxification, regulation of cell growth by induction of 

apoptosis and cell cycle arrest, induction of ROS-mechanisms and regulation androgen 

receptor pathways. 
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1. Introduction 

The recent report by the World Cancer Research Fund (WCRF) International together with the 

American Institute of Cancer Research (AICR) underlined that cancer is 30%–40% preventable over 

time by appropriate food and nutrition [1]. A significant part of the research on plant foods and cancer 

OPEN ACCESS 



Toxins 2010, 2              

 

 

594 

prevention suggests the potentially beneficial effect of a diet rich in cruciferous vegetables [2–11]. At 

present, the putative role of cruciferous vegetables on cancer chemoprevention is related to the 

bioactivity of the glucosinolate (GLS) hydrolysis products, namely isothiocyanates (ITCs), suggested 

to protect against the most common cancer types, such as lung, prostate, breast and colon cancers  

[12–22]. Among cruciferous vegetables, rocket salads are widely used in the Mediterranean diet and 

are well-studied as source of healthy phytochemicals [23,24]. The name “rocket” is commonly used to 

indicate different species belonging to the large family of Brassicaceae that are mainly represented by  

Eruca sativa Mill. (also known as salad rocket) and Diplotaxis tenuifolia L. (wild rocket). Both, 

largely distributed in the Mediterranean area, have gradually spread to other latitudes, and are used for 

their pungent flavor as new ingredients in green leafy salads [25].
 
In the last decade, salad species 

consumption has become increasingly important worldwide, encouraged from the positive link 

between eating fresh raw materials and absorption of health-promoting phytochemicals. It has been 

shown that the overall average bioavailability of ITCs is 61% and 10% for raw and cooked cruciferous 

vegetables, respectively [26]. In terms of antioxidant compounds, rocket salad species are a good 

source of vitamins, like vitamin C, carotenoids, and polyphenols, which play a very important role 

among natural antioxidants [27]. Moreover, they are characterized by high GLS content, such as other 

cruciferous vegetables, and their enzymatic degradation products are not only responsible for the 

typical sensory properties of these cruciferous salads, but also of their potentially beneficial effects on 

human health [28]. The 4-(methylthio) butyl isothiocyanate (erucin or ER) has been previously 

identified as a major component derived from rocket salad leaves [29,30], able to affect selectively 

cancer cell growth [31,32]. In this review, we attempt to provide an overview of the biological profile 

of this new cancer chemopreventive phytochemical, underlying its pharmacokinetic and 

pharmacodynamic properties.  

2. Pharmacokinetic and Bioavailability of ER  

The isothiocyanate ER is obtained from enzymatic hydrolysis of glucoerucin, isolated for the first 

time in the 1970s from seeds of Eruca sativa Mill. and overall found at high levels in rocket salad 

species, but also through reduction in vivo of the isothiocyanate sulforaphane (SF), that structurally 

represents its oxidized analog, characteristic of broccoli (Brassica oleracea L. ssp. italica) [33–35] 

(Figure 1).  

The bioavailability of ER has not been studied to date. However, ER and SF are structurally related: 

both have an aliphatic side chain that could support a similar pharmacokinetic fate. SF, such  

as other ITCs, is initially subjected to enzymatic conjugation in vivo with the tripeptide  

γ-glutamylcysteineglycine (GSH) that is catalyzed by glutathione transferases (GSTs) [36]. The rate, 

however, of the enzymatic reaction of ITCs with GSTs was found to differ between structurally closely 

compounds. Among naturally occurring ITCs that differ only in the oxidation state of the sulfur atom 

that is inserted into the carbon chain, SF appears to be the poorest substrate for all four GST 

isoenzymes; in contrast, ER seems to be the best, thus its conjugation with GSH occurs faster 

compared to the reduced analog SF [37]. After conjugation with GSH, ITCs are principally 

metabolized by the mercapturic acid pathway. Mercapturic acids excreted in urine can be used to 

determine the bioavailability of ITCs, because their excretion in urine reflects the intake of GLSs, thus 
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the corresponding uptake of ITCs, after cruciferous vegetables consumption [38]. It has been recently 

reported that ER and SF mercapturic acids are excreted in urine with high excretion levels after four 

hours following consumption of rocket salads (average bioavailability ≈ 94%) [26]. These data have 

underlined the same in vivo kinetics of these structurally related ITCs, showing similar absorption rate 

