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Abstract: Deoxynivalenol (DON), mainly produced by Fusarium fungi, and also 

commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant 

trichothecenes which contaminate cereals consumed by farm animals and humans. The 

extent of cereal contamination is strongly associated with rainfall and moisture at the time 

of flowering and with grain storage conditions. DON consumption may result in 

intoxication, the severity of which is dose-dependent and may lead to different symptoms 

including anorexia, vomiting, reduced weight gain, neuroendocrine changes, 

immunological effects, diarrhea, leukocytosis, hemorrhage or circulatory shock. During the 

last two decades, many studies have described DON toxicity using diverse animal species 

as a model. While the action of the toxin on peripheral organs and tissues is well 

documented, data illustrating its effect on the brain are significantly less abundant. Yet, 

DON is known to affect the central nervous system. Recent studies have provided new 

evidence and detail regarding the action of the toxin on the brain. The purpose of the 

present review is to summarize critical studies illustrating this central action of the toxin 

and to suggest research perspectives in this field.  
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1. Introduction 

Deoxynivalenol (DON) is a secondary metabolite mycotoxin produced more especially by 

Fusarium graminearum and culmorum. These fungi can grow on various cereals such as wheat, barley, 

oat, rye, maize and rice. The extent of cereal contamination is strongly associated with rainfall and 

moisture at the time of flowering and with grain storage conditions. Deoxynivalenol represents the 

major fungus metabolite which can be found on feed grains. The chemical name of DON is DON 

12,13-epoxy-3α,7α,15-trihydroxytrichothec-9-en-8-on, (C15H20O6); it has a polar organic structure and 

a molecular weight of 296.36 g/mol. The keton position in C8 is a feature of the class B  

trichotecenes [1]. Due to its high melting point (151 °C–153 °C), DON withstands cereal processing 

and cooking and thus constitutes an important food contaminant [2–5]. The consumption of  

DON-contaminated food induces mycotoxicoses in farm animals as well as in humans. DON toxicity 

is characterized by a set of symptoms including diarrhea, vomiting, anorexia, reduced weight gain, 

neuroendocrine and immunological changes, leukocytosis, hemorrhage, circulatory shock, and can 

ultimately lead to death (Figure 1). Its capacity to induce vomiting episodes in various species 

including humans explains its commonly used nickname “vomitoxin” [6]. During the last two decades, 

many studies have described DON toxicity using diverse species as a model, where DON consumption 

was shown to affect numerous physiological functions such as food intake, reproduction or immunity. 

While the toxin action on peripheral tissues and organs is well documented, studies aiming to identify 

the impact of DON on the brain are relatively less abundant. Based on evidence showing that DON 

ingestion could disrupt brain neurochemistry, recent studies have brought new information regarding 

its central effects especially in relation to anorexia/nausea. The purpose of the present review is to 

summarize recent critical studies illustrating the central action of the toxin and to propose future 

research directions in this field.  

2. DON, Food Refusal, Emesis and Anorexia 

In humans, mycotoxicosis observed after consumption of feed contaminated with DON, leads to 

vomiting, reduced food intake, abdominal pain and diarrhea (for review [7]). It is well established that 

DON consumption also results in decreased weight gain and food intake and altered nutritional 

efficiency in different models including poultry, rodents and pigs. The key studies evaluating emesis, 

growth and food intake in various species and in response to different DON doses were gathered by 

Pestka and Somlinski [8]. The intensity of the effects depends on the dose, the species, the duration of 

consumption, DON purity and the route of administration. For instance, 50 to 100 µg/kg orally 

administered DON induced vomiting in swine [9–11]. This emetic effect can also be produced by 

ingestion of feed contaminated with DON at a dose of 20 ppm (equivalent to 0.15 mg/kg BW/day; [12]. 

