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Abstract: Immunotoxins and antibody-drug conjugates are protein-based drugs combining 

a target-specific binding domain with a cytotoxic domain. Such compounds are potentially 

therapeutic against diseases including cancer, and several clinical trials have shown 

encouraging results. Although the targeted elimination of malignant cells is an elegant 

concept, there are numerous practical challenges that limit conjugates’ therapeutic use, 

including inefficient cellular uptake, low cytotoxicity, and off-target effects. During the 

preparation of immunoconjugates by chemical synthesis, the choice of the hinge component 

joining the two building blocks is of paramount importance: the conjugate must remain 

stable in vivo but must afford efficient release of the toxic moiety when the target is 

reached. Vast efforts have been made, and the present article reviews strategies employed 

in developing immunoconjugates, focusing on the evolution of chemical linkers. 

Keywords: immunotoxin; antibody drug conjugate; linker; conjugation process; toxins; 

anticancer agents 

 

1. Introduction 

Cancer is becoming the most frequent cause of death in most developed countries, and in particular 

the incidence of this disease among women is increasing dramatically. In the US, the estimated number 

of new cancer cases was above 1.5 million in 2010, with a mortality rate accounting for 23% of total 

deaths in the USA [1]. 
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Hundreds of approaches and strategies have been developed, and others (such as nanotechnology, 

pharmacogenomics, etc., are still in their early stages, but the concept of selectively delivering potent 

chemotherapeutics to a tumor is an old and very challenging idea, with a solid rationale. However, a 

really delicate balance between activity against cancer cells and systemic toxicity must be achieved. 

On this basis macromolecules (such as polymers, polysaccharides, and proteins) have been proposed to 

carry the active moiety, because they offer some relevant advantages: it has been established that  

high-molecular-weight conjugates passively accumulate in tumor tissue, because of the enhanced 

permeability of those tissues and the retention (EPR) effect [2,3]. Unlike their low-molecular-weight 

counterparts, macro-molecular drugs often encounter significant permeability barriers in the majority 

of normal tissues. In contrast, the poorly-formed tumor vasculature around solid tumors is more 

permeable to macromolecules than is normal vasculature [4,5]. Furthermore, the small number of 

lymphatic vessels in tumor tissue allows these macromolecules to be retained in the interstitial space, 

increasing intratumoral drug concentrations 10–100 fold compared with the concentration produced by 

an equivalent dose of the drug given conventionally [6,7]. 

Conjugation of cytotoxic agents with macromolecules improves the pharmacokinetic profile, by 

decreasing the volume of distribution and prolonging the distribution and elimination phases [8]. 

Furthermore, the slow release of active drug from the carrier results in sustained high intratumoral 

drug levels and lower plasma concentrations of the active drug.  

Although some proteins can specifically deliver the linked drug to the affected area, only 

monoclonal antibodies (mAbs) possess perfect suitability in terms of selectivity and flexibility. Indeed, 

the recent successful development of monoclonal antibodies that target key components of biological 

pathways has expanded the range of treatment options for patients with several cancers.  

Antibody-based therapeutics are of growing significance in cancer therapy, as evidenced by the fact 

that 28 such drugs have now been approved for oncologic indications by the FDA, for marketing in the 

USA. Among them, eight had global market revenues of above US $1 billion, and the combined global 

revenues of all exceed US $50 billion [9]. The market for these therapeutics is the fastest growing 

sector in the pharmaceutical industry. Currently, there are hundreds of mAbs for oncologic use  

now in clinical development, and progress in the development of antibody-based therapeutics is 

dramatically increasing [10,11]. 

Despite the clinical success of therapeutic mAbs, naked antibodies, targeting cell surface tumor 

antigens expressed on carcinomas, are rarely curative of themselves, and most are administered in 

combination with chemotherapy. Antibodies alone have shown some success in extending the lives of 

cancer patients, but in many cases more potent agents are required to attempt complete eradication of 

the cancer mass. Many different agents have been conjugated, including traditional anticancer agents, 

cytotoxic natural products, phytotoxins, radioisotopes, bioactive proteins, enzymes that activate 

prodrugs of cytotoxic agents, and photosensitizers. In order to exploit the maximal effect, the inherent 

potency of the released drug must be sufficient to kill the tumor cell, even at low concentrations.  

To achieve significant cytotoxicity, very potent agents must be used. The suitable candidate as 

immunoconjugate payload is thus a compound that is too toxic for use as stand-alone chemotherapeutic. 

To achieve an improvement selective potency, the conjugate should preferentially release the active 

agent in or around the tumor tissue. Thus the following components are essential: a targeting agent, a 

biodegradable linkage, and a bioactive potent anticancer agent. Several aspects of the rational design 
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of active conjugates may be of interest. The mAb must be selected taking into account both its stability 

and its capability to be derivatized with drugs or toxins without losing activity and specificity, but must 

also consider the antigen target and its pathway. This is challenging, because antigen targets on cell 

surfaces are often present in limited numbers, and the internalization process for antigen-antibody 

complexes is frequently inefficient. An example of 'ideal' antigen is represented by HER2 (the target of 

T–DM1, see below). It is expressed in millions of copies on an HER2-positive cancer cell, whereas 

other tissues express low levels of HER2. It is internalized fairly quickly and, also very important, it 

does not get downregulated [12]. 

Another important aspect is the balance between mAb modification due to chemical processes and 

the molar loading of the drug, which can be tuned to achieve the desired potency. However, one of the 

major limiting factor in delivering is related to the repeated courses of therapy and the development of 

host immune responses to both the mAb and the toxin. For this reason, an extent of drug substitution, 

commonly 2–4 drugs per antibody, or a ratio of 1:1 for conjugate toxins, provides the best therapeutic 

window. The role of the linker is of fundamental importance, because, in addition to delivery efficiency, 

the stability of the drug to mAb linkage is a key factor in determining therapeutic potential [13]. The 

linker must be stable in the bloodstream, so as to limit the damage caused to healthy tissue by  

highly-active anticancer agents. Decomposition or decay would release the cytotoxin before it can be 

delivered to the target site. Furthermore, after internalization the drug must be completely and efficiently 

released in its active form. 

Theoretically, with an antibody-drug conjugate, activation of the free drug can occur either 

intracellularly or extracellularly. Several strategies have been developed to selectively release the 

therapeutic agent from a conjugate. The principal mechanisms involve the use of spacers that are 

cleavable by proteolysis of enzymes overexpressed in the tumor tissue, or of acid-sensitive linkages 

cleavable under the acidic conditions present in tumors, endosomes, and lysosomes [14]. Furthermore, 

exploiting the tumor’s hypoxic environment [15], reduction reactions can be used to efficiently release 

active drug from the non-toxic prodrug [16]. Self-immolative spacers have also been developed, 

comprising drug, linker, and trigger. The tumor-specific cleavage reaction takes place between trigger 

and linker, to form a drug-linker derivative, which then degrades spontaneously by elimination or 

cyclization, to release the free drug [17], preferably inside the affected tissues. As a result, exposure of 

normal tissues is limited, which is potentially associated with a more favorable toxicity profile [18]. 

Finally, the method of conjugation, which determines the drug loading stoichiometry and homogeneity, 

has been shown to play a role not only in pharmacokinetics, but also in activity, potency, and 

tolerability. This review focuses on the role of conjugation processes and, in particular, on the 

chemical linkers, and on their evolution both for immunotoxins (IT) and antibody-drug conjugates 

(ADC), illustrating the main results (including clinical data, where available) that such research  

has produced. 

2. Immunotoxins 

Immunotoxins are protein-based therapeutics comprising at least two functional domains, one 

allowing them to bind specific target cells, and one that kills the cells following internalization. ITs 

were first postulated by Paul Ehrlich 100 years ago, and were envisaged as ―magic bullets‖. They became a 
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reality following the development of monoclonal antibody technology, which provided the necessary 

targeting specificity. Immunotoxins have been armed with selected extremely-potent microbial and plant 

products. The majority of these toxins belong to the group of ribosome-inactivating proteins (RIPs). 