(ER ka = 2.5 h
−1

, SF ka = 2.0 h
−1

) and excretion rate (ER ka = 0.24 h
−1

, SF ka = 0.19 h
−1

) constants after 

rocket salad consumption. Interestingly, the excretion in urine of ER mercapturic acid has been also 

reported after consumption of cruciferous vegetables, such as broccoli and red and white cabbage that 

do not contain glucoerucin (<0.01 mmol/kg) [26]. After consumption of raw broccoli, not containing 

glucoerucin, both ER and SF mercapturic acids were found in urine samples after four hours with 29% 

and 50% excretion levels, respectively, where the level of excretion of ER mercapturic acid was 

expressed as % of the dose of glucoraphanin (the parent GLS of SF). These finding have shown for the 

first time the metabolic interconversion of SF to ER in humans. Previously, this metabolic reaction has 

been demonstrated in rats, where ER appears to be a major metabolic product of SF [35,39]. 

Approximately 12% of a single dose of SF, following intraperitoneal (ip) administration in rats, was 

eliminated in the urine (after 24 h) as N-acetylcysteine (NAC) conjugates of ER, and 67% of a single 

dose of ER was eliminated as conjugates of SF. These experimental data have assessed the 

reversibility of the oxidation-reduction biotransformation of the sulfur atom in ER and SF, showing 

that the oxidation of the sulfide in ER was a more favored metabolic reaction compare to the reduction 

of the sulfoxide in SF [35]. Moreover, the reduction in vivo of SF to ER has been demonstrated 

following oral administration of SF in rats, supporting the previous finding of intraperitoneal 

administration in rats [39]. Despite an insufficient direct knowledge of the metabolism of ER in 

humans, the in vivo interconversion of ER in SF and their structural similarity support the hypothesis 

about a similar metabolic fate. Thiol-conjugates of SF (thiol-SF) are the major metabolic products 

formed via mercapturic acid pathway in humans [38]. The conjugation of SF with thiols is a reversible 

reaction, and SF release by deconjugation reactions occurs in plasma and tissues under physiological 

conditions [40] and has been measured following broccoli consumption [41,42]. For this reason, the 

chemopreventive activity of both free SF and thiol-SF has been previously studied in vitro using 

different cancer cell lines, to reinforce the in vivo observation that SF and its metabolic products 

inhibit the progression of human cancer [43]. At present, the biological activity of ER has been 

investigated in various human cell lines, but there are no studies showing a similar in vitro bioactivity 

of its metabolic products. 

3. Bioactivity of Rocket salad Species 

Rocket species are well-known in traditional medicine for their therapeutic properties as an 

astringent, diuretic, digestive, emollient, tonic, depurative, laxative, rubefacient and stimulant [44–47]. 

It has been suggested that Eruca sativa seeds exert a beneficial antidiabetic effect in cases of 

chemically induced diabetes mellitus in rats by reducing oxidative stress [48]. Eruca s. extracts have 

also been shown to have a significant protective effect against HgCl2-induced nephrotoxicity in  

rats [49]. In both mentioned studies, the health-promoting activities of rockets plants have been 

partially related to their strong antioxidant properties [50–52]. Recently, anti-ulcer properties of rocket 

salads on experimentally-induced gastric secretion and ulceration in albino rats have been 
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demonstrated [53]. In a study carried out by Lamy and colleagues there is evidence of the strong 

antigenotoxic effect of Eruca s. in benzo[a]pyrene exposed human hepatoma (HepG2) cells [54]. 

Recently, chemoprotective properties of rocket leaves on human colon cancer cells have been also 

investigated [55] (Table 1). 

Figure 1. The 4-(methylthio)butyl isothiocyanate, erucin (ER), is a reduced analog of the 

4-(methylsulfinyl)butyl isothiocyanate, sulforaphane (SF), and its formed both from 

enzymatic hydrolysis of glucoerucin, a glucosinolate found at high levels in rocket species 

(Eruca sativa Mill., Diplotaxis tenuifolia L.) and in vivo reduction of SF, derived from 

broccoli (Brassica oleracea L. ssp italica). 

 

Table 1. Experimental evidence supporting health promoting activity of rocket salad species. 