The ingestion of naturally contaminated food with 1 to 2 ppm DON caused partial feed refusal, 

whereas 12 ppm caused complete refusal [13,14]. In mice, consumption of 2 ppm purified DON during 
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8 weeks (equivalent to 0.3 mg/kg BW/day) provoked decreased growth and 0.5 ppm (equivalent to 

0.075 mg/kg) reduced food intake [15]). A drastic decrease in food intake and a related loss of weight 

was observed in mice consuming a diet containing 2.5 ppm purified DON (equivalent to 0.36 mg/kg) 

during one week [16]. Similarly, in the rat, the consumption of 0.5 mg/kg purified DON during 9 

weeks resulted in growth reduction and decreased food intake [17]. Similar observations have been 

made in dogs and cats fed for 2 weeks with diet naturally contaminated with 6 to 8 ppm DON 

(equivalent to 0.4 mg/kg) [18].  

Figure 1. Symptoms associated with acute Deoxynivalenol (DON) intoxication. In 

addition to a peripheral and central inflammation, when administered per os at the end of 

the light phase at a dose of 12.5 mg/kg, DON induces a decrease in food intake observed 

overnight following the treatment, and an increase in Kaolin intake measured 24 h after 

administration suggesting a gastric discomfort. Moreover, telemetric analyses show a 2 °C 

decrease of body core temperature and a locomotor activity decrease during the night in 

DON-treated animals compared with control animals.  
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3. DON-Induced Anorexia in Mice Models 

Thus, although it is clear that DON ingestion induces a reduction of food intake in different animals 

models, the feature of this DON-induced anorexia remains poorly characterized. Recently, a noticeable 

effort was made to describe more precisely the DON-induced anorexia using mice as a model [19–23]. 

While swine was reported to be the most sensitive species to DON, numerous in vivo and in vitro DON 

toxicity studies were conducted on rodents and especially on mice which can be considered as a good 

model for the study of DON toxicity. In a model of high fat diet-induced obesity (HFD; 60% kcal from 

fat), mice consuming 5 or 10 ppm DON for 10 weeks exhibited a clear reduction of weight  

gain [19]. In another set of data originating from the same group using HFD-induced obesity (54% and 

60% kcal from fat), DON consumption (equivalent to 10 mg/kg) decreased body weight, fat mass and 

food intake. These physiological modifications were associated with reduced plasma insulin, leptin, 

insulin-like growth factor 1, and an increase in hypothalamic mRNA level of orexigenic agouti-related 

protein [23]. Flannery and collaborators [20] measured noctural food intake on mice fasted during light 

cycle and treated with i.p. 1 and 2.5 mg/kg or oral gavage 0.5 to 5 mg/kg DON. Food intake was 

measured 2 h and 16 h after toxin exposure. These authors report that DON caused a rapid feed refusal 

that was evident 2 h after toxin administration for the highest DON doses. Interestingly, this effect was 

dose-dependent and transient, since 16 h after DON-administration, an increase in food intake occurred 

in DON-treated mice when compared with vehicle-treated animals. Using a different experimental 

paradigm, we recently obtained additional information regarding DON-induced anorexia [21,22]. In 

these studies, we performed acute per os DON administration (6.25, 12.5 and 25 mg/kg) at the end of 

the light phase and monitored noctural food intake in mice fed ad libitum. In this context, per os 

intoxication induced a dose-dependent reduction in daily food intake by especially decreasing  

night-time food consumption in animals fed ad libitum (Figure 1). Anorexia was observable as soon as 

3 h after toxin exposure for 12.5 and 25 mg/kg and 6 h for the lowest dose. This anorexigenic effect 

lasted up to 24 h with 6.25 and 12.5 mg/kg DON and on over 72 h with the highest dose. When 

performing a meal pattern analysis, which provides an accurate description of the eating behavior 

through a continuous and automated recording of food intake, we revealed a DON-induced reduction 

in meal frequency (satiety) and meal size (satiation) by 44.2% and 68% respectively. In accordance, 

the inter-meal interval increased by 68% in the presence of the toxin. The effect on meal frequency 

was evocative of nausea-induced anorexia as revealed by studies showing that meal frequency is 

especially affected by toxicological compounds such as lithium and lipopolysaccarids (LPS; [24,25]). 