Plants and fungi produce a number of molecules with defensive functions, to protect themselves 

against pathogens, such as microorganisms, and predators, such as insects. These defense proteins 

include ribosome-inactivating proteins, which are capable of inhibiting RNA translation. A broad 

spectrum of activities, encompassing antiproliferative, antitumor, immunomodulatory, antiviral, 

antifungal and anti-insect activities, have been attributed to these proteins. Recently, several reviews 

have appeared [19–22] regarding both holotoxins (RIPs type II) composed of a catalytic ―A-chain‖ 

disulfide-bonded to binding ―B-chains‖, and ―hemitoxins‖ (RIPs type I), such as gelonin,  

saporin, etc., containing only a catalytic chain. The bacterial toxins Pseudomonas exotoxin (PE) and 

difteria toxin (DT) are single-chain proteins, containing both binding and catalytic domains. Both plant 

and bacterial toxins are able to bind to the cell surface, and can internalize into endosomes, translocate 

into the cytosol, and catalytically inhibit ribosomes, which kills the cell by apoptosis. Great efforts 

have been made in research into ITs as anticancer agents, based on the observation that a single 

molecule of toxin in the cytosol is sufficient to kill the cell [23]. 

Type II RIPs have been isolated from plants belonging to the Asteridae, Liliidae, Magnoliidae and 

Rosidae, the bulk belonging to the Asteridae [24]. They are divided into toxic type II RIPs and  

non-toxic type II RIPs. The toxic ones include ricin from Ricinus communis, abrin from Abrus 

precatorius, volkensin from Adenia volkensii, and modeccin from Adenia digitata. Nigrins from 

Sambus nigra, and ebulin from S. ebulus are non-toxic RIPs. Nigrin b has much higher cell-free 

translation inhibitory potency, but much lower in vitro cytotoxicity and in vivo toxicity, than does 

ricin, due to the replacement of Tyr 249 in ricin by Phe in ebulin 1. Agglutinin-I from Abrus 

precatorius seeds is a type II RIP, with greatly attenuated toxicity compared with abrin, another type II 

RIP isolated from the same seeds, due to replacement of Asn-200 in abrin with Pro-199 in agglutinin I [25]. 

Type I RIPs have been isolated, most often from seeds and sometimes from leaves and roots of plants 

belonging to the Asteridae, Caryophyllidae, Liliidae, Magnoliidae, and Rosidae, the greatest number 

being isolated from the Rosidae, which comprises Cucurbitacea, Euphorbiaceae and Fabaceae [24]. 

In the last twenty years, RIPs of new structure have been isolated from flowering plants and 

mushrooms [20]. Some of these RIPs possess a molecular mass in the vicinity of 20 kDa and an  

N-terminal amino acid sequence that is distinctly different from those of the 30-kDa type I RIPs, which 

often demonstrate remarkable homology to one another. Small RIPs with a molecular mass of 10 kDa 

or below have been purified from the seeds of several gourds, which are members of the 

Cucurbitaceae. These are characterized by an abundance of arginine and glutamate or glutamine 

residues. Mushrooms produce RIPs with various molecular masses [26,27]. The N-terminal sequences 

of some of the mushroom RIPs isolated to date are similar to one another, but others are widely 

dissimilar. These new RIPs generally exhibit biological activities similar to those of type I RIPs. 

Type I RIPs with small molecular mass have been isolated from plants both in the Cucurbitaceae 

family and outside it [19]. Mushrooms and other fungi also produce type I RIPs. The N-terminal amino 

acid sequences of these low-molecular-mass single-chained plant type I RIPs and mushroom type I 

RIPs, are distinct from those of classical type I and type II RIPs from plants. The biological activities 

of these low-molecular-mass type I RIPs, which include, alongside translation-inhibitory, also  
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N-glycosidase and antifungal activities, await full elucidation. The active site residues of RIPs are 

distinct from the antigenic site residues, and RIPs with fully-preserved biological activities, but with 

decreased immunogenicity, have been produced. Other modern anticancer approaches concerning 

toxins are based on transcriptional targeting and protease specific targeting (Protease activated toxins). 

In particular, gene encoding toxins are important candidates as suicide genes for cancer therapy. For a 

recent comprehensive review, see [28]. 

Several of the above-mentioned RIPs have been used for the synthesis of immunotoxins [29]; an 

overview of this kind of immunoconjugates and their main peculiarities follows with a particular focus 

on the main linker systems adopted for their conjugation. 

From the historical viewpoint, the evolution of approaches to constructing ITs may be subdivided 

into three stages. First-generation ITs were prepared by chemically linking to an antibody the whole 

molecule of a toxin, such as ricin, abrin, DT or PE. They were prepared by chemically conjugating 

antibodies to natural-intact toxin units or to toxins with attenuated cell binding capability (Figure 1). 

Figure 1. Structure of immunotoxins (IT) constructs obtained by chemical (A– intact IgG 

mAb, B– Fab’ fragment) and genetic engineering (C– Fab fragment, D– Fv fragment) 

procedures. TX as for toxin or fragment; white rectangles = constant regions, 

black rectangle = variable region of mAb chains; curvy linkage = peptide bond,  

–SS– = disulfide bond. 

 

Originally, antibodies were chemically conjugated through a disulfide bond, either to the whole 

toxin (holotoxins) or to their catalytic subunits (A chain), each of which had been removed from its 

binding domain by reduction. Many type I RIP have also been used to synthesize ITs; these toxins 

include gelonin, saporin, pokeweed antiviral protein (PAP), bryodin, bouganin, momordin, dianthin, 

momorcochin, trichokirin, luffin, restrictocin, mitogillin, alpha-sarcin, Onconase, pancreatic ribonuclease, 

Bax, eosinophil-derived neurotoxin, and angiogenin. Among these, gelonin, saporin, momordin, PAP-s, 

and above all, ricin A chain were widely used to produce highly-active ITs, potentially avoiding 

aspecific toxicity [30]. 

Chemical conjugates generally involve either reducible disulfide (S–S) or nonreducible thioether  

(S–C) bonds. A thioether bond is appropriate if the ligand is conjugated to a bacterial toxin in the part 

that does not translocate to the cytosol, such as the binding domain [31]. Otherwise, a disulfide bond is 

more commonly used (Figure 2). 



Toxins 2011, 3                            

 

 

853 

Figure 2. Scheme of reaction for synthesis of ITs. X = reacting group toward  

amino acid terminus; Y = H or alkyl, aryl group; M and L = leaving groups, stable in 

buffer but reactive in thiol-disulfide exchange; A and B = chains of RIP II toxins. 

 

One key aspect in creating an IT is that the linkage should be cleaved intracellularly, so as to 

regenerate the original active agent or a derivative of it, affording the cytotoxic action in full but, at the 

same time, conjugates must be stable in vivo: cleavage of the disulfide bond regenerates free antibody 

and toxin [32,33]. Premature cleavage reduces the amount of conjugate that can bind to target cells, 

inducing liver damage by free toxin. In addition, released antibody remains in circulation longer than 

the conjugate, and can compete with intact conjugate for target cell binding. Thus, in multiple-dose 

therapeutic treatment, the potency of the IT may decrease because tumor antigens are masked by the 

previously-released antibody. 

Residues present on proteins involved in coupling with a crosslinker include primary amines, 

sulphydryls, carbonyls, carbohydrates and carboxylic acids. Conjugate preparation requires a separate 

derivatization of toxin and carrier with the linkers. Then, after purification, the newly-inserted group 

can react with those linked on the other IT component, to produce a stable and homogeneous conjugate 

population (Figure 2). 

Different derivatizing approaches have been developed based on a covalent linkage. Several classes 

of crosslinking reagents have been synthesized, with the aim of improving the characteristics of the 

conjugates. Many factors must be evaluated in selecting an appropriate crosslinking reagent, including 

the existing groups present in the carrier or toxin, and the introduction of special reactive groups into 

agents. One important point to take into account is that the linkage method must be selected so as to 

avoid both the formation of homopolymers of antibody or agent, and aggregation of the conjugate. 