Rocket species  Health promoting activity  Experimental Model  Reference  

Eruca sativa (seeds)  antidiabetic activity  rats  [48]  

Eruca sativa (seeds)  

 

protective effect against 

HgCl2-induced nephrotoxicity  

rats  [49]  

Eruca sativa (seeds, 

sprouts) 

Eruca sativa (leaves)  

Eruca sativa (leaves)  

antioxidant activity  in vitro assays  [50]  

 

[51] 

[52]  

Eruca sativa (leaves)  anti- ulcer activity  albino rats  [53]  

Eruca sativa  

 

 

antigenotoxic activity  human hepatocellular 

carcinoma HepG2 cell 

line  

[77]  

Eruca sativa (leaves) 

Diplotaxis tenuifolia 

(leaves)  

chemopreventive activity  human colonic cancer 

HT-29 cell line  

[55]  
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4. Cancer Chemoprevention and Treatment with ER: Evidence from Cell and Animal Research 

ER has demonstrated promising anticancer effects in various in vitro and in vivo studies. Zhang and 

colleagues have shown for the first time the protective effects of ER against cancer through induction 

of detoxification enzymes in several mouse tissues [56]. These findings have been consequently 

confirmed in other rat and human tissues and in human cancer cells [57–62]. The effects of ER on 

growth inhibition, cell cycle regulation, and apoptosis induction in prostate, lung, liver and colon 

cancer systems have also been reported [31,54,62,63]. Cell cycle arrest, apoptosis and mitochondrial 

potential depolarization by ER was shown in human leukaemia cells and their multidrug resistance 

variants [64]. Moreover, ER can be considered a naturally occurring ITC able to affect selectively 

cancer cell growth, as shown in human leukemia cells. Fimognari and colleagues have provided 

evidence that ER is able to induce a strong antiproliferative effect on human leukemia cells, but not in 

non-transformed human peripheral T lymphocytes [32]. In a number of studies ER has been shown to 

share similar biological activity with SF [50,58,59,62,64], however SF seems to inhibit the growth of 

both transformed and non-transformed human peripheral T lymphocytes [65]. Although the phenyl 

ethyl isothiocyanate (PEITC) has exhibited selectivity for oncogenically transformed ovarian epithelial 

cells [66], ITC selectivity is an area of great interest that warrants further investigation. 

5. Molecular Mechanisms of Cancer Chemoprevention by ER 

Our understanding of the mechanisms by which bioactive food components may prevent cancer is 

of primary importance for the translation of laboratory findings to clinical approaches. It is becoming 

increasingly clear that many dietary agents, such as ITCs, can retard or prevent the process of 

carcinogenesis by multiple mechanisms perturbing the three major steps, initiation, promotion and 

progression, as well as the later stages, angiogenesis and metastasis (Figure 2).  

Figure 2. Molecular mechanisms of chemoprevention by ITCs, mainly determined through 

work on sulforaphane, an ITC related to erucin. 
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The in vivo interconversion of ER to its structurally related analog SF and their structural similarity 

has suggested a similar biological activity. Since the early 1960s, when SF was discovered, its 

biological activity and molecular targets have been widely investigated in vitro and in vivo [36]. The 

growing body of cell and animal research has contributed to a comprehensive biological profile of SF 

by underlying several modes of action for its anticarcinogenic activity, such as enhancement of 

detoxification of human carcinogens through induction of phase II drug metabolizing enzymes, 

reduction of carcinogen activation through suppression of cytochrome P450-dependent 

monooxygenases, promotion of apoptosis in cancer cells, perturbation in cell cycle progression and 

inhibition of angiogenesis and metastasis [36]. At present, literature data suggest that ER may also 

exert its potential protective effects against human cancer through similar multiple mechanisms that 

will be summarized in the following subsections (Table 2). 

Table 2. Chemopreventive effects of ER and its molecular targets in vitro and in vivo assays. 