In rodents, emesis cannot occur but DON can induce nausea. Indeed, we measured DON-induced 

nausea in mice by measuring kaolin consumption, a non-nutritive substance, the intake of which serves 

to evaluated nausea in rodents [26]. The results showed that DON at 12.5 mg/kg induces a significant 

increase in kaolin intake for the 24h following toxin administration (Figure 1). This result suggests a 

nauseous effect of DON in mice. However, kaolin intake was poorly correlated with standard chow 

intake, suggesting that nausea does not totally explain feed refusal. On the other hand, the consequence 

of DON treatment on meal size supports the view that DON acts on meal termination mechanisms. A 

reduction in meal size but not in meal frequency is typically observed with physiological inhibitors of 

food intake such as leptin [27], cholecystokinin [28], peptide YY 3-36 [29], insulin [30]. Hence, taken 

together these results reveal a complex action of DON on food intake where DON-induced anorexia 
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depends not only on modification of satiety but also of satiation. In parallel to food intake a 

modulation of body temperature and locomotor activity was also recorded in DON-treated mice 

(Figure 1). This set of symptoms i.e., anorexia/nausea, reduction of locomotor activity and modulation 

of body core temperature is evocative of sickness behavior occurring in response to inflammatory 

challenges (for review, [31]).  

4. Sickness Behavior and Central Cytokines Expression  

The survival of a pluricellular organism depends on its capacity to fight against infections and to 

store energy. The immune and metabolic systems, among the most essential ones of the animal 

kingdom, are closely linked and interdependent. Numerous hormones, cytokines, or bioactive lipids 

can exert metabolic and immune functions. Inflammation is a response coordinated by an organism 

that allows it to struggle against an attack. This reaction leads to deep physiological and behavioral 

changes due to the activation of the innate immune system and the recognition of molecular motives 

linked to the pathogen. The classical inflammatory response called “acute phase reaction” implicates 

metabolic modifications, redistribution of energy and the use of lipid supplies. These modifications 

require redefining physiological preferences for an efficient adaptation of organism with the 

intervention of the central nervous system (CNS) which coordinates the installation of the central 

element of the acute phase reaction. This central component of the acute phase reaction consists of 

deep behavioral changes called “sickness behavior” which includes fever, activation of the stress axis 

and reduction of food intake. In this context during an infection and inflammation, pro-inflammatory 

cytokines produced by a variety of cells reach and interact with brain regions that control ingestion i.e., 

the hypothalamus and the dorsal vagal complex (DVC) to induce anorexia. Peripheral immune signals 

reach the brain via a humoral communication through circumventricular organs such as the 

anteroventral region of the third ventricle and the area postrema (AP) and via a neuro-immune  

gut-brain pathway that mainly involves the sensory vagal afferent innervation (see for review [32]). 

Accordingly, anorexic doses of peripheral cytokines such as IL-1β activate the primary projection area 

of the vagus nerve which is located in the DVC. In turn, multiple secondary projection sites of the 

vagus nerve involved in the processing of gut visceral information and in the control of food intake 

i.e., the hypothalamus, the central nucleus of the amygdala and the bed nucleus of the stria terminalis, 

are activated [33]. Alternatively, in response to peripheral inflammation, the brain can also be a source 

of cytokines, as demonstrated by several studies [34]. Using genetic models exhibiting impairment of 

LPS and IL-1β signaling, these studies have shown that this de novo central production of cytokines is 

required to obtain a sustained anorexia in response to LPS or IL-1β administration [35,36]. Finally, a 

modulation in the expression of neurotransmitters and anorexigenic or orexigenic neuropeptides in the 

hypothalamus was proposed to contribute to the anorexic behavior induced by inflammatory signals 

(for review [32]).  

5. DON, Cytokines Expression and Anorexia  

In the mid-nineties, Azcona-Olivera and colleagues [37] have reported that an oral exposure to 5 

and 25 mg/kg BW of DON results in mice in an increased cytokine production in spleen, Peyer’s 

patches, liver, kidney and small intestine. Using RT-PCR and Southern-blot, the authors demonstrated 
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the increased abundance of IL-1 β, IL-6, TNF-α and to a lesser extend TGF-β and INF-γ mRNA 

shortly after DON exposition (2 and 4 h). This pioneer study was confirmed and strengthened by 

numerous other works performed on different models including mice, pigs or human cell lines [38–42]. 