One of the first and most important heterobifunctional linkers is SPDP [N-succinimidyl  

3-(2-pyridyldithio)propionate] (Figure 3), which reacts with the amino residues (terminal and lysines) 

of the protein, so that an activating disulfide can easily be inserted. This disulfide can then be reacted 

with the thiol group (added using the same reactive, after reduction, or using cysteine thiol of the 

previously reduced A chains) [34–37]. 
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Figure 3. Scheme of heterobifunctional linkers used in conjugate preparations MBS, 

SPDP, SATA, 2-IT (2-iminothiolane) and linkers with improved hindrance around 

disulfide linkage. SMPT alpha-alkyl derivatives, SulfoNHS-ATMBA (Sulfosuccinimidyl 

N-[3-(Acetylthio)-3-methylbutyryl-beta-alanine]), and thioimidates AMPT, M-CDPT. 

 

Other extensively-employed cross-linkers are SATA, [S-(N-succinimidyl) thioacetate], and SMPT, 

[(N-succinimidyloxy carbonyl)-1-methyl-1-(2-pyridyldithio) toluene], used to insert a disulfide 

linkage, while SMCC, [N-succinimidyl 4-(maleimidomethy1) cyclohexanecarboxylate] and MBS  

[3-maleimidobenzoic acid N-hydroxysuccinimide ester] afford the generation of a thioether linkage 

between moieties [38,39]. The main advantage of using SATA is the production of thiol by addition of 

a mild reagent (hydroxylamine) instead of a reducing agent (commonly dithiotreithol), which cannot 

react with native cysteine linkages [40]. 
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In order to maintain the positive charge of lysyl groups also in the derivatized toxin, and thus to 

preserve their potency, reactives such as 2-iminothiolane (2-IT) or AMPT/CDPT have been used [32,41]. 

The usual procedure entails derivatization of the mAb with SPDP and 2-IT for the toxin [34]. 

Attempts to increase in vivo stability while maintaining high RIP activity have further focused on 

the synthesis of hindered cross-linking reagents, in which bulky side chains proximal to the disulfide 

bond afford protection from nucleophilic attack [38,41,42] (Figure 3). It has been shown that the 

presence of hindered disulfide linkage in ITs has little or no effect on their pharmacological potency, 

suggesting that disulfide cleavage is not the rate-limiting step in the intoxication of cells by conjugates. 

Furthermore, a significant enhancement of the pharmacokinetic profile (increased AUC) is directly 

related to the degree of steric hindrance. 

As widely employed in prodrug approach, acid cleavable cross-linking reagents were also proposed 

for an efficient toxin release into endosomes and then in cytosol, avoiding translocation of the toxin 

into lysosomes and consequently complete denaturation. Blättler and colleagues described a 

heterobifunctional agent, which introduced a cis-aconityl bond, obtaining a conjugate with gelonin that 

was stable at neutral pH releasing active toxin in mildly acidic medium (pH 4.0–5.0). Based on this 

approach, conjugates between interleukin-2 (IL-2) and gelonin were synthesized with disulfide,  

acid-labile and noncleavable bonds [43]. Despite the desirable characteristics of acid-labile linkers, 

these reagents have not found further application in IT development. 

The most commonly-employed type I RIP for ITs of clinical interest is ricin, because of its high 

cytotoxicity and low immunogenicity in man. Significant steps in the evolution of ITs have involved 

the use of deglycosylated RTA. However, several attempts have been made to maintain the high toxic 

potency of ricin, by reducing the non-specificity due to the presence of the B-chain. Thorpe et al. [44] 

developed a crosslinking method based on steric hindrance of the B chain, (using SPDP on mAb and 

N-hydroxysuccinimidyl ester of iodoacetic acid (SIA) on ricin) to shorten the thioether linkage to its 

limit (mAb-NHCO-CH2-CH2-SCH2-CONH-ricin), thus obtaining the so-called B-chain blocked ricin 

conjugates. The same approach has been successful using a smaller linkage (with reagents SATA and 

SIA) [45]. These conjugates have been tested in vivo in tumor mouse models, demonstrating improved 

specificity and potency.  

Another extremely interesting approach is based on blockage of the B chain lectin binding ability; 

this was developed by Lambert (Immunogen). A glycopeptide containing a triantennary N-linked 

oligosaccharide is modified so as to covalently bind the receptor on B chain. The ligand is then 

activated at the 6-(N-methylamino)-6-deoxy-D-galactose residue, by reaction with cyanuric chloride. 

The resulting IT was found to be stable, and was defined as ―blocked‖ (since ricin can no longer bind 

to a column of immobilized asialofetuin) and was shown to have aspecific toxicity that was 1000 times 

lower than the parent IT [46] (Figure 4). Another advantage of this approach is that these constructs 

are more homogeneous (only one linkage per ricin molecule) and more specific. Clinical trials of 

―blocked ricin‖ conjugates gave interesting early results, both in leukemias and in the therapy of  

small-cell lung cancer [47,48], nevertheless the studies on patients with chronic lymphocytic leukemia 

with minimal residual disease were suspended in 2003 [49] due to very limited activity of anti-B4 

blocked ricin. The same results were obtained in untreated acute lymphoblastic leukemia [50]. 
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Figure 4. Scheme of preparation of blocked ricin. A triantennary N-linked oligosaccharide, 

present on glycopeptides from fetuin, is activated with cyanuric chloride (A chain is  

not shown). 

 

The removal of nonspecific binding elements (B-chain in ricin/abrin) gave rise to the next 

generation of chemical conjugates, and broadened clinical applications. Immunotoxins were produced 

in a similar fashion, but thanks to the improved understanding of the structure and function of toxins, 

cell-binding domains were removed, and the resulting toxin fragment was targeted by coupling to an 

antibody. These ITs were also based on chemical conjugation between targeting moiety and toxin, and 

involved saporin, gelonin, PAP and deglycosylated RTA (dgA). Even without its binding domain, 

however, the ricin A chain is taken up non-specifically by macrophages and hepatic nonparenchymal 

Kupffer cells. This uptake is due to glycosylated side residues binding to mannose receptors on the 

liver. The most successful technique for reducing nonspecific uptake of the ricin A chain is through 

chemical deglycosylation [51]. Deglycosylated ricin A chain ITs show significantly prolonged 

lifetimes in mice, leading to an improved therapeutic index [39]. 

ITs containing dgA may be prepared by coupling the cysteinyl residue of deglycosylated ricin  

A-chain with the heterobifunctional crosslinker SMPT, that has previously been linked to mAb [52]. 

Using this approach, a stable but cleavable disulfide linkage was obtained, and aspecific recognition 

was reduced. Large-scale preparation (grams of IT) compliant with GLP has been described [53]. 

Diphtheria toxin (DT) is a 62 kDa protein secreted by Corynebacterium diphtheria. The single 

polypeptide chain contains an A chain, with ADP-ribosylation activity at the N-terminus, and a  

cell-binding domain at the C-terminus. Pseudomonas aeruginosa exotoxin A (PE) is a single peptide 

with three functional domains: domain Ia is the N-terminus and cell-binding domain; domain II has 

translocation activity; and domain III is the C-terminus and catalyses the adenosine diphosphate 

(ADP)-ribosylation. Immunotoxins composed of DT and PE were initially constructed by chemical 

synthesis [54,55] with the SPDP/2-IT method but, starting from 1990 these toxins were the base of 

interesting engineered contructs. Recombinant DT can be made by replacing the C-terminal cell-binding 

domain with a ligand that binds to a growth factor receptor, or to the Fv fragment of an antibody 

Ricin B chain 

S-S-CH2-CH2-CH2-C-NH

NH2
+

COO
-

CH2-N-CH3

N N

N ClHN

N
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(Figure 1). Modification also reduces the non-specific binding of DT to human cells, thus increasing 

the toxin’s tumor-specificity 10,000-fold [56]. 

PE genetic excisions have concerned the domain Ia, generating a product termed PE 40, which 

retains its translocation function and protein synthesis inhibition properties, but does not kill human 

cells. A further genetically-engineered PE molecule (PE38KDEL) has been constructed by removing 

the disulfide bridge, and changing the carboxyl end of PE (KDEL) to increase its cytotoxic activity [57]. 