Biological activity  Molecular targets  Experimental model  Reference  

Modulation of Phase I 

enzymes 
CYP540 isoforms 

human hepatocellular carcinoma 

HepG2 cell line  

ex vivo rat and human tissues 

[77] 

 

[57,58]  

Induction of Phase II 

enzymes 

quinone reductase (QR) 

glutatione transferase 

(GST) 

mouse tissues 

human tissues 

human colonic cancer CACO-2 cells 

rat and human tissues 

[56] 

[61] 

[62] 

[59] 

Up- regulation of Phase 

III detoxification system 

multidrug resistance 

proteins (MRP- 1 and 2) 

human colonic cancer CACO-2 cells 

human cancer cell lines (HepG2, 

CACO-2, A549)  

[61] 

[91]  

Modulation of cell 

proliferation 

tumour suppressor 

proteins (p53, p21) 

human lung adenocarcinoma A549 cells 

human hepatocellular carcinoma 

HepG2 cells  

[31]  

[54] 

Cell cycle checkpoints 

human colonic cancer CACO-2 cells 

human leukemia cells 

 

[61] 

[64] 

[32] 

pro- apoptotic signals 

human colonic cancer CACO-2 cells 

human leukemia cells 

 

human hepatocellular carcinoma 

HepG2 cells 

[61] 

[64] 

[32] 

[54] 

androgen receptor (AR) human prostate cancer LNCaP cell line  [63] 

reactive oxygen species 

(ROS) 

human acute myeloid leukaemia HL60 

and erythroblastic chronic myelogenous 

leukemia K562 cell lines  

[105] 

 

To determine biological activity using in vitro and in vivo systems, it is essential to know the levels 

of ITCs achieved in systemic circulation following consumption of cruciferous vegetables. Although 

currently there is no evidence for ER and its metabolites in human plasma, there is evidence that SF 

and its metabolites circulate in the plasma of volunteers at a maximum concentration of 2.2 µM at  
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1.5 hours after consumption of one portion of broccoli, of which more than 40% was measured to be free 

SF [42]. This suggests that care should be exercised when extrapolating from cell studies where typical 

concentrations are several fold higher than those obtained through dietary consumption. However, it is 

likely that tissues of the upper gastrointestinal tract will be exposed to concentrations higher than other 

tissues that rely on systemic circulation. Yet, it is also conceivable that in those latter tissues ITCs could 

accumulate, thereby increasing concentrations above those found in systemic circulation. 

5.1. Effects of ER on xenobiotic metabolism processes 

The human metabolism is a major component of the physiological defense response to a large 

number of xenobiotics, including human carcinogens. Lipophilic compounds are converted to water 

soluble and readily excretable metabolites by enzymatic biotransformation reactions involving an 

initial introduction of functional groups (phase I) and the subsequent conjugation of such functional 

groups with endogenous polar molecules (phase II). The final excretion of xenobiotics and their 

metabolites is mediated by phase III transporters, which are subjected, as phase I and II enzymes, to 

regulatory mechanisms of both induction and inhibition. Several studies have identified the correlation 

between expression of various metabolizing enzymes with risk of different cancer types, highlighting 

the role of xenobiotic metabolic enzymes on carcinogenesis [67]. Many dietary compounds can 

directly activate or inhibit these enzymes perturbing xenobiotic metabolism [68].  

Although SF has been shown to inhibit, directly or via a competitive mechanism, expression  

and activity of various phase I cytochrome P450 (CYP450) enzyme isoforms in rat and human  

tissues [69–76], phase I enzyme inhibition by ER has not been demonstrated to date. ER (5–20 μM) 

did not inhibit CYP1A1 protein expression in HepG2 cells after exposure to the human carcinogen 

benzo[a]pyrene (BaP 50 μM), although ER reduced the BaP-induced CYP1A1 activity in a  

dose-dependent manner reaching 25% inhibition at the highest concentration tested. Moreover, 

exposure of HepG2 cells with a concentration of 1 μM ER decreased the BaP-induced DNA migration 

by 50%. Interestingly, one of the ITC constituents of Eruca sativa, identified as erysolin, showed 

stronger activity compared to ER by inhibiting CYP1A1 activity in BaP-treated HepG2 cells by 50% 

at lower concentrations (5 μM) [77]. Despite the evidence from cell models, ER administered to rats at 

a dose of 3mg/kg day, corresponding approximately to human dietary intake, was able to only increase 

CYP1A1 in the lung and CYPB1B1 in both liver and lung tissue [57]. However, in the same study the 

correlation between the protective effects against chemically induced mutagenesis and the decrease of 

the formation of active mutagen intermediates by ER was demonstrated. Similarly, the bioactivation of 

a chemical carcinogen, 2-amino-3-methylimidazo-(4,5-f)quinoline (IQ), in ER pre-treated rats, was 

clearly decreased after ER pre-treatment, as previously shown following treatment with the structurally 

related ITC, SF [57,70].  