For instance, acute oral exposure of B6C3F1 mice to DON (5 and 25 mg/kg BW) was shown to 

increase, in spleen and Peyer’s patches, the expression of INF-γ, IL-2, IL-4 and IL-10 in addition to the 

pro-inflammatory cytokines mentioned above [42]. In the same way, piglets intravenously injected 

with 1 mg/kg BW DON exhibited a modulation of IL-1 β, IL-6 and TNF-α expression in lymphoid 

organs [39]. In human macrophages, 100 to 1000 ng/mL of DON and other 8-ketotrichothecenes 

significantly upregulated the expression of TNF-α, IL-6 and IL-8 [43]. In Jurkat T-cell, DON  

(32.5–500 ng/mL) upregulates IL-2 and IL-8 production [44]. Finally, in human monocyte cell line,  

1 µg/mL DON stimulated IL-8 mRNA and protein production [45]. Interestingly, several studies 

reported the amplified proinflammatory cytokine induction during cotreatment with both DON and 

bacterial LPS [46–48]. Given the well-known anorexigenic effect of proinflammatory cytokines, their 

increased expression observed in response to DON intoxication was proposed to drive associated 

symptoms including anorexia and reduced weight gain [49]. Supporting this hypothesis, we have 

recently shown that per os DON administration induced an up-regulation of IL-1β, IL-6 and TNF-α 

within two central structures i.e., hypothalamus and DVC [22]. These results constituted the first 

demonstration that per os DON administration results in central neuroinflammation. As mentioned 

above, these structures are involved in the regulation of food intake. Altogether, these data strongly 

suggest that peripheral and also central-borne cytokines may participate in the onset of reduced food 

intake observed in response to DON intoxication. Although attractive and plausible, this hypothesis 

remains to be experimentally demonstrated. Even though inflammation-related effectors are strongly 

expressed during DON intoxication, the arguments supporting their triggering role in DON-induced 

anorexia are still limited. First, TNF-α receptors KO and IL-6 KO mice do not exhibit any reduced 

susceptibility to DON-induced anorexia [50,51]. Prostaglandins (PGs) are key inflammatory mediators 

acting downstream of proinflammatory cytokines which induce some of the symptoms of sickness 

behavior such as anorexia ([52]). PGH2, the end product of cyclooxygenase (COX) enzymes, can be 

converted into various eicosanoids such as PGD2, PGF2α, PGE2, prostacyclin and thromboxane  

A2 [53], each compound having their own specific biological activities. PGE2 are the most potent PG 

in inducing anorexia when centrally administered [54]. The microsomal PGE synthase-1 (m-PGES-1) 

belongs to the MAPEG (Membrane Associated Proteins in Eicosanoid and Glutathione Metabolism) 

superfamily and catalyses the final step of PGE2 synthesis [55]. mPGES-1 has been described as an 

inducible enzyme which expression is stimulated by pro-inflammatory agents [56–58] and silencing 

mPGES-1 gene prevents IL-1 induced anorexia [59]. We recently reported the increased expression of 

COX-2 and mPGES-1 transcripts within the hypothalamus and brainstem of DON-treated mice [22]. 

Different transgenic mouse models were used to investigate the involvement of PGs in DON-induced 

anorexia and reduced weight gain. COX-2 knock-out (KO) mice were reported to exhibit a decrease in 

body weight comparable to that of wild type littermate when exposed to chronic consumption of DON 

during 16 weeks [60]. Moreover, silencing PGE2 signaling pathways using mPGES-1 KO mice did not 

modify the anorexigenic response to DON [22].  
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Figure 2. Central structures activated by acute DON intoxication. Per os administration of 

DON induces an increase in the number of c-Fos positive neurons in several brain nuclei 

such as the hypothalamus (paraventricular nucleus, arcuate nucleus, supraoptic nucleus), 

the dorsal vagal complexe (DVC) at the brainstem level (nucleus tractus solitarius, dorsal 

motor nucleus of the vagus), the pons (parabrachial nucleus, locus coeruleus) and the 

central amygdala. During an oral intoxication, DON may be conveyed to the brain where it 

may activate these structures, leading to the establishment of symptoms.  