PE38KDEL has been fused with targeting moieties, for instance with the antibody Fv portion, or with 

other targeting agents, and the resulting molecule has been found to have a much higher affinity for binding 

to cancer cell lines than the native PE immunotoxin, and to be much more toxic to malignant cells [58]. 

Other modern constructs are represented by single-chain anti-Tac(Fv)-PE38 (LMB-2) that contains 

the variable heavy domain (VH) of an anti-Tac mAb fused via a peptide linker (G4S3) to the variable 

light domain (VL), which in turn is fused to PE38. On the other hand, the recombinant IT BL22 

contains a disulfide bond connecting VL and VH by two inserted cysteine residues [58]. 

Several immunotoxins have been successfully tested in clinical trials for different purposes, and in 

particular in hematologic tumors. Anti-CD5 and anti-CD7, linked either to ricin or to chain A of ricin, 

have been used to eliminate contaminating tumor cells in autologous bone-marrow transplantants, and 

in acute graft versus host disease [59,60], non-Hodgkin’s lymphoma, and leukemias [59,61]. DT and 

PE constructs in the form of immunotoxins achieved better success, and have been evaluated in phase I 

trials in cancer patients [58,62,63]. Their extreme potency was demonstrated by Kreitman and Vitetta, 

in a study in which solid tumors in mice were eradicated like cells in tissue culture; they found that 

delivery of less than 1000 molecules/cell was sufficient to cause complete tumor regression [64]. 

Another factor influencing efficacy is immunogenicity: patients with antitoxin antibodies clear 

immunotoxins rapidly from the bloodstream. Since most people are immunized with DT, there is a 

significant pretreatment antibody titer in the blood of many patients, and an anamnestic response 

occurs in additional patients who have been treated with DT conjugates. Toxins that are foreign 

antigens to which a patient has not been previously exposed are of intermediate immunogenicity. 

Another relevant aspect concerns the limits of the random-based derivatization approach. Although 

more specific, and thus better tolerated, most ITs are still chemically heterogeneous, and their large 

size hinders them from penetrating solid tumors. Moreover, some immunotoxins still bind weakly to 

normal cells, and produce an undesirable side effect known as vascular leak syndrome. To address 

these issues, a new generation of ITs was conceived and produced in the form of recombinant proteins. 

More successful IT design has employed genetic engineering, in which an amide bond, with or without 

a linker peptide, connects the mAb or its fragment to the toxin. Such fusions are more successful when 

both the receptor affinity and toxin domain functions can be preserved. 

In the last eight years, using recombinant DNA techniques and the principles of protein engineering, 

ITs have been designed to contain only the elements required to recognize and kill the tumor cells. In 

particular, the remodeled agents of this generation are not only better at binding to receptors, but also 

at overcoming two major hurdles: toxicity and immunogenicity [65,66]. Most of the recombinant ITs 

currently in clinical trials use either DT or PE, because these bacterial toxins are more easily produced 

in E. coli than plant toxins, and have shown more activity and fewer side effects in humans. The mAb 

fragments are reduced to single-chain Fv, and recombinant ITs initially utilized single-chain Fv to 

target the toxin. Further, to increase stability a very stable Fv was designed, in which the peptide linker 
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of the scFv was replaced by a disulfide bond, inserted in the framework region of the Fv [67]. Smaller 

and thus more diffusible contructs have been then made in large amounts and in homogeneous 

preparations within E. coli, giving the process more economically affordable. 

Further improvement was presented by Keller et al. [68] with the principle of a molecular cleavable 

adapter that links the toxic moiety to the tumor-specific ligand. This molecular adapter contains three 

functional elements: a cytosolic cleavable unit, a cell penetrating peptide, and an endosomally cleavable 

unit. Further results suggest that cleavable adapters may be a useful tool in IT design, to reduce killing 

of nontargeted cells due to nonspecific binding [69]. 

Another way to target toxins to cells is to replace the cell-binding domain with a growth factor or a 

cytokine. The promising in vitro and in vivo activity of recombinant ITs or IL-2 and transferrin have 

led to advanced trials, and to the launch of Ontak (Denileukin Diftitox, Eisai) on the market (Table 1) 

for use against hematological malignancies and solid tumors among others [70–72].  

Table 1. Immunotoxins in current status of clinical trials. Data from Thompson Pharma 

Partnering database and Clinicaltrials (March 2011), UTSMC—University of Texas 

Southwestern Medical Center. 

Immunotoxin 

Agent 

Antigen 

Target 

Toxic 

Component 
Diseases 

Clinical 

Phase 
Company 

Ontak IL-2R DT T-CLL, B-CLL, NHL launched Eisai 

BL22 CD22 PE 
Hairy Cell Leukemia, 

B-CLL, NHL 
II NCI 

LMB-2 CD25 PE NHL, leukemias II NCI 

CAT-8015 CD22 PE CLL, PLL, SLL II Medimmune 

Combotox CD19/CD22 dgA Leukemias I Abiogen 

HuM-195/rGel CD33 r-Gelonin Leukemias I Targa Ther. 

MR1-1 EGFRvIII PE Solid ca. I Ivax Corp. 

SS1P; CAT-5001 mesothelin PE Solid ca II NCI 

Zemab HER-2 PE Breast ca I Novartis 

RFT-5.dgA IL-2R dgA lymphomas II UTSMC 

Cintredekin 

besudotox 
IL13R PE Brain ca III Insys 

3. Antibody-Drug Conjugates 

First-generation antibody-drug conjugates involved the use of anticancer drugs in clinical use (see 

reviews by Chari et al. [73,74]). One of the key roles recognized early on was the nature of the linkage 

connecting mAb and toxic agent (which should be stable in blood circulation and should only release 

the free drug after internalization of the complex). In order to have release of free drug, acid labile 

linkers (labile around pH 5) and enzymatic labile linkers were chosen in particular (Figure 5); these 

released the drug by action of peptidase-esterase enzymes, thus in conditions present inside lysosomes 

but (e.g., esterases) also in the serum. 
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Figure 5. Examples of linker moieties. 

 

In the early development phase, methotrexate, daunorubicin, the Vinca alkaloids, mitomycin C, 

idarubicin and N-acetyl melphalan were linked through non-cleavable linkage (amide or using a 

succinimide spacer) to different murine mAbs [75–81]. The batches of drug produced were of a few 

mg (2–5 mg) and an average of 2–8 molecules per mAb were linked; in all cases, increasing the 

linkage lead to low conjugate yield. Although mAb recognition was maintained, the full potency of the 

drug was not, in these too-stable linkages. Further, two different approaches were then attempted, 

using peptide sequence lisosomally cleavable (-Leu-Ala-Leu-, Ala-Leu-Ala-Leu) [81,82] or an  

acid-labile link, such as cis-aconityl [83] or hydrazone bond. In particular, the cis-aconityl linkage was 

used also to join daunomycin to previously-oxidized and ethylendiamine-reacted carbohydrate  

groups [84]. The hydrazone linkage has been used to conjugate doxorubicin and vinblastine to mAbs. 

Doxorubicin was linked to the 13-keto group, and then to the mAb by a disulfide linkage [85]  

(Figure 6A1). In this case, release of the free drug required a disulfide reduction and/or acidic pH. 

Trail et al. replaced the disulfide with a thioether linkage (Figure 6A2), maintaining the hydrazone 

between doxorubicin [86] and a BR96 mAb directed against a tumor-associated antigen closely related 

to Lewis Y (LeY). This ADC demonstrated high activity and impressive anti-tumor effects, including 

in well-established cancer models. This approach was also used to target other potent anthracyclines, 

such as 5-diacetoxypentyldoxorubicin and morpholinodoxorubicin [87], although the dose required to 

achieve a complete cure was very large (2 g/kg). 