These findings obtained in animal systems have been subsequently confirmed in human tissues. 

Hanlon and colleagues [57] studied the modulation of CYP450 enzymes expression and activity in 

human tissues after treatment of human liver slices with ER. CYP450-mediated dealkylations were not 

inhibited following ER treatment, with the exception of ethoxy-and methoxyresorufin slightly 

modulated at the highest concentration (50 µM). Although CYP1A2 and CYP1B1 apoprotein levels 

were markedly up-regulated by ER at a concentration of 10 µM in rat liver, a modest increase was 
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observed in one of the human tissue samples tested. The observed inhibition of phase I enzymes by 

both ER and SF on rat and human tissues at higher concentrations may be related to the toxicity of 

high ITC concentrations rather than a real effect on phase I enzymes. 

Despite the absence of an effect of ER in reducing phase I enzymes, phase II enzymes seem to be 

modulated similarly to SF by ER. Compared to SF, however, ER is less potent in inducing quinone 

reductase (QR) activity in murine hepatoma cells and both QR and glutathione transferase (GST) 

activities in mouse tissues [56]. This might be due to the difference in side chain length and oxidation 

status of sulphide sulphur between the ITC analogs.  

Interestingly, induction of phase II detoxification enzymes by ITCs reported in rat tissues exhibits 

organ selectivity. ER induced GSTs activity in the urinary bladder and in the forestomach, and QR 

activity in the urinary bladder and in the duodenum. In all other organs studied, such as liver, kidney, 

spleen, lung, heart, glandular stomach, jejunum, ileum, cecum, or colon plus rectum of rats, following 

intake of ER, or as well of SF, there was no effect on QR and GST activities. This observed organ 

selectivity could be explained by their pharmacokinetic properties. Since N-acetylcysteine conjugates 

of ITCs are excreted via the kidney, and deconjugated within the urinary bladder resulting in  

re-absorption of free ITCs in the bladder epithelium, the exposure of bladder epithelial cells to the 

ITCs could occur at higher concentration compared to other organs [78,79].  

In a human colon carcinoma model, ER was shown to significantly induce phase II enzymes. Using 

undifferentiated human colonic Caco-2 cells, 20 µM ER was able to induce mRNA expression of QR 

(fold increase, ER = 11.1; SF = 3.3) and UDP-glucuronosyl transferase (UGT1A1) (fold increase,  

ER = 11.6; SF = 5.3), showing a stronger bioactivity than SF. It is already known that induction of 

phase II enzymes by ITCs is associated with the nuclear factor-E2-related factor 2 (Nrf2)-Kelch-like 

ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway [36].  

The cis-acting antioxidant response element (ARE 5‟-(G/A)TGA(G/C)nnnGC(G/A)-3‟) is a specific  

DNA-promoter-binding region, which is found in the 5‟- flanking region of the phase II and 

antioxidant genes [80]. The ARE-driven gene transcription is regulated partially by nuclear factor 

Nrf2, which under normal conditions is sequestered in the cytoplasm by Keap1). In oxidative stress 

conditions or following cellular exposure to certain chemopreventive agents, Nrf2 is dissociated from 

Keap1 and translocated to the nucleus, where it binds to AREs and transactivates phase II detoxifying 

and antioxidant genes. The Nrf2-Keap1-ARE signaling pathway appears to be modulated by ER 

through different kinases, such as phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein 

kinases (MAPKs). Inhibitors of PI3K/Akt and Raf/MEK/ERK pathways decreased ER-induced phase 

II enzyme mRNA in undifferentiated CACO-2 cells [62].  

In a model of lung cancer, both ER and SF were able to induce QR and GST expression and 

activities in rat lung tissue in a dose-dependent manner and with similar potency. QR protein levels 

were increased three-fold in rat lung slices following 24 hours incubations with both dietary ITCs, and 

similarly, but less markedly, GST protein levels were also elevated [58].  