 

6. Brain Structures Activated during Acute DON Intoxication 

For many years, the expression of the c-fos gene or protein has been considered as a high resolution 

marker of neuronal activity since c-Fos protein is expressed in neurons whose activity is strongly 

stimulated by synaptic input [61,62]. Even if one must bear in mind that not all activated neurons show 

c-Fos induction, and that the threshold of c-Fos protein induction may differ between subpopulations 

of CNS neurons, the use of c-Fos expression remains a useful approach to identify and investigate 

neuronal groups activated in response to different challenges throughout the brain. We recently used 

this approach to identify central structures activated during DON intoxication [21,22]. We revealed the 

activation of key autonomic areas, hypothalamic nuclei and parts of the amygdala. This c-Fos analysis 

was performed three hours after peripheral DON administration. At this time point, activated structures 

could be considered instrumental in DON-induced responses as anorexia and associated symptoms 

were ongoing. c-Fos immunoreactivity was observed in key autonomic regulatory nuclear groups, 

including the nucleus tractus solitarius (NTS), area postrema (AP), ventrolateral medulla (VLM), 

lateral parabrachial nucleus (LPB), locus coeruleus (LC). At the hypothalamic level, a significant 

increase in c-Fos immunoreactivity was mostly observed in the paraventricular hypothalamic nucleus 

(PVN), arcuate nucleus (ARC), median eminence (ME), and supraoptic nucleus (SON). The central 

nucleus of the amygdala (CeA) and the dorsolateral division of the bed nucleus of the stria terminalis 



Toxins 2012, 4              

 

 

1127

(BST) which are involved in the integration of emotional stimuli, also displayed a strong c-Fos signal 

in DON-challenged mice (Figure 2). Noticeably, the serotoninergic raphe formation did not exhibit any 

DON-induced c-Fos expression whatever the rostro-caudal level considered [22]. Interestingly, this 

pattern of c-Fos distribution closely resembles c-Fos immunoreactivity described in previous studies 

performed to identify neurocircuitry involved in the coordinated autonomic, endocrine, and behavioral 

response to immune challenge [63–66]. The strong c-Fos induction in structures strongly involved in 

food intake regulation i.e., the NTS, Arc, and PVN, can be linked to the DON-induced reduction in 

food intake. Moreover, the c-Fos induction within the brainstem and particularly the AP was evocative 

of nausea. Using systemic DON administration in rats, Ossenkopp and colleagues [67] have indeed 

reported the induction of conditioned taste aversion, which was mediated by the AP. The strong 

increase in c-Fos immunoreactivity in specific regions of the hypothalamus including the preoptic 

area/anterior hypothalamus [68], the PVN and SON, together with the activation of LC and NTS [69] 

could also explain the decreased body temperature observed in response to DON [22]. These novel 

results, while interesting and informative, remain incomplete. Actually, only one DON dose i.e.,  

12.5 mg/kg was tested and the c-Fos activation pattern was assessed at a single time-point i.e., 3 h after 

treatment. Future studies should evaluate the impact of lower doses of toxin and a time-course of brain 

activation to more precisely understand the impact of DON on various brain regions.  