The use of these kinds of linkages (disulfide and hydrazone) deserves to be mentioned for its role in 

other relevant targeted approaches. Regarding doxorubicin, the maleimidocaproylhydrazone derivative 

(INNO-206) gave important results when administered as a prodrug, which could self-link to plasma 

albumin [88]. Regarding Vinca alkaloids, DAVLBH [89] (4-desacetylvinblastine-3-carbohydrazide) 

can be used as drug candidate to build a carbohydrate-linked mAb conjugate [90] based on a 

hydrazone linkage, which provides an improved therapeutic index versus the unconjugated drug. As 
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for doxorubicin derivatives, a low-molecular-weight conjugate is also more promising: Endocyte have 

developed compound EC145, in which DAVLBH are linked through a disulfide bridge and a peptide 

spacer to the targeting agent folic acid [91] (Figure 6B). This compound at the time of publication is in 

phase III clinical trials. 

Figure 6. Examples of drug-linked conjugates with hydrazo bonds: (A) doxorubicin-mAb 

conjugate; (B) Vinca alkaloid bridge to a folate targeting moiety.  

(A) 

 

(B) 

 

The clinical results of the first-generation ADC were unsatisfactory, and, the reasons for these 

disappointing outcomes may be related to the early technological stage of the mAb in question 

(immune response, inefficient internalization), the lack of cytotoxic potency of the anticancer drug 

used, and to inefficient or premature release of the drug from the carrier. Premature drug release results 

in low specificity, low potency and an increase in the ADCs side effects. 

Several reasons underlie the important results now being demonstrated by six second generation 

ADCs now in advanced clinical trials. Firstly, over the last 15 years, mAb technology has benefited 

from impressive improvements, and nine humanized or chimeric mAbs are now on the market for 

oncological use. The antibodies have been carefully chosen to improve selective binding to tumor 

tissue and to reduce cross-reactivity with healthy tissues. High avidity (Kd of 0.1 nm) in tumor binding 

has been reached.  

Furthermore, antibodies have been identified to antigens with high expression on the cell surface. 

For example, HER2 (one of the antigens employed formerly) presents favorable characteristics, 

namely high expression on HER2-positive cancer cells, rapid internalization, and no down-regulation. 

The second important component of an ADC with improved action has been the selection of highly 

potent cytotoxic drugs. As yet, the laboratories of the main industries involved in ADC manufacturing 

(Immunogen, Seattle Genetics, Roche, Sanofi-Aventis, Pfizer) have selected only a few compounds, 
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i.e., auristatins, maytansines, and calicheamicin, which possess in vitro potency against tumor cell lines 

in the 0.01–0.1 nm range, 100–1000 fold more potent than first generation drugs. These compounds 

also show favorable physico-chemical characteristics, such as water solubility and stability. This is 

especially important to achieve adequate drug loading, without excessively modifying the mAb behavior. 

The third component in modern ADC synthesis is the conjugation process itself. This has been 

improved in terms of linker/spacer moiety, conjugation specific site, and stoichiometry. The conjugation 

process should theoretically maintain the mAb and drug components in their native forms, and the 

product must remain intact during storage in aqueous solution or during the lyophilization/sterilization 

process, to allow convenient formulations. Furthermore, from the pharmaceutical development standpoint, 

the conjugation process must produce homogeneous batches and must be scalable, in order to satisfy 

the regulatory authorities. Several types of cleavable linkers have been evaluated, and the related 

approaches and evolution will be addressed below. 

Regarding the mAb component, there are three common reactions for conjugation: alkylation of 

reduced interchain disulfides, acylation of lysines, and alkylation of genetically-engineered cysteines. 

Because up to 100 lysines are available for acylation on one IgG1, conjugation to these sites results in 

heterogeneous mixtures. Eight interchain cysteines are available, and thus conjugates with a greater 

degree of uniformity than those based on lysine [92] can be obtained, while recombinant methods, in which 

cysteines are specifically introduced into the mAb backbone, provide even more uniform conjugates. 

In some instances, it has been observed that the location of the conjugated drug is not as important 

as the stoichiometry of drug attachment [92,93]. ADCs with two to four drugs per antibody are 

generally superior to more heavily loaded conjugates, which clear very rapidly from the circulation [94]. 

In any case, using ―random‖ chemical derivatization methods, it has proven difficult to prepare ADCs 

with only 2 drugs/mAb, because a large fraction of the mAb will not be conjugated to any drug. 

The strategy concerning the toxic moiety and its ability to maintain high activity after derivatization 

requires an in-depth understanding of the organic-chemistry aspects of the process. Before illustrating 

the different synthetic approaches, it is necessary to have a clear view of the principal classes of  

toxic moiety. 

3.1. Maytansinoids 

Early clinical trials of maytansinoids initiated by the NCI in 1975, and their pre-clinical and phase I 

results prior to 1980, were summarized by Issel and Crooke [95]. These trials were carried out in 

patients with advanced disease, refractory to conventional therapy. Dose-limiting toxicity was 

established to be in the 1–2 mg/m
2
 range, and side effects included neurotoxicity, gastrointestinal 

toxicity, weakness, nausea, vomiting and diarrhea. The compound was evaluated over 35 tumors types 

but, based on poor clinical results and relevant side effects, the NCI closed the Investigational New 

Drug Application for maytansine used alone. 

In the early 1990s, Takeda filed patents concerning the preparation of ADC using bispecific mAbs 

reactive to ansamitocins and to human transferrin receptors, that demonstrated effective activity in 

suppressing xenografted mouse tumor [96]. 

The ImmunoGen group took a chemical synthesis approach, which has led to the development of a 

number of conjugates [97,98]. 
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Although, as reported by Cassady [99] several chemical groups are not essential for inhibiting 

microtubule assembly, all conjugation procedures employed thus far have exploited the ester side 

chain (Figure 7). 

Figure 7. Some features of structure-activity relationship of Maytansine. 

 

The synthetic route to conveniently attain maytansine-analogues capable of being linked to mAbs 

started from ansamitocins obtained from fermentation of the microorganism Actinosynnema pretiosum. 

Then, with two steps (through maytansinol and the disulfide ester) reactive thiol-containing 

maytansinoids were obtained, as follows. 

Because the C3 ester group in maytansinoids is susceptible to elimination under mild basic 

conditions (pH > 9) giving the alpha-beta-unsaturated maytansinoid maysine, ester hydrolysis through 

a reductive cleavage process is employed. Initially, lithium aluminum hydride was used to give the C-3 

alcohol maytansinol [100] but in a low yield. Successively , the ester group was efficiently cleaved 

using the mild reducing agent lithium trimethoxyaluminum hydride, under controlled temperature  

(−30 to −40 °C), to give the alcohol in good yields [101]. Maytansinol was then esterified with  

N-methyl-N-(methyldithiopropanoyl)-L-alanine in the presence of dicyclohexyl carbodiimide and zinc 

chloride, to give maytansinoid DM1 [100] (Figure 8). 

After reductive cleavage of DM1 with dithiothreitol, the resulting thiol was widely conjugated to a 

variety of mAbs, including those directed against HER-2 and transferrin, [97] or cantuzumab  

(huC242-DM1) against mucin-type glycoprotein (CanAg), expressed to various extents by human 

colorectal cancers [98], or again, anti-CD44V6 (bivatuzumab mertansine [102]), huN901 licensed to 

Glaxo, trastuzumab-DM1 [103] MLN591-DM1 conjugate from Millenium, antiPSCA antibodies proposed 

as targeting agents for prostate cancer [104,105]. 

As described, this method have been used with success, but in order to increase the conjugate’s in 

vivo stability, allowing more specific intracellular release, the steric hindrance around the disulfide  

was examined. Widdison [101] described the synthesis of different ADCs bearing methyl groups 

placed around the disulfide. In the first huC242-DM1, the mAb was derivatized with SPP, or  

alternatively with SPDB. The derivatives DM3 and DM4 were obtained by N-Methyl-N-[(4-(R/S)- 
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methyldithio)-1-oxopentyl]-S-alanine and N-Methyl-N-[(4-methyl-(4-methyldithio)-1-oxopentyl]-S-

alanine (Figure 9).  

Figure 8. Synthesis of Maytansinoid-mAb conjugates. 