Recently, significant evidence of the inductive effects of ER, and its structurally related analog SF, 

on detoxifying enzymes in human and rat liver have been provided. ER and SF were shown to cause a 

statistically significant induction of QR and GST protein levels and activities in rat liver tissues up to 

50 µM, but higher concentrations returned QR and GST to control levels [59]. SF appeared to be more 

potent than ER. Neither compound had any significant effect in human liver tissues, however, except 
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for a modest increase in NAD(P)H: quinone oxidoreductase-1 (NQO1) protein levels and in both 

GSTα and GSTµ, but not in GSTπ protein levels, in only one of the two human samples. In particular, 

the induction of GST activities by the two dietary compounds was dependent from the substrates used, 

the 1-chloro-2,4-dinitrobenzene (CDNB) that is associated with a number of cytosolic transferases, the 

7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (CNBOD) and the 1,2-dichloro-4-nitrobenzene (DCNB), 

substrates for the α- and π-classes, respectively. ER was able to up-regulate GST activity only when 

CDNB and CNBOD, but not DCNB were used. In contrast, SF was effective when all three substrates 

were used. These findings suggested an isoform-specific induction of GSTs expression and activity by 

both ER and SF in liver from rat and human [59].  

In addition to phase I and phase II modulation, several studies suggest that phase III efflux is also 

modulated by ITCs. Phase III detoxification system involves efflux pumps that actively eliminate toxic 

substances from inside cells. It has been established that membrane proteins, notably multidrug 

resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of 

the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the 

development of multidrug resistance [81–84]. Amino acid sequence analyses revealed that all these 

multidrug-resistance proteins contain multiple transmembrane domains (TMDs) and intracellularly 

localized ATP binding cassette (ABC) [85]. These multiple TMDs form a pore whereby animal cells 

use the intracellularly localized ABC to hydrolyze ATP to provide an energy source to eliminate 

cytotoxic compounds outward and reduce intracellular drug content to a sublethal level. The activities 

of these multidrug transporters can be up-regulated by many extracellular influences. Some of the  

up-regulation mechanisms are somewhat specific to particular drug transporters, but many are general 

and can affect many physiologic pathways [86–88]. Previously, SF was shown to increase MRP2 

mRNA and protein expressions in primary human and rat hepatocytes coordinately with the induction 

of the detoxification enzymes QR and GST [89]. In human colon Caco-2 cells there was also an 

increase in MRP2 expression together with an increase in QR [90] and UGT1A1 [62]. In these cells 

ER (20 µM) was able to induce the mRNA of MRP2 by 6.7 fold, and with greater potency compared 

to SF (2.2. fold) [62]. ER also increased modestly MRP1 protein expression in hepatic carcinoma 

HepG2 cells at concentrations higher than 10µM, but the same effect was not observed in human 

cancer lung A549 and colon Caco-2 cells [91]. In contrast, MRP1 protein levels were increased by SF 

in a dose-dependent manner in all three cancer cell lines. Moreover, ER induced MRP2 in HepG2 and 

Caco-2 cells, but not in A549 cells, whereas SF was again effective in all three cell lines.  

5.2. Effects of ER on the physiological control of cell proliferation 

Several studies have showed the anti-proliferative activity of ER in different cultured cancer cells, 

providing mechanistic explanations that are in common to other aliphatic ITCs, such as SF, stressing 

the relationship between structure and biological activity of ITC analogs. Induction of cell cycle arrest 

and apoptosis seems to be an important molecular mechanism to explain the chemoprevention by  

ITCs [64,92–97]. The best understanding of how these phytochemicals impact on fundamental cellular 

processes, including the cell cycle, will come by understanding cancer biology first. The normal 

growth and replication of cells is carefully regulated by several types of genes and factors that control 

their expression. The tumor suppressor protein p53, also known as „„guardian of genome”, plays an 
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essential role in the control of cell proliferation. p53 is normally maintained at low levels in unstressed 

mammalian cells, but in response to cellular stress its accumulation in the nucleus of cells promotes its 

activation and stabilization by molecular modifications. The active p53 acts as regulator of the 

expression of a wide variety of genes involved in apoptosis and growth arrest [98] (Figure 3). 

Therefore, p53 can inhibit cell cycle by transactivating the Cyclin-Dependent Kinase (CDK) Inhibitor 

p21
WAF1/CIP1

 (p21).  