7. Brain Neurochemistry and DON 

The effect of DON on brain neurochemistry has been investigated in different species by several 

authors for many years [11,70–75]. It was hypothesized that alterations of brain neurochemistry might 

be one of the possible mechanisms underlying Fusarium mycotoxin-induced feed refusal, emesis and 

anorexia. In 1988, Fitzpatrick and colleagues [76] analyzed brain biogenic monoanines (serotonin,  

5-HT; 5-hydroxyindole-3-acetic acid, 5HIAA; norepinephrine, NE ; dopamine, DA) in both rats and 

chickens at different time (2 to 48 h) after an oral dose of 2.5 mg/kg DON. In the rat, while no 

difference was observed when the whole brain was considered, 5-HT and 5-HIAA were elevated in all 

brain regions studied including pons and medulla oblongata, cerebellum, hypothalamus, hippocampus 

and cortex. These alterations of the serotoninergic system were not observed in poultry, where NE and 

DA decreased in the hypothalamus, hippocampus and pons. Following acute DON administration 

(0.25 mg/kg intravenous) in swine, modifications of brain amine levels were also detected during the 

24 h post-intoxication [73]. More precisely, DON administration was reported to increase NE and 

decrease DA concentrations in the hypothalamus, frontal cortex and cerebellum while 5-HT content, 

which initially increased in the hypothalamus (1 h post-treatment), diminished in the hypothalamus 

and the cortex at 8 h. Likewise, intravenous (10 µg/kg) and per os (30 µg/kg) DON administrations 

were shown to increase 5-HIAA in the cerebral spinal fluid, suggesting an increased CNS 

serotoninergic activity [72]. More recently, the effects of feeding (21 days) with a blend of grains 

naturally contaminated with Fusarium mycotoxins (containing 5 ppm DON, 0.5 ppm 15-acetylDON 

and 0.4 ppm zearalenone) on brain regional neurochemistry of starter pigs and chickens were  

studied [74,75]. In pigs, contaminated food intake also results in modifications of brain bioamine 

contents. Mainly, this study reports an increased concentration of 5-HT within the cortex and a 

decreased hypothalamic tryptophan concentration. Moreover, hypothalamic NE and pons DA 
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concentrations decreased after inclusion of contaminated grains in the diet. In broiler chickens, feeding 

with contaminated grains induced an increase of 5-HT, 5-HIAA concentrations within the pons and 

cortex, and an increase in NE and DA concentrations in the pons [74,75]. Finally, one study was 

recently performed with turkeys fed with grains contaminated with Fusarium mycotoxins (equivalent 

to 2.2 and 3.3 mg DON per kg of feed) during 6 weeks [70]. In this model, 5-HIAA concentration and 

5-HIAA: 5-HT ratio decreased in the pons, but no significant effects on 5-HT, 5-HIAA, NE and DA 

concentrations were observed in the hypothalamus and cortex. Despite the use of different intoxication 

models (DON doses, routes of administration) and apparent interspecies dissimilarities, these 

alterations in bioamine turnover, and particularly in the serotoninergic system, were proposed to play a 

role in the triggering of feeding refusal, emesis and anorexia observed during DON intoxication [7].  

5-HT has well-known emesis and food intake reducing effects [71]. In accordance, 5-HT receptor 

antagonists, i.e., 5-HT3 and to a lesser extend 5-HT2, significantly prevented DON-induced vomiting 

(intravenous: 80 µg DON per kg BW or oral: 300 µg DON per kg BW; [11]). To discriminate between 

peripheral and central serotoninergic systems in DON-induced vomiting and anorexia, Prelusky [77] 

studied the effect of intravenous or intragastric DON administration on plasma concentrations of 5-HT 

and related metabolites in pigs. Interestingly, at doses able to evoke emesis, the toxin did not induce 

any change in blood monoamine levels, suggesting that the increased activity of the central 

serotoninergic system may account for the altered feeding behavior and emesis observed during DON 

intoxication. It should be noted that using an in vitro membrane receptor binding assay, a functional 

interaction of the toxin with serotoninergic receptors was ruled out [78]. Nevertheless, whether these 

alterations of brain neurochemistry are responsible for the DON-induced anorexia remains unknown. 

In a recent study using c-Fos expression as a marker of neuronal activation and performed on mice 

acutely intoxicated with 12.5 mg/kg DON, we observed an activation of the A1/C1 and A2/C2 

catecholaminergic groups [21], which was evocative of the modulation of NE concentrations observed 

after DON intoxication in different models [11,70,73–76]. The activation of these catecholaminergic 

groups by DON also demonstrates the activation of brainstem/hypothalamus connecting networks. On 

the other hand, we did not observe any activation of the serotoninergic raphe nucleus in this model. 

This result is quite surprising since the modulation of brain 5-HT concentrations in intoxicated animals 

has been reported (see above). The specie used i.e., mice and the time point studied in this work i.e., 3 

h after intoxication, may explain the discrepancies between our results and previous data. To clarify 

this point, more complete analyses need to be done in mice but also in other species where monoamine 

dosages during DON-intoxication are available, e.g., pigs.  

8. Feeding Circuits and DON  

In order to shed light on the mechanisms involved in DON-induced anorexia and identify cell 

populations implicated, we have recently searched for the possible activation of central pathways 

strongly dedicated to the control of food intake after administration of the toxin. In this context, we 

have reported that a significant proportion of POMC- and nesfatin-1-expressing neurons located both 

in the hypothalamus and NTS were activated during DON intoxication [21]. Both POMC and  

nesfatin-1 neurons are strongly involved in the reduction of food intake under physiological condition. 

POMC-expressing neurons also called “first-order neurons” are well recognized as the major 
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component in the control of energy homeostasis both in rodents and humans [79]. POMC neurons 

which relay the anorexigenic action of leptin and insulin, release the α-melanocyte stimulating 

hormones (αMSH). This hormone acts on melanocortin 3 and melanocortin 4 receptors (MC3R and 

MC4R) of neurons mainly located in the PVN to reduce appetite. Both insulin and leptin increase the 

activity of anorexigenic POMC neurons in the ARC. Thus, the increase activity of POMC neuron 

induces a decrease in food intake and an increase in energy expenditure. Similarly, nesfatin-1, an 82 

amino-acid peptide, was identified in 2006 by Oh-I and colleagues [80]. This peptide exerts potent 

anorexigenic action after either peripheral [81] or central administration [80]. In addition to its 

expression by peripheral tissues i.e., the stomach, pancreas and adipose tissues [82], nesfatin-1 was 

also found to be expressed in neurons of various brain areas including hypothalamic (PVN, ARC) and 

brainstem nuclei (NTS, DMNX) [83]. Nesfatinergic neurons located in these nuclei are activated in 

response to refeeding or intraperitoneal injection of the anorexigenic hormone cholecystokinin 

indicating that central nesfatin-1 could participate in the meal termination mechanisms [84,85]. 

Moreover, nesfatin-1 has a food intake-reducing effect that is linked to the recruitment of the 

melanocortinergic pathway [80]. The activation of DON-induced POMC and nesfatin-1 expressing 

neurons in mice suggests that the release of these anorexigenic and related compounds could partake in 

the anorexigenic action of the toxin. Strengthening these results, we observed that DON modulated 

mRNA levels of the hypothalamic melanocortinergic system including POMC, CART and MC4R, 

whereas mRNA of orexigenic effectors i.e., NPY and AgRP remained unaffected. Altogether, these 

studies provide strong additional support to the view that DON directly or indirectly interferes with 

neuronal networks devoted to central energy balance and that this action could partly explain the 

DON-induced hypophagia observed in response to the toxin.  

9. DON May Target the Brain 

Although DON effects on brain structures and neurochemistry were clearly established by a body of 

evidence, little is known about the routes used by the toxin to signal from the periphery 

(gastrointestinal tract, blood) to the brain. The vagal nerve which conveys information from the 

visceral tract to the brainstem is a good candidate to explain the impact of the toxin on the brain. 

Unfortunately, very few data are available regarding this hypothesis. In a recent study, we have shown 

that unilateral cervical vagotomy did not modify the c-Fos activation in the brainstem induced by  

per os 12.5 mg/kg DON [21,22]. This result seems to rule out the involvement of the vagus nerve, at 

least with the dose employed. Nevertheless, additional experiments with other DON doses are clearly 

needed to definitively settle this point. Alternatively, it is conceivable that the toxin enters the brain to 

directly modify neuronal function. In accordance, following i.v. toxin administration, DON is rapidly 

detected (less than 2.5 min) in the cerebral spinal fluid of swine and sheep demonstrating that this 

toxin reaches the brain [86]). DON concentrations within the brain reach a maximum after 5–10 min in 

sheep and 30–60 min in swine. In the same way, DON was detected in hen or mouse brains after acute 

or chronic (6 days) DON administration [49,87]. Using radiolabelled-DON or ELISA DON detection, 

these authors detected the toxin within the brain of these species following per os administration. 