 

Figure 9. Maytansinoid conjugates with improved pharmacokinetics. 
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As mentioned above, the choice of disulfide bond release is an approach frequently employed in IT 

synthesis. This release is attributed to the high intracellular concentration of glutathione, a thiol-containing 

tripeptide present in micromolar concentrations in the blood, whereas its concentration in the 

cytoplasm is in the millimolar range (up to 1000 times higher). This is especially true for tumor  

cells, in which irregular blood flow leads to a hypoxic state, resulting in enhanced activity of reductive 

enzymes, and therefore even higher glutathione concentrations [106]. In the absence of sulfhydryl 

groups, disulfide bonds are thermodynamically stable and provide reasonably good stability in  

the bloodstream. 

When tested in cytotoxicity trials, L-aminoacyl maytansinoid bearing a methyldithio-propanoyl 

substituent in the C3 ester side chain was found to be equally potent as maytansine. Furthermore, 

maytansinoids bearing sterically-hindered thiols were 3- to 12-fold more potent than un-hindered thiol 

derivatives. When tested in colon tumor xenograft models established in mice with COLO 205 cells, 

the ADC obtained with different disulfide hindrance showed different activities.  

In vitro cell tests demonstrated high specificity of the ADC, thus nontarget cells were not affected 

even at a 100-fold concentration. The huC242-DM3 exhibited relevant in vivo activity, more potent 

than DM1. This can be ascribed to release of the thiol-containing maytansinoid DM3, which is about 

10-fold more potent than DM1, However, the greatest antitumor activity was that of huC242-DM4. 

This potency was attributed to at least two factors: (a) the greater stability of the disulfide bond 

between the antibody and the drug, which extends circulation time of the intact conjugate, and thus 

potentially produces greater accumulation at the tumor site; and (b) the greater stability of the released 

DM4 drug, which bears a thiol substituent at a tertiary carbon center. 

The in vivo stability of the antibody–maytansinoid link, and the antitumor activities of two 

disulfide-linked huC242– maytansinoid conjugates (huC242–DM1 and huC242–DM4) and a  

thioether-linked conjugate (huC242–MCC–DM1), have also been compared in an in vivo model [107]. 

As predicted, the in vivo stability of the thioether-linked conjugate was the highest, with a half-life of 

134 h, followed by huC242–DM4 (102 h). However, the conjugate huC242–DM4 showed the greatest 

efficacy in a human COLO 205 xenograft model in mice (see also Figure 10 and the S-methyl-D4 

activity), suggesting a fine balance between the linker stability and antitumor activity. 

Another preclinical study, in which trastuzumab was conjugated by mean of different linking 

systems to DM1, DM3 and DM4, reports results that are in contrast to these findings [108]. The 

stability and activity of the conjugates studied were tested by insertion of different methyl groups (one 

to three) around the disulfide bridge. All trastuzumab ADCs had average molar ratios of between 3 and 

3.6 maytansinoid molecules per antibody. The pharmacokinetic profiles of MCC and DM4 derivative 

were similar, as was their antitumoral activity, although MCC was more active including in 

trastuzumab-resistant breast tumor models. Furthermore, more stable linkages were found to reduce  

in vivo toxicity (MCC corresponding to a DM1 dosage of 3264 μg/m
2
 had the same non-toxic effect as 

653 g/m
2
 of pure DM1, in rats). The thioether-linked trastuzumab-MCC-DM1 conjugate was found to 

have higher antitumor activity than any of the disulfide-linked conjugates, in mice bearing HER2-positive 

tumor xenografts, and in trastuzumab-refractory models (after a maximum of three doses of the 

maximal amount, i.e., 420 g/kg) (Figure 10). 
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Figure 10. Model of metabolism and activation, of maytansine conjugates in a targeted 

cell. The number is referred to an IC50 value of maytansine derivatives on COLO205 cell 

line (given as an example). 

 

Erikson [107,109] evaluated the metabolism of disulfide or thioether linked ADC in greater depth, 

clarifying particularly the role of ADC active metabolites. Three target-dependent tumor metabolites of 

the disulfide-linked huC242-DM4, namely lysine-Nε-(disulfide)-DM4, DM4, and S-methyl-DM4, 

were identified. The sole metabolite of the thioether-linked huC242-MCC-DM1 was lysineNε-MCC-DM1 

(Figure 10). As expected, the (AUC for the metabolites of huC242-MCC-DM1 at the tumor over  

7 days was about double that of the corresponding AUC for the metabolites of the disulfide-linked 

conjugates. The lipophilic metabolites of the disulfide-linked conjugates were found to be nearly  

1000 times more cytotoxic than the lysineNε-MCC-DM1. This study predicted that the levels of the 

tumor metabolites accumulating in vivo would be high enough to allow for the metabolites to diffuse 

from the target cells within the solid tumors, providing support for the hypothesis that ―bystander 

killing‖ contributes significantly to tumor eradication in vivo, upon treatment with cleavable disulfide-

linked conjugates particularly for heterogeneously expressed targets like CanAg. The same research 

group, in a paper discussing the results obtained with trastuzumab DM1 conjugates [108], suggests that  

the distribution and delivery of maytansinoid metabolites may be sufficiently potent without the  

need for bystander killing, because the antibody target is sufficiently highly and homogeneously 

expressed throughout the tumor. To deeply evaluate the combination of linkage stability and mAb 

binding/internalization/trafficking, Polson et al. compared DM1 derivatives of a panel of seven mAbs 

the expression of which is largely restricted to the B-cell compartment and are expressed in the 

majority of non–Hodgkin’s lymphoma [110]. ADCs with cleavable linkers mediated in vivo efficacy 

via all these targets; ADCs with uncleavable (MCC) linkers were only effective when targeted to 
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CD22 and CD79b expressed only in the B-cell compartment. The authors suggested that ADCs  

with cleavable linkers work on a broad range of targets, but for specific targets, ADCs with 

uncleavable linkers are superior with respect to safety. An improvement of the effects of affinity 

binding on microtubules and in the dynamic instability of maytansine metabolites (S-methyl-DM1 and  

S-methyl-DM4) was recently described by Lopus [111]. Although the lipophilic metabolites of 

maytansine show high potency, another more recent approach, involves the use of hydrophilic linker 

(or spacer) to bypass multi-drug resistance. Although MDR1 (permeability-glycoprotein transporter) 

has been shown to recognize and transport a great variety of compounds, most of the reported 

substrates are hydrophobic [112]. Kovtun et al. [113] described the synthesis and characterization of 

ADC composed of an anti–epidermal growth factor receptor (EGFR) antibody and maytansinoids, 

attached through a hydrophilic linker (Figure 11). The group hypothesized that the resulting hydrophilic 

metabolite (Lysine-derivative), might be a poor substrate of MDR1, thus avoiding MDR1-mediated 

resistance. The thioether linkage with DM1 may afford better stability and increased pharmacokinetics. 

Figure 11. DM1-mAb conjugate with hydrophilic spacer. 

 

The results of trials of anti-EpCAM–PEG4-Mal–DM1 showed it to possess marked activity, not 

only on COLO 205 cells xenografted in mice, but also on a clone expressing a functional MDR1 

pump, denoted COLO 205MDR, selected by culturing the cells in a medium containing paclitaxel. A 

single administered dose of 680 μg/kg as DM1 maintained the animals growth-free for 100 days after 

the implant. The group hypothesized that, although the metabolite, lysine-PEG Mal-DM1 was ∼8-fold 

less cytotoxic than the more lipophilic lysine-SMCC-DM1, mechanisms such as increased tubulin binding, 

inhibition of MDR1-mediated efflux, may play crucial roles in explaining the conjugate’s potency. 