The p21 protein is an inhibitor of CDKs that regulates the cell cycle by inhibiting both the G1-to-S 

and G2-to-mitosis transitions [99]. Recently, our laboratory has demonstrated that ER up regulates in a 

dose-dependent manner the protein expression of p53 and p21 to inhibit the proliferation of human 

lung cancer A549 cells [31]. Compared to SF, ER showed lower potency in inhibiting proliferation of 

A549 cells (ER IC50 = 97.7 µM; SF IC50 = 82.0 µM), as well as in modulating p53 and p21 protein 

expression. Consistent with induction of apoptosis, we also demonstrated that poly (ADP-ribose) 

polymerase-1 (PARP-1) cleavage occurs after ER treatment in A549 cells, and similarly after SF 

treatment, as previously reported [100]. (PARP-1) is a protein involved in DNA repair in response to 

environmental stress. This protein acts by releasing apoptosis inducing factor (AIC) causing cell death, 

and its inactivation by proteolytic cleavage serves as marker of cells undergoing apoptosis. It was 

recently demonstrated that two ITCs, isolated in daykon sprouts (Raphanus sativus L.), also belonging 

to the family of Brassicaceae, are able to induce a strong cleavage of PARP-1 on human colon cancer 

cells [101,102]. SF and ER are saturated homologues of these ITCs, suggesting that PARP-1 cleavage 

is a mechanism for inducing apoptosis in a variety of cell tissues. 

Figure 3. The tumor suppressor proteins p53 and p21 play a key role in the cellular 

response to DNA damage. Activation of p53 can lead to apoptosis in case of unrepaired 

DNA damage, or indirectly to the block of cell cycle progression by transactivating p21, a 

CDK inhibitor.  

 

 

Previous studies have demonstrated the antiproliferative effects of ER in other cancer cell lines. The 

in vitro studies carried out by Fimognari and colleagues have provided evidence that ER is able to 

induce a strong antiproliferative effect on human leukemia cells, but not in non-transformed human 
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peripheral T lymphocytes [32]. Moreover, cell cycle arrest in the G2/M phase and apoptosis induction 

by ER has been demonstrated in Caco-2 cells [62]. The percentage of Caco-2 cells in the G2/M phase 

was significantly increased following ER treatment compared to untreated cells that were mainly in the 

G0/G1 (56.4%) and in the S phase. The G2/M phase accumulation was accompanied by a 

corresponding decrease in G1 phase of the cell cycle. At higher ER concentration (50 µM), cell cycle 

distribution profiles reverted to those of control cells and a significant increase of sub-G1 apoptotic 

cells was observed. The percentage of apoptotic cells and necrotic cells after treatment with ER was 

also increased in a dose-dependent manner, showing the correlation between the reduction of Caco-2 

cell survival and apoptosis induction [62].  

Anti-proliferative effects of ER have also been observed in myeloid leukemia HL60 cells and its 

multidrug-resistant HL60/ADR and HL60/VCR sublines, with IC50 values of 1.9, 5.6 and 7.6 µM, 

respectively [64]. ER was able to induce a statistically significant increase of cells in the G2/M phase 

in both parental HL60 cells and multidrug-resistant HL60/ADR and HL60/VDR cell lines. Moreover, 

ER induced apoptosis and mitochondrial potential dissipation in these human cell lines, and was more 

effective than other aliphatic ITC analogs, such as iberin (IB) and SF [64].  

Recently, Lamy and colleagues have reported the potential chemopreventive activity of ER in 

human hepatic cancer cells, and they have also correlated the significant bioactivity of this dietary 

compound with its in vitro biodegradation kinetics [54]. In HepG2 cells, ER is not detectable in the 

medium after 24 hours and only 25% is found after six hours. Similarly the degradation of ER in 

distilled water is time-dependent with a decrease of its starting concentration of 40%, 70% and 75% 

after one, six and 24 hours, respectively. Despite its degradation kinetics due to being volatile, ER was 

able to reduce HepG2 cell growth in a dose-dependent manner by inducing apoptosis already after  

6 hours and cell cycle arrest at the G2/M phase, as well as increase p53 protein expression followed by 

an increase in p21 protein level. This suggests either that the short-term presence of ER is sufficient to 

elicit an effect, or alternatively that a proportion of ER binds to proteins in the medium thereby 

allowing for activation of downstream targets. 