Interestingly, after oral administration of 25 mg/kg DON in mice, the toxin concentrations detected in 

the brain were lower (~1 µg/g) than in other tissues i.e., spleen (~7.3), liver (~19.5), heart (~6.8), and 
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kidney (~7.6), probably due to the low permeability of the BBB to the toxin. Of course the toxin could 

also infiltrate the brain through the circumventricular organs. In support of this assumption, DON was 

shown to induce c-Fos staining in circumventricular organs (AP and ME) and surrounding structures 

(NTS and ARC; [21,22]). Moreover, using systemic DON administration in rats, Ossenkopp and 

colleagues [67] reported that area postrema ablation prevents DON-induced conditioned taste aversion. 

Finally, to assess the direct action of the toxin on the brain, we recently performed the first i.c.v. 

(lateral ventricle) DON administration in the mouse (2–20 µg/g; [21]). The doses used in these i.c.v. 

experiments were compatible with DON brain levels found after per os administration (25 mg/kg; [38]), 

but totally inefficient to modify feeding behavior when peripherally administered. In these conditions, 

DON dose-dependently decreased meal frequency and size and augmented intermeal intervals in the 

same way as after per os administration (12.5 mg/kg DON). Like per os administration, DON central 

injections also result in a modification of body core temperature and locomotor activity. DON-induced 

c-Fos expression pattern following i.c.v. and per os DON administrations were also similar. Lastly, 

POMC and nesfatin-1 positive neurons of both the NTS and hypothalamus were found activated after 

i.c.v. DON injections to a same extent as after per os DON administration. Taken together, these 

results suggest that DON might directly target the brain to modify feeding behavior acting on 

anorexigenic neurocircuitry.  

10. Perspectives 

Despite significant progress in the identification of neuronal circuitry and neuropeptides recruited 

during DON intoxication, the precise physiological mechanisms and cellular pathways underlying the 

central action of the toxin remain mostly unidentified. The hypothesis of the instrumental role of 

cytokines in the triggering of DON-induced anorexia, while attractive, remains to be established. To 

date, genetic models displaying an altered inflammatory response, i.e., IL6 KO [51], TNFR KO [50], 

COX-2 KO [60] and mPGES-1 KO [22], failed to confirm the involvement of inflammatory signals in 

the reduction of feeding behavior induced by the toxin. Surprisingly, the outcome of lessening IL-1β 

signaling on DON-induced anorexia has not been tested to date. Yet among the inflammatory 

cytokines, IL-1β seems to be the most potent in inducing sickness behavior, since its peripheral or 

central injection reproduces the set of non-specific symptoms of inflammation including decreased 

motor activity, social withdrawal, anorexia and fever (for review [88]). Accordingly, strategies aiming 

to limit its action have been shown to attenuate most of the symptoms observed during infection and 

inflammation [89–91]. So in the future, it should be of interest to test the impact of interleukin-1 

receptor antagonist (IL-1Ra) on DON-induced anorexia, or to evaluate the hypophagic response in 

interleukin-1β-deficient mice. Alternatively, important information could result from the use of mice 

exhibiting an invalidation of the intracellular protein MyD88, the central adapter protein mediating 

activation signals emanating from the IL-1 receptor [92]. As mentioned above, we recently 

demonstrated the activation of POMC-expressing neurons in both the hypothalamus and  

brainstem [21] and the modulation of POMC expression in the hypothalamus during acute DON 

intoxication. To test the hypothesis of melanocortinergic pathway involvement in DON-induced 

hypophagia, the central injection of synthetic MC3R/MC4R antagonists