On the basis of promising preclinical results, several DM4 conjugates are now in advanced clinical 

trials. BT-062-SPDB-DM4 is in phase 2 trials for multiple myeloma [114]; also currently in trials are 

intetumumab-SPDB-DM4 (IMGN-388) from Centocor-Immunogen in a phase I trial for advanced 

solid tumors [115], SAR-3419 (HuB4-DM4), an anti-CD19 humanized monoclonal antibody conjugated 

to DM4, for the potential treatment of non-Hodgkin’s lymphoma, lorvotuzumab-MCC-DM1, 

(IMGN901) (anti CD56 mAb) (phase 2 for ovarian cancer small-cell lung cancer). and compound 

SAR-566658, comprising the monoclonal antibody DS6 which targets the Muc1epitope CA6  

linked to DM4 from Sanofi-Aventis is in advanced preclinical trials [116]. Genentech has the 

conjugates trastuzumab-MCC-DM1 [103] (phase 2), RG-7593 (anti-CD22-MCC-MMAE) (phase 1 for  

non-Hodgkin’s lymphoma), and lorvotuzumab-DM1, (anti CD56 mAb) (phase 2) in advanced trials. 
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3.2. Dolastatins, Auristatin 

Dolastatins are natural cytotoxic pseudopeptides extracted from the marine shell-less mollusk 

Dolabela auricularia (for an extensive review, see Pettit [117]). The dolastatin family has demonstrated 

antineoplastic, bactericidal, and fungicidal properties [118–120]. Within the family, dolastatin-10 and 

dolastatin-15 are potent disruptors of tubulin polymerisation [121], inhibit the binding of Vinca 

alkaloids to tubulin in a noncompetitive manner, and also stabilize the binding of colchicines to 

tubulin. Dolastatin 10 has demonstrated potent activity in preclinical studies, both in vitro and in vivo, 

against a range of lymphomas, leukemia and solid tumors [122]. Turner et al. [120] studied the effects 

of dolastatin-10 on the DU-145 human prostate cancer cell lines; they observed complete growth 

inhibition at concentrations of 1 nM. In vivo efficacy was demonstrated at a dose of 5mg of dolostatin-10, 

administered i.p. every 4 days in athymic mice. Further phase I clinical trials demonstrated dose 

limiting toxicities in the form of myelosuppression and phlebitis, with moderate peripheral neuropathy. 

Phase II trials have been carried out in non-small cell lung, prostate, melanoma, colorectal, ovarian, 

breast and pancreatobiliary tumors, but all have failed to demonstrate significant clinical activity in 

these tumors as a single agent [123]. With the aim to develop potent mAb- directed conjugates 

dolastatin 10 analogues, such as auristatin E (AE) and monomethylauristatin E (MMAE) have been 

selected [124–126], These compounds have been evaluated on a diverse panel of human tumor cell 

lines, including hematological malignancies, melanoma, and carcinomas of the lung, stomach, prostate, 

ovaries, pancreas, breast, colon and kidneys. The results indicated that none of the cell lines is resistant to 

AE, and that the drug (average half-maximal inhibitory concentration 3.2 ± 0.51 nm, 1 h exposure) is 

200 times as potent as vinblastine [127]. 

Different linking strategies have been evaluated, essentially employing two derivatization points of 

AE (starting from the left, N-or C-terminal position) (Figure 12); the more interesting strategy involves 

the use of acid-labile or proteolytically cleavable linkers. This approach is based on the characteristics 

of the intracellular route, through receptor-mediated endocytosis, and then through lysosomes that are 

both acidic and rich in highly active proteases. 

Figure 12. Structure of auristatins (R=CH3) and monomethylauristatins (R=H). 

 

Acid-labile linkers, containing hydrazone functionalities as the cleavable moiety, were formed at 

the C-terminus of AE by condensing maleimidocaproyl hydrazide with a panel of AE ketoesters. 

AEVB (Figure 13) was selected for additional studies because it is relatively stable at pH 7.2 (t
½
 > 60 h) 

but is labile at pH 5.0 (t
½

 3 h). Protease-cleavable dipeptide linkers were attached to the N-terminal 
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position of MMAE through a self-immolative p-aminobenzylcarbamate spacer (PABC) [127],  

and with the peptide linkers Phe-Lys- and Val-Cit-, that were quite stable under physiological 

conditions but underwent rapid hydrolysis in the presence of lysosomal extracts and purified human 

cathepsin B [128]. 

Figure 13. Structure of Auristatin E and MMAE conjugates. The wavy lines indicate the 

site of hydrolysis (enzymatic or pH-dependent). 

 

More recently, Doronina [129] explored the effects of linker technology on Auristatin F (AF)-based 

ADC potency, activity, and tolerability, by generating a diverse set of dipeptide linkers between the  

C-terminal residue. The group demonstrated that it is possible to alter the therapeutic window of 

auristatin-based ADCs, by changing the peptide linker between drug and mAb carrier protein. The  

C-terminal derivatives AF-Asn-(D)Lys and AF-Met-(D)Lys ADCs were not only more potent than 

Val-Cit-PABC-MMAF, but were also tolerated at higher doses. In this research, the linkage with mAb 

was achieved by its reduction with dithiothreitol, to expose the hinge cysteine thiol groups, followed 

by alkylation with the maleimido-containing MMAE and AEVB drug derivatives, forming conjugates 

with about eight drug molecules per mAb. This reductive conjugation method, although not often 

employed, is said by the study’s authors to preserve mAb affinity, lead to a high degree of conjugate 

uniformity, and provide yields in the range of 80% based on the mAb component. 

Several ADCs containing auristatin are now in clinical trial; these are, from Seattle Genetics, 

Brentuximab vedotin (SGN-35) where an anti-CD30 monoclonal antibody (cAC10) is linked to  

Val-Cit-MMAE, SGN-75 composed by the anti-CD70 mAb 1F6 linked to Val-Cit-MMAF (phase I); 

from Celldex Ther. the conjugate glembatumumab, directed to melanoma antigen glycoprotein NMB, 

with Val-Cit-MMAE (CDX-011) (phase II) [130]; from Cytogen a mAb directed to prostate specific 

membrane antigen (PSMA) conjugated with Val-Cit-MMAE (PSMA-ADC; PSMA-ADC-1301) 

(phase I) [131] (for a recent review, see [132]). Very recently SGN-35 has obtained the Biologic 

License Application from FDA. 

In order to obtain linkers that can be efficiently and selectively cleaved intracellularly, maintaining 

a good in vivo stability, another approach has been attempted. Jeffrey et al. [133] describe the results 

of an approach to preparing ADCs comprising a β-glucuronide linker (Figure 14, compound 1) that 

they employed with several drug classes, such as auristatin [133], CBI minor groove binders [134], 

camptothecin and doxorubicin analogues, and very recently psymberin, a potent anticancer molecule 

with subnanomolar cytotoxic activity [135]. The mechanism of drug release requires cleavage by  

β-glucuronidase, an enzyme present in lysosomes and tumor interstitium [136]. The linker is highly 
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stable in circulation and is hydrophilic; this allows it to be used with hydrophobic drugs that otherwise 

would lead to ADC aggregation. 

Figure 14. ADC composed of a glucuronidase activating linker (1) and the release mechanism. 

 

3.3. Calicheamicins 

The calicheamicins (also known as LL-E33288 antibiotics), produced by Micromonospora 

echinospora ssp. calichensis, were discovered by the American Cyanamid Co in 1986. These 

compounds are active in biochemical induction assays at concentrations below 1 pg/mL, extremely 

active against Gram-positive bacteria and also highly active against Gram-negative bacteria. Most 

interestingly, they show extraordinary potency against murine tumors: they are approximately 4000 times 

more active than adriamycin, with optimal dose at 0.5–1.5 μg/kg [137,138]. 

Calicheamicin gamma 1 (Figure 15) contains two distinct structural regions, each playing a specific 

role in the compound’s biological activity. The larger of the two regions consists of an extended  

sugar residue, comprising four monosaccharide units and one hexasubstituted benzene ring, which  

are joined together through a highly unusual series of glycosidic thioester and hydroxylamine  

linkages. The second structural region, the aglycon (termed calicheamicinone), contains a compact, 

highly-functionalized bicyclic core housing a strained enediyne unit within a bridging 10-member ring. 

The aryltetrasaccharide serves to deliver the drug to its target, tightly binding it to the minor groove of 

double-helix DNA. 