5.3. Effects of ER trough ROS-mediated mechanisms 

Oxidative stress, resulting in excessive levels of free radicals and reactive oxygen species (ROS), is 

involved in the pathogenesis of chronic disease, and may be reduced by improving physiological 

antioxidant defenses through dietary interventions [103]. Rocket salad species have been considered a 

good dietary source of antioxidant compounds [29,30]. ER is characterized by direct antioxidant 

activity, because it is able to react with hydrogen peroxide and alkylhydroperoxides to form water and 

an alcohol [30,50], but also by indirect antioxidant capacity, being a potent inducer of cellular 

antioxidant systems, like the thioredoxin reductase 1 (TrxR1), as demonstrated in human breast cancer 

MCF-7 cells [60]. Recent work has correlated the pro-oxidant capacity of ITCs associated with ROS 

production with their chemopreventive properties [104]. It has been suggested that PEITC selectively 

killed transformed cells by increasing ROS production, because transformed cells have a higher level 

of ROS than non-transformed cells, and the further increase of ROS induced by PEITC treatment led 

to cell cycle arrest and apoptosis thereby preventing cancer cell proliferation [66]. ER also improved 

the cytotoxic effects of the arsenic trioxide (ATO), therapeutically used in the treatment of acute 
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promyelocytic leukaemia (APL) through a ROS-dependent mechanism. In combination with ATO, ER 

may represent a promising therapeutic approach, by significantly increasing ATO-induced cytotoxicity 

in human leukaemia cells, acute myeloid leukaemia (HL-60) and erythroblastic chronic myelogenous 

leukemia (K562) cells, but not in promonocytic leukemia (U937) cells, through a ROS-dependent 

mechanism [105]. However, the ATO-induced cytotoxicity by ER was variable compared to erysolin 

and SF that significantly enhanced the growth inhibitory effects of ATO in all three leukemic cells 

lines, and for this reason ER was not subjected to further study [105]. 

5.4. Down-regulation of androgen receptor (AR) signaling pathway as novel mechanism of 
chemoprevention by ER 

Androgen receptor (AR) is the most relevant signaling pathway in prostate cancer, and is presently 

considered a significant drug target, since its inhibition has demonstrated to be important for prostate 

cancer prevention and treatment [106–108]. Recent work suggests that increased consumption of 

broccoli and other cruciferous vegetables may have a significant benefit in reducing prostate  

cancer [3–5,109,110]. The protective effects of cruciferous vegetables consumption against prostate 

cancer appears to be partially related to the potential ability of ITCs to interact with the AR signaling 

pathway. PEITC perturbs AR signaling pathway by down regulating AR transcription through the 

inhibition of the AR gene promoter (Sp1) expression and inducing AR protein degradation in 

androgen-dependent (AD) and androgen-independent (AI) prostate cancer LNCaP cells [111]. These 

findings were supported by further observations that PEITC inhibited IL-6-induced AR-activation in 

androgen sensitive prostate cells [112]. Recently several in vitro studies also demonstrated that SF 

interacts with the AR pathway reducing prostate cancer survival [63,113]. Gibbs and colleagues have 

reported that SF treatment reduced protein levels of AR and its target genes, such as the prostate-specific 

antigen (PSA), by hyperacetylation of HSP90 in LNCaP cells [113]. SF treatment also decreased AR 

mRNA and protein levels, PSA secretion, and AR promoter activity in both LNCaP and C4-2 prostate 

cells [63]. A similar effects appears to be shared by naturally occurring thio analogs of SF, whereas 

sulfonyl analogs were inactive [63]. ER (0–10 µM) was also able to induce a statistically significant 

decrease in the expression of AR and PSA proteins in LNCaP cells [63].  

6. Conclusions and Remarks 

Pharmaceutical discovery of novel drugs for chronic diseases has turned many times to the plant 

world to identify promising bioactive phytochemicals. Epidemiological evidence and subsequent 

studies using cell and animal models have identified cruciferous vegetables as important sources of 

such phytochemicals that are emerging as novel potential anticancer agents. Although a lot of research 

has focused mainly on sulforaphane, derived from broccoli, and PEITC, derived from watercress, other 

ITCs such as ER are promising. In particular, there is evidence that ER is selective in its effects, 

inducing a strong antiproliferative effect on some human cancer cells, but not in non-transformed cells. 

This selectivity is an important characteristic that requires further investigation to identify amongst 

other things whether certain ITCs are selective on certain cancers. Although cell and animal models 

are essential tools to understand effects on and mechanisms of chemoprevention, it is important to 

direct research focus towards human intervention studies, using either isolated ITCs or whole foods, 
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and discover whether the same mechanisms are also occurring in humans or whether food-derived 

compounds are working in a completely different way. 
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