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Abstract: Some of the most potent phytotoxins are synthesized by microbes. A few of 

these share molecular target sites with some synthetic herbicides, but many microbial 

toxins have unique target sites with potential for exploitation by the herbicide industry. 

Compounds from both non-pathogenic and pathogenic microbes are discussed. Microbial 

phytotoxins with modes of action the same as those of commercial herbicides and those 

with novel modes of action of action are covered. Examples of the compounds discussed 

are tentoxin, AAL-toxin, auscaulitoxin aglycone, hydantocidin, thaxtomin, and tabtoxin. 

Keywords: antibiotic; herbicide; phytotoxin 

 

1. Introduction  

Microbes are a lucrative source of phytotoxins, e.g., [1–10]. The evolutionary pressure for phytotoxin 

production is obvious with microbial plant pathogens, but many non-pathogenic soil microbes also 

produce potent phytotoxins, and the role of these compounds in chemical ecology is less clear. An 

example of the latter case is the production of bialaphos by several Streptomyces species [10,11]. Most 

of the previous reviews of microbially-produced phytotoxins have focused on aspects of the 

compounds other than their modes of action. The reviews by Duke et al. [1] and Cutler et al. [12] are 

exceptions. Any review that focuses on mode of action leaves out many microbial phytotoxins for 

which we have little or no information on their molecular target site. We also exclude larger phytotoxic 

peptides (>10 amino acids).  
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The mode of action facet of phytotoxins from microbes is overdue for an update, which we provide 

in this short review. We approach the topic from the standpoint of effects on general plant functions, 

with details about specific molecular target sites when they are available.  

2. Amino Acid Metabolism 

2.1. Aminotransferases  

Several microbial secondary compounds either inhibit an amino transferase or appear to have such a 

mode of action. Cornexistin (Figure 1), a fungal metabolite from Paecilomyces variotii, was patented 

as a herbicide. The amino transferase inhibitor aminooxyacetate causes identical herbicidal symptoms 

in duckweed [13]. Cornexistin inhibits aspartate amino transferase activity at high concentrations  

only after incubation in a plant cellular extract, suggesting that cornexistin is a proherbicide that must 

be metabolized to an amino transferase inhibitor. Gostatin (Figure 1), a product of Streptomyces 

sumanensis [14], is a potent amino transferase inhibitor that is phytotoxic [15]. 

Figure 1. Structures of some microbial compounds known or thought to inhibit  

amino transferases. 

 

Gabaculin (Figure 1), a product of Streptomyces toyacaenis [16], is an inhibitor of several 

aminotransferases e.g., [17]. In plants it strongly inhibits glutamate 1-semialdehyde aminotransferase, 

an enzyme required for 5-aminolevulinate synthesis and thus porphyrin and chlorophyll synthesis [16,18]. 

This compound will be discussed in more detail under section 11 on porphyrin synthesis. 

Ascaulitoxin aglycone (Figure 1), a product of Ascochyta caulina, a fungus being studied as a 

potential mycoherbicide [19], is a potent phytotoxin that has profound effects on amino acid 

metabolism as determined by metabolic profiling [20]. Feeding treated plants with most amino acids 

reversed the effects of the toxin. However, in vitro assays found that the toxin did not inhibit alanine 

aminotransferase nor alanine:glyoxylate aminotransferase, leading the authors to speculate that it 

might inhibit another amino transferase or one or more amino acid transporters. 
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2.2. β-Cystathionase  

Rhizobitoxine (Figure 2) is a phytotoxin produced by some Bradyrhizobium strains [21]. It inhibits 

β-cystathionase, which is required for methionine synthesis [21,22]. This toxin is phytotoxic enough to 

have been considered as a commercial herbicide [23]. Since synthesis of the essential plant hormone 

ethylene is dependent on methionine, one could assume that ethylene synthesis would be greatly 

inhibited in plants treated with this compound. However, rhizobitoxine also directly inhibits 

production of ethylene from methionine [24] by inhibition of 1-aminocyclopropane-1-carboxylate 

synthase [25]. 

Figure 2. Structure of rhizobitoxine. 

 

2.3. Glutamate Synthase 

Acivicin (Figure 3) is a product of Streptomyces sviceu [26] that has been patented as a herbicide [27]. 

It has not been well studied in plants, but has been well researched as a pharmaceutical. Acivicin is an 

analogue of glutamine and inhibits a number of glutamine-dependent enzymes, including glutamate 

synthase [28]. It also inhibits amidophosphoribosyltransferase, phosphoribosylformylglycinamidine 

synthase, GMP synthase, and γ-glutamyltranspeptidase [29–31]. Unfortunately, the effects of this toxin 

on these enzymes in plants are not published.  

Figure 3. Structures of glutamate synthase and glutamine synthetase inhibitors  

from microbes. 
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2.4. Glutamine Synthetase  

Phosphinothricin (Figure 3) and several other microbial products are inhibitors of glutamine 

synthetase (GS) [32]. This is perhaps the largest collection of microbial compounds that target a 

particular enzyme. Most of these compounds are of bacterial origin (from either Pseudomonas 

syringae plant pathovars or from soil-born Streptomyces species). These compounds are all analogues 

of glutamate, two of them are also produced from inactive di- or tripeptide protoxins (Figure 3).  

Streptomyces hygroscopis and S. viridochromogenes both produce bialaphos (Figure 3). This 

tripeptide does not inhibit GS, but must be metabolized in plants and microbes to L-phosphinothricin, 

the active GS inhibitor [33]. Inhibition of GS causes accumulation of toxic levels of ammonium, as 

well as a disruption of amino acid and other primary metabolism [32]. One of the earliest general 

physiological effects is cessation of photosynthesis [34]. Both bialaphos and phosphinothricin are sold 

as commercial herbicides. Trialaphos and phosalacine, produced by S. hygroscopicus sp. KSB-1285 

and Kitasatosporia phosalacinea, respectively, also release phosphinothricin upon hydrolysis [35,36]. 

Bialaphos is produced by fermentation. It has a very small market as a herbicide in Japan. 

Phosphinothricin is sold as a synthetic mixture of L- and D-phosphinothricin sold under several trade 

names, but given the herbicide common name of glufosinate [37]. The D-isomer is inactive as a GS 

inhibitor. Glufosinate is one of the most successful commercial herbicides used throughout the world. 

Oxetin (Figure 3) from Streptomyces sp. OM-2317 [38] and the tripeptide L-(N
5
-phosphono)methionine-

S-sulfoximinyl-L-alanyl-L-alanine from an unclassified strain of Streptomyces [39], are also  

GS inhibitors. Oxetin is a very weak GS inhibitor. The latter compound is inactive as the  

tripeptide, but degrades into two known strong GS inhibitors, phosphomethionine sulfoximine and 

methionine sufoximine.  

Several Pseudomonas syringae pathovars produce tabtoxin (Figure 3), a dipeptide prophytotoxin. 

Tabtoxin is not a GS inhibitor, but it is hydrolyzed in planta to form the potent GS inhibitor 

tabtoxinine-β-lactam [40,41]. Analogues of tabtoxin, such as 2-serine-tabtoxin [42],  

valyl-alanyl-tabtoxin, alanyl-tabtoxin, and alanyl-analyl-tabtoxin [43] have also been reported from 

various actinomycetes.  

2.5. Ornithine Transcarboxylase 

The product of ornithine transcarboxylase (OCTase) is citrulline, a precursor of arginine. So, 

inhibition of this enzyme results in loss of arginine production. Phaseolotoxin (Figure 4) is a tripeptide 

produced by Pseudomonas syringae pv. phaseolicola. Phaseolotoxin is a protoxin, in that peptidases of 

the plant must convert it to N
δ
-(N

1
-sulfodiaminophospinhyl)-L-ornithine (PSorn), which is a potent 

inhibitor of OCTase [44].  
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Figure 4. Phaseolotoxin and PSorn. 

 

3. Cellulose Synthesis  

Thaxtomin A (Figure 5) belongs to a group of cyclic dipeptides (2,5-diketopiperazines) which arise 

from the condensation of 4-nitrotrytophan and phenylalanine groups. Structure-activity studies 

determined that the presence of a 4-nitroindole group is necessary to maintain phytotoxicity of these 

metabolites [45]. These potent toxins are produced by several species of the gram-positive filamentous 

bacteria in the genus Streptomyces (e.g., S. scabies and S. eubacteria) that cause scab disease in potato 

and in several taproot crops. 

Figure 5. Structure of thaxtomin A. 

 

Typical phenotypic responses of plants exposed to thaxtomin A include reduced seedling growth, 

cell swelling, and lignification of cell walls. Biochemically, thaxtomin inhibits cellulose synthesis. 

Arabidopsis thaliana seedlings treated with thaxtomin A have lower crystalline cellulose and higher 

content of pectins and hemicellulose in their cell wall, relative to untreated plants. This is accompanied 

by an alteration of the expression of genes involved in primary and secondary cellulose synthesis as 

well as genes associated with pectin metabolism and cell wall remodeling. Thaxtomin A affects the 

formation of the cellulose synthase complexes on the outside of the plasma membrane, leading to its 

dissociation from the cortical microtubule cytoskeleton [46]. 
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4. Energy Transfer  

Tentoxin (Figure 6), a cyclic tetrapeptide from the plant pathogen Alternaria alternata, inhibits 

chloroplast development, which phenotypically manifests itself as chlorotic tissue [47,48]. These papers 

indicate that there is no direct effect of tentoxin on chlorophyll synthesis. Two fundamental processes 

are linked with this phenotype. This first is inhibition of energy transfer of the chloroplast-localized 

CF1 ATPase [49,50]. One would think that this process alone could account for the chlorosis, but 

tentoxin also completely inhibits the transport of nuclear-coded enzyme polyphenol oxidase (PPO) into 

the plastid, even in etioplasts which should have no CF1 ATPase activity [51]. Without this processing, 

PPO has no enzyme activity. Inhibition of these two processes seems to be linked, in that both processes 

are inhibited in vivo in tentoxin-sensitive plant species and not affected in insensitive species [52]. 

Nevertheless, the coding of the β subunit of proton ATPase at codon 83 seems to account for 

susceptibility of plants to tentoxin [53]. Coding for glutamate at codon 83 correlates for resistance and 

aspartate coding results in susceptibility to tentoxin. Mutagenesis of Chlamydomonas reinhardtii to 

change gluamate to aspartate resulted in a change from resistant to susceptible. Later, tentoxin was 

suggested to exert its effect on chlorophyll accumulation through overenergization of thylakoids [54], 

but this does not explain the profound effects of the compound on PPO processing in etioplasts without 

thylakoid membranes. The linkage of the β subunit of proton ATPase to PPO processing remains to be 

explained. Understanding this relationship may help to explain the role of PPO in the plastid, where 

enzymatic activity is latent [55,56]. The true physiological role of PPO in a functional chloroplast is 

still a mystery. 

Figure 6. Microbially-derived phytotoxins that act on energy transfer functions. 
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Nigericin (Figure 6), a product of Streptomyces hygroscopicus, is an uncoupler of 

photophosphorylation [57]. It inhibits photosynthesis with decreased ATP/ADP ratios, decreased 

energy quenching, and hyper-reduction of QA [58].  

Several microbial phytotoxins inhibit photosynthetic electron transport. These include 

cyanobacterin, fischerellin A, stigmatellin, and the aurachins (Figure 6). The first two of these 

compounds are produced by cyanobacteria. Cyanobacterin is a halogenated compound from the 

freshwater cyanobacterium Scytonema hofmanni that inhibits electron transport of photosystem II [59]. 

Fischerellin from the cyanobacterium Fischerella muscicola produces fischerellin A that inhibits PSII 

of green algae and higher plants [60]. Stigmatellin, produced by the myxobacterium Stigmatella 

aurantica, inhibits photosynthetic electron transport at both the D-1 site of synthetic photosynthetic 

inhibitors and at the cytochrome b6/f-complex [61]. The aurachins, a group of quinoline compounds 

from Stigmatella aurantica, also inhibit photosynthesis at the same two sites as stigmatellin [62]. 

Pyridazocidin (Figure 6), a cationic compound from soil Streptomyces species, causes rapid plant 

necrosis and chlorosis, much like that of bipyridinium herbicides like paraquat [63]. Studies with 

isolated chloroplasts showed that its mode of action is exactly like bipyridiniums, diverting electrons 

from photosystem I to become reduced to a reactive radicle that subsequently generates superoxide 

radicle, resulting in a cascade of destructive oxidative processes. This is the only natural phytotoxin of 

which we are aware with this mode of action. 

5. Jasmonic Acid Analogues 

Jasmonic acid (Figure 7) is a plant hormone derived from linolenic acid. It plays a major  

role in regulating growth and development, as well as responses to both abiotic and biotic stress. 

Coronatine (Figure 7) is a jasmonate analog produced by Pseudomonas coronafacience [64]. It usurps 

jasmonate-controlled signaling pathways [65], thereby deregulating many essential processes. The 

typical symptom of this toxin is chlorosis of developing tissues. Cinnacidin (Figure 7), a product of the 

fungus Nectria sp. DA060097, has a similar mode of action to coronatine [66].  

Figure 7. Jasmonic acid and phytotoxin analogs. 

 

6. Lipid Metabolism 

A series of structurally related fungal metabolites specifically inhibit ceramide synthase 

(sphinganine-N-acyltransferase) in plants. These include several analogues of AAL toxin and 

fumonisin [67–70] (Figure 8). AAL toxins are produced by Alternaria alternata tomato pathovars and 
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fumonisins are produced by Fusarium spp. AAL toxins were originally reported to be host specific, but 

they are phytotoxic to many plant species, as are their close structural analogues, the fumonisins. 

These compounds are analogues of the substrate for ceramide synthase, although australifungin is only 

a weak analog (Figure 8) [70]. When plant tissue is treated with these inhibitors, the sphingolipid 

precursors and precursor derivative levels are rapidly elevated to concentrations many fold more than 

found in untreated tissues [71]. This precedes rapid loss of plasma membrane integrity. Others have 

sought to explain the action of this family of toxins by invoking induction of apoptosis (programmed 

cell death) [72,73], but the effects are so rapid at even low doses, that this phenomenon seems unlikely 

to play a direct role except at very low doses. Treatment of plants with the sphingoid base precursors 

of ceramide synthase causes similar effects to those caused by the inhibitors of ceramide synthase [74]. 

They cause rapid, light-independent cellular leakage through dysfunction of the plasma membrane. 

Sphingoid bases also cause generation of reactive oxygen species (ROS) [75] in plant cells. Rapid 

formation of ROS in the plasma membrane can cause cell death unrelated to apoptosis, whereas slower 

formation can cause programmed cell death.  

Figure 8. Microbial compounds that affect lipid synthesis. 

 

Thiolactomycin (Figure 8) is produced by unidentified species of Norcardia and Streptomyces and 

is an inhibitor of both plant and animal type II dissociated fatty acid synthetase [76]. It is a very potent 

inhibitor of incorporation of acetate into fatty acids of chloroplasts [77]. Cerulenin (Figure 8), a 

product of the fungus Cephalosporium cerulens, inhibits de novo fatty acid synthesis in plastids [78]. 

Like thiolactomycin, it is an inhibitor of fatty acid synthetases, but it is not as active as an inhibitor [79].  

The diphenyl ether compound cyperin (Figure 8), a metabolite of Preussia fleischhakii,  

Phoma sorghina, and Ascochyta cypericola [80–82], inhibits plant enoyl (acyl carrier protein) 

reductase (ENR), which is the target site of a synthetic diphenyl ether called triclosan. Inhibition of 

ENR results in light-independent disruption of membrane integrity [83]. 
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7. Membrane Function  

Syringomycin (Figure 9), from Pseudomonas syringae, is one of the many cyclic 

lipodepsinonapeptide microbial phytotoxins. Structurally related compounds from the same organism 

with similar modes of action are syringotoxin and syringostatins [84,85]. These compounds are large 

molecules that typically have a polar peptide head and a hydrophobic 3-hydroxy fatty acid tail.  

Figure 9. Microbially-produced compounds that affect membrane function. 

 

This hydrophobic tail of varying length (from C10 to C14) is bound to the N-terminal serine  

residue via an amide bond. The macrocyclic lactone ring is obtained via an ester linkage to the  

C-terminal 4-chlorothreonine. Syringomycin often contains uncommon amino acids such as  

2,3-dehydroaminobutyric acid, 3-hydroxyaspartic acid, and 4-chlorothreonine, as well as serine  

D-isomers and 2,4-diaminobutyric acid [86]. Structure-activity relationship studies reported that 

chlorination of the molecule is important for biological activity.  



Toxins 2011, 3              

 

 

1047 

Syringomycin induces rapid necrosis in plant tissues by forming pores that are freely permeable to 

cations (e.g., K
+
, H

+
, and Ca

2+
) within the plasma membrane. Nanomolar amounts of syringomycin are 

sufficient to induce loss of membrane integrity and cell death [87]. 

The beticolins (Figure 9), a yellow group of toxins from Cercospora beticola, self assemble into 

multimeric ion channels that disrupt membrane function [88,89]. T-toxins (Figure 9) are host-specific, 

trichothecene phytotoxins from the fungi Cochiobolus heterstrophus, Phyllostica maydis, and 

Bipolaris maydis. They inhibit mitochondrial respiration by binding an inner mitochondrial membrane 

protein in sensitive plants, resulting in pore formation, leakage of NAD
+
, and other ions, as well as 

subsequent mitrochondrial swelling [90,91]. Fusicoccin (Figure 9) a product of the fungus Fusicoccum 

(Phomopsis) amygdali irreversibly activates the plant plasma membrane H
+
-ATPase, leading to 

inability of stomata to close and subsequent lethal wilting [92,93]. 

Victorin C (Figure 9), a fungal product of Cochiobolus victoriae, induces a collapse of the 

mitochondrial transmembrane potential, which results in a mitochondrial membrane transition [94]. It 

also binds the P protein of the glycine decarboxylase complex of the mitochrondria [95]. All of this has 

been associated with programmed cell death, but it may also act at the cell surface to cause a 

hypersensitive response via plasma membrane ion fluxes [95]. 

Colletotrichin (Figure 9) is a highly phytotoxic compound from several Colletotrichum species,  

e.g., [96]. Ultrastructurally, the first effect of this compound is disintegration of the plasma membrane, 

accompanied by massive cellular leakage [97]. The effect is not light dependent and could not be 

reversed with antioxidants, suggesting that it has a direct effect on the plasma membrane.  

Nigericin (Figure 6), a Streptomyces hygroscopicus product is a phytotoxic postassium  

ionophore [98]. Zinniol (Figure 9), a product of several Alternaria species and one Phoma species, 

binds plant protoplasts and stimulates Ca
++

 entry into cells [99]. It may act on a specific class of plant 

calcium channel. There are a number of other compounds produced by plant pathogens that are 

structurally related to zinniol, but their mode of action has not been determined. 

T-2 toxin is a trichothecene that, unlike the other trichothecenes that inhibit protein synthesis, also 

causes plant plasma membrane leakage of electrolytes at low concentrations [100]. 

Ophiobolins (Figure 9), tricyclic sesquiterpene phytotoxins from certain species of Bipolaris and 

other fungal genera, cause many symptoms on plants that were considered to be largely due to effects 

on the plasma membrane [101]. It effects on maize root ion leakage correlate well with its direct 

antagonism of calmodulin [102]. Its effects on calmodulin cause inhibition of transport of nuclear-coded 

proteins into both the mitochondrion [103] and the plastid [104]. 

8. Mitotic Disruptors  

Numerous natural products inhibit plant cell mitosis rather directly by interfering with the function 

of microtubules. However, most all of these are products of plants (e.g., colchicine) [105]. Taxol 

(Figure 10), a potent mitotic inhibitor, first found in yew (Taxus) species, has subsequently been found 

to be produced by several endophytic fungi, e.g., [106,107]. In addition to being a potent toxin for 

mammalian cancer cells, taxol is an effective inhibitor of plant cell mitosis [108]. In both cases it 

hyperstablizes microtubules, preventing the cycling of tubulin subunits required for microtubule 

function [109]. 
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Figure 10. Structures of some microbially produced plant mitosis disruptors. 

 

Rhizoxin (Figure 10), a product of a bacterial endosymbiont of the plant pathogen Rhizopus 

microsporus, binds to β-tubulin, thereby inhibiting microtubule formation [110,111]. These findings 

were the first reported case of a phytotoxin from a fungus being derived from a bacterial 

endosymbiont. The producing fungus has a rhizoxin-resistant form of β-tubulin [112]. Neomycin 

(Figure 10), an aminoglycoside antibiotic from Streptomyces fradiae, disrupts mitosis  

in plant cells [113,114]. It does this by inhibiting polyphosphoinositide cycling through inhibition  

of hydrolysis of phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-triphosphate and  

1,2-diacylglycerol. This apparently is the mechanism of phytotoxicity in both higher plants and  

algae [115].  

Moniliformin (Figure 10), a mycotoxin from Fusarium moniliforme, is phytotoxic and arrests 

mitosis of maize root meristematic cells at the metaphase stage [116]. The mitotic spindle was 

disrupted, but no direct effect on tubulin has been observed. 

Functional actin filaments are required for normal mitosis, as well as other cell functions related to 

the cell cytoskeleton. Cytochalasins (A-H) (Figure 10) are actin-binding metabolites of several fungal 

species, such as Phoma exigua and Zygosporium masonii [117]. Binding actin prevents actin 

polymerization into filaments, thus inhibiting the processes that require actin filaments, such as mitosis 

and other plant processes [12,118]  

HC-toxin (Figure 10), a cyclic tetrapeptide from the maize pathogen Cochliobolus carbonum, 

inhibits growth and cell division of target plants [119]. Its molecular site of action is histone 

deacetylase (HDAC). Histones associated with chromosomal DNA become hyperacetylated in treated 

plants. This condition apparently prevents cell division. HC-toxin may also significantly alter gene 

expression in ways that would be detrimental to the plant. HC-toxin inhibits this enzyme in all plants 

and animals and is the basis for new anti-cancer drugs. A number of related fungal compounds are all 

known or presumed HDAC inhibitors.  
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9. Nucleic Acid Synthesis  

Tagetitoxin (Figure 11) from a pathovar of Pseudomonas syringae inhibits plastid RNA  

polymerase [120]. This results in a yellow, chlorotic phenotype. It also inibibits RNA polymerase III 

from animals [121]. Its inhibition is characterized by stalling the elongation complex at several points 

in the template that are template-dependent [122].  

Figure 11. Microbial compounds that inhibit nucleic acid synthesis. 

 

Hydantocidin (Figure 11), a spironucleoside from Streptomyces hygroscopis, is highly  

phytotoxic [123]. Hydantocidin and a number of synthetic analogues have been patented as herbicides. 

It is phosphorylated in vivo, and the derivative, 5'-phosphohydantocidin (5PH), inhibits 

adenylosuccinate synthetase (ASS) [124–127], an enzyme required for purine synthesis. ASS converts 

IMP to AMP. 5PH inhibits ASS by competitively inhibiting it through binding the IMP substrate 

binding site, forming a dead-end complex [128]. ASS is also inhibited by ribofuranosyl triazolone,  

a phytotoxic product of an Actinomadura species [129]. It is a broad spectrum herbicide in  

greenhouse studies. Guanine monophosphate synthetase, (GMP synthase) converts xanthosine 

monophosphate to guanosine monophosphate. As mentioned in the amino acid metabolism section, 

acivicin (Figure 3) is an inhibitor of this enzyme [30]. 

10. Photodynamic Compounds  

Cercosporin (Figure 12) is a red fungal toxin that was first isolated in the 1950s from species of the 

fungal genus Cercospora. This photodynamic pigment is a potent photosensitizer and, in the presence 

of light and oxygen, it generates singlet oxygen (
1
O2) and superoxide (O

-
2) ions that induce rapid 

membrane peroxidation and cellular death [130]. Isocercosporin from Scolecotrichum gramminis is also 

photodynamic [131]. Elsinochromes (Figure 12) from the fungus Elsinoe fawcetti are red pigments of 

very similar structure to cercosporin [132]. There are several other fungal perylenequinone  

phytotoxins [133]. They have the same mode of action as cercosporin. 
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Figure 12. Structures of some photodynamic microbial phytotoxins. 

 

Cercosporin is a general toxin that will affect the lipid bilayers of any cells including plants, 

animals, bacteria, and fungi. This compound may also have antiviral activity and inhibit protein  

kinase C. In plants, tissues and cells treated with cercosporin incur rapid, light-dependent damage to 

membranes, which is accompanied with an elevation of lipid peroxidation products [134]. 

Rubellin D (Figure 12), from the fungus Ramularia collo-cygni, is also a phytodynamic pigment that 

is light-dependent for its activity [135]. This anthraquinone derivative causes singlet oxygen-mediated  

α-linoleic acid peroxidation when exposed to light.  

11. Porphyrin Synthesis  

Cyperin (Figure 8) is a natural diphenyl ether phytotoxin produced by several fungal plant 

pathogens mentioned in Section 6 [80–82]. At high concentrations, this metabolite inhibits 

protoporphyrinogen oxidase, a key enzyme in porphyrin synthesis [136]. However, unlike synthetic 

herbicidal diphenyl ethers that target this enzyme, the mode of action of cyperin is light-independent, 

causing membrane degradation in the dark. Its main effect as a herbicide is on plant enoyl (acyl carrier 

protein) reductase (discussed in Section 6). 

Gabaculine (Figure 1) is a strong inhibitor of the enzyme glutamate-1-semialdehyde 

aminotransferase, an enzyme involved in the early porphyrin pathway [137,138]. Inhibition of this 

enzyme results in stopping synthesis of 5-aminolevulinic acid. By inhibiting porphyrin synthesis, it 

inhibits both heme and chlorophyll synthesis [139,140], as well as that of the tetrapyrrole  

phytochrome [141].  

12. Protein Synthesis 

In addition to being a protein synthesis inhibitor of bacteria, the antibiotic streptomycin (Figure 13) 

inhibits protein synthesis of plastids [142]. It binds to 30S ribosomal subunits to cause this  

effect [143]. Kanamycin and hygromycin (Figure 13), aminoglycoside antibiotics from Streptomyces 

species, are both phytotoxic [144,145]. They both inhibit protein synthesis by interaction with 

ribosomes, although kanamycin inhibits prokaryotic-type protein synthesis, while hygromycin inhibits 

both prokaryotic and eukaryotic protein synthesis [146].  
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Figure 13. Microbial phytotoxins that inhibit protein synthesis. 

 

Actinonin (Figure 13), a product of an Actinomyces MG848-hF6 [147], inhibits plastid peptide 

deformylase (DEF), an enzyme required for N-terminal protein processing of plastid-encoded  

proteins [148,149]. This compound is a non-selective herbicide that results in chlorotic plants. 

Overexpression of two of three different plant DEFs leads to resistance to actinonin [148–150]. 

The trichothecenes (see Figure 9 for an example of T-2 toxin), a large class of fungi-produced 

sesquiterpene mycotoxins, exert most of their effects by inhibiting protein synthesis [12]. They do this 

apparently by targeting the peptidyltransferase center of mitochondrial ribosomes [151]. One would 

expect that they would have the same effect on mitochondrial and perhaps plastid ribosomes. Indeed, 

transgenic modification of wheat with a trichothecene-resistant mitochondrial ribosome subunit, 

imparts partial resistance to a trichothecene-producing pathogen [152]. Most of the trichothecenes are 

produced by plant pathogens, including species from genera such as Fusarium, Myrothecium, 

Trichoderma, and Cephalosporium.  

Blasticidin S (Figure 13) is a nucleoside antibiotic that is produced by several Streptomyces  

species, e.g., [153,154]. Blastocidin S is more phytotoxic to dicotyledonous than monocotyledonous 

species [155]. For example, protein synthesis is more affected in carrot than in rice. It inhibits 

translation of both eukaryotic and prokaryotic cells by inhibition of peptide bond formation by the 

ribosome through inhibition of peptidyl transferase [156–158]. 

13. Protein Binding 

Compounds with internal disulfide bridges can covalently bind proteins, sometimes inactivating the 

protein function. They accomplish this by reaction of the disulfide bond with the cysteine components 

of proteins. Some fungal phytotoxins such as sirodesmin PL (Figure 14) from Leptosphaeria maculans 

and gliotoxin (Figure 14) have such internal disulfide bridges that conjugate proteins [159–161]. These 

compounds are also implicated in generation of reactive oxygen species by redox cycling [160]. Such 

compounds are generally broadly cytotoxic.  
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Figure 14. Microbial phytotoxins that directly bind proteins. 

 

14. Sugar Metabolism 

Anhydro-D-glucitol (Figure 15), produced by the plant pathogenic fungus Fusarium solani, is 

mildly phytotoxic [162]. When phosphorylated by the plant (Figure 14), it is a close analog  

of fructose-1,6-bisphosphate, thereby inhibiting fructose-1,6-bisphophate aldolase activity, which  

is required for production of glyceraldehyde-3-phosphate and dihyroxyacetonephosphate in  

glycolysis [163].  

Figure 15. The inactive (left) and activated (right) forms of anhydro-D-glucitol. 

 

15. Terpenoid Synthesis  

The macrocidins (Figure 16) from Phoma macrostoma are cyclic tetramic acids. Tetramic acid is an 

inhibitor of hydoxyphenylpyrutvate dioxygenase (HPPD), but the macrocidins appear to inhibit 

carotenoid synthesis by a different mode of action [164,165]. HPPD activity is required to produce the 

cofactor, plastoquinone, of phytoene desaturase, an enzyme involved in carotenoid biosynthesis.  

Figure 16. Microbial phytotoxins that inhibit terpenoid synthesis. 

 

Fosmidomycin (Figure 16), a product of Streptomyces lavendulae [166], is highly phytotoxic, 

causing extreme chlorosis by inhibition of the non-mevalonic acid pathway, upon which production of 
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most of the critical plant terpenoids depend [167,168]. Its enzyme target site is 1-deoxy-D-xylulose  

5-phosphate reductoisomerase, an early enzyme in the pathway.  

Hymeglusin (Figure 16), also known as 1233A and L-659699, is a phytotoxin produced by several 

fungal plant pathogens [169,170]. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A synthase of 

plants and animals [170,171]. This enzyme is required for synthesis of certain terpenoids (e.g., sterols) 

of the mevalonic acid pathway in plants and cholesterol in animals.  

16. Conclusions 

This brief coverage should provide an appreciation for the amazing breadth of microbial phytotoxin 

structures and modes of action. The number of potential useable herbicide target sites has been a 

matter of concern among companies involved in herbicide discovery. Molecular methods to discover 

new target sites have not been particularly fruitful [172]. There are only about twenty molecular sites 

targeted by the hundreds of commercial herbicide active ingredients, and the last major target site was 

introduced to the marketplace over twenty years ago. However, it is clear from the many target sites of 

microbial phytotoxins, that nature has discovered many ways to kill a plant. The growing evolution of 

weed resistance to existing commercial herbicides has generated a new sense of urgency to discover 

and develop herbicides with new modes of action [173]. Many of the compounds mentioned in this 

review have been studied as potential templates for new herbicides with new modes of action. We 

expect that the growing need for new modes of action will generate a stronger interest in the use of 

microbial phytotoxins to discover new herbicide target sites. 
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