Figure 15. Structure of Calicheamicin gamma 1. 
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The aglycon is a rigid, highly-functionalized bicyclic core in which the enediyne moiety is locked 

within a rigid 10-member bridging ring awaiting activation. Also forming part of the aglycon is an 

allylic trisulfide, which serves as a trigger: when a nucleophile (e.g., glutathione) attacks the central 

sulfur atom of the trisulfide group, it causes a significant change in the structural geometry, which 

imposes considerable strain on the 10-member enediyne ring. This strain is completely relieved by the 

enediyne’s undergoing the cycloaromatization reaction, generating the highly-reactive 1,4-benzenoid 

diradical, that eventually leads to DNA cleavage [139] (Figure 16). 

Figure 16. Mechanism of DNA cleavage by calicheamicin. 

 

A series of conjugates of calicheamicins with the CTM01 anti-MUC1 antibody has been  

reported [140] but the first and thus far the sole mAb linked to a cytotoxic payload that has been  

given regulatory approval is Wyeth’s gemtuzumab ozogamicin (Mylotarg; Figure 17) [141,142].  

The drug was approved by the US Food and Drug Administration in year 2000 for use in patients over 

sixty suffering from relapsed acute myelocytic leukemia, the commonest form of leukemia in adults. 

Gemtuzumab ozogamicin consists of N-acetyl-γ-calicheamicin covalently attached to the humanized 

anti-CD33 IgG4 κ antibody (hP67.6) via a bifunctional linker. The 4-(4-acetylphenoxy)butanoic acid 

moiety provides attachment to surface-exposed lysines of the antibody through an amide bond, and 

forms an acyl hydrazone linkage with N-acetyl-γ-calicheamicin dimethyl hydrazide. Typically, a drug 

loading of 2 to 3 molecules of calicheamicin per molecule of mAb can be achieved. Upon 

internalization of the ADC, the calicheamicin prodrug is released by hydrolysis of the hydrazone in the 

lysosomes of the CD33+ target cells, at least in vitro. Indeed the hydrolysis of hydrazone linkage at  

37 °C over 24 h increased from 6% at pH 7.4 to 97% at pH 4.5 [143]. The enediyne drug is then 

activated by reductive cleavage of the disulfide bond; and in order to prevent premature release of 

calicheamicin by circulating reduced thiols, such as glutathione, the disulfide linkage is stabilized by 

two methyl groups close to the disulfide. 
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Figure 17. Structure of N-acetyl, gamma calicheamicin conjugate: Mylotarg. 

 

In most preclinical models, the hydrazone linkage produces ADCs with higher potency than the 

corresponding amide-bearing conjugate, providing evidence that, with anti-CD33 mAb, the disulfide 

alone is insufficient for efficient release of the drug in the target cell. Interestingly, with the murine 

mAb CTM01 (recognizing the MUC1 antigen present on a broad spectrum of solid tumors of epithelial 

origin), amide-bearing ADC showed activities equal to or even greater than that of the corresponding 

hydrazone conjugate, in several in vitro and in vivo tumor models, revealing that this conclusion 

cannot be generalized at least without taking target internalization properties into account [144]. In 

clinical trials, however, the amide-bearing conjugate only showed limited evidence of activity. 

Mylotarg enjoyed limited successes (and was withdrawn from the market in 2010) due to a narrow 

therapeutic window and lack of target-dependence. The linker technology based on a pH-dependent 

release mechanism is probably not sufficiently stable, and too much of the drug is released in the 

bloodstream; pharmacokinetic data have shown that the mean half-life of Mylotarg is 72 h [143]. 

Nonetheless, development of CMC544 (inotuzumab ozogamicin), which is a humanized anti-CD22 

mAb identically attached to N-acetyl-γ-calicheamicin dimethylhydrazide via the acid-labile  

4-(4′-acetylphenoxy)butanoic acid linker, is ongoing at Wyeth. Although this ADC is closely related to 

Mylotarg, the good stability shown in both human plasma and serum (rate of hydrolysis of 1.5–2%/day 

over 4 days) [144,145] make it more promising. 

Regarding the role of production of more homogeneous batches of ADC, one of the key points is 

selectivity of the linkage insertion on the mAb molecule. As reported above, cytotoxic drugs are 

generally conjugated to antibodies either through lysine side-chain amines or through cysteine 

sulfhydryl groups activated by reducing interchain disulfide bonds. Both of these procedures yield of 

heterogeneous products, containing a mixtures of species with different molar ratios of drug linked to 

the antibody. Junutula pointed out the role of molecular biology in improving ADC using mAbs 

containing engineered cysteine residues for site-specific conjugation [146] (THIOMABs). In his first 

study, the chimeric (ch3A5) and fully-humanized (hu3A5) anti-MUC16 antibodies were engineered to 

have the HC-A114C mutation (Kabat numbering; equivalent to A118C in Eu numbering and A117C in 

sequential numbering) and conjugated with auristatin. In a following study, a THIOMAB version of 

trastuzumab (thio-TmAb) was designed, engineered at the cysteine residue at Ala114 (Kabat 

numbering), conjugated with DM1 [147]. The major advantage of this technique is the yield in 
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homogeneous conjugate: in an improved process of ADC preparation (100 g of anti-MUC16 

conjugate) more than 90% of the product was composed of 2 drug/mAb molecules. 

In order to increase potency (as described above) and pharmacokinetic profile, thereby reducing 

systemic toxicity, a hydrophilic spacer and two non-reducible thioether linkages were applied. In this 

case, the homobifunctional reagent bis-maleimido-trioxyethylene glycol (BMPEO) was employed, 

reacted firstly with DM1, then with thio-trastuzumab (Figure 18). 

Figure 18. Scheme of specific insertion points on thio-trastuzumab and structure of the 

hydrophilic spacer. 

 

This hydrophilic spacer is similar, as described above [113], but the engineered thioTmAb-mpeo-DM1 

contained a precise stoichiometry and a specific linking site, on the single engineered cysteine residue 

on each heavy chain. 

Engineered thioTmAb-MPEO-DM1 displayed equal in vitro activity and in vivo efficacy, at 

comparable antibody doses of conventional trastuzumab-MCC-DM1, but reduced aspecific toxicity, 

expressed as bone-marrow and liver toxicities. The elimination of high-drug-load ADC species 

produced an improvement in tolerability, i.e., conjugate exposure associated with toxicity was greater 

for thioTmAb-MPEO-DM1 at 48 mg/kg than for trastuzumab-MCC-DM1at 30 mg/kg. 

4. Conclusions 

Starting from the chemical derivatization of toxins and mAbs, several conjugates have been 

developed, prepared with different approaches. Over the last 30 years, there has been continuous 

progress in IT design and development, leading to more sophisticated and efficacious products. 

Systemic off-target effects were prevalent when ITs were first introduced, but it is now possible to 

incorporate elements that reduce such effects, and to optimize the dose-response curves, so as to ensure 

the most potent possible effect on target cells, while limiting collateral damage. Molecular biology and 

protein engineering have been employed to develop potent and versatile toxin-based therapies with 

great application potential. Recent developments have reduced the size of ITs, allowing better 

distribution and penetration, improved binding affinity and avidity to cell-specific target antigens, and 

more efficient uptake and translocation to the cytosol. The potency, the reduction of immunogenicity, 
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and the increase in specificity, have together improved the role of ITs as anticancer agents, although 

further human trials are needed: the true efficacy of these innovative products is still to be clarified, 

specifically their appropriateness for a narrow range of applications (e.g., interleukin-targeted 

cytotoxins in infusion techniques to treat brain cancer [148] or ITs for use in locoregional treatment [149]) 

or in a wider range of diseases. 

Linker strategies took on great importance in the development of ADCs: synthesis is quite complex, 

several aspects must be critically balanced, and thus most ADCs providing promising preclinical data 

have failed to realize their potential in clinical trials. However, the latest generation of ADCs is now 

showing great promise in early clinical trials, particularly in hematological malignancies [145,150] 

With mature mAb technology, several potent compounds now under development that may be able to 

act on a wide variety of antigens, today’s solid knowledge of linker strategies, and the good variety of 

potent and well-known cytotoxic agents, the possibility to turn ADCs into effective and potent 

anticancer agents is truly beginning to take shape. 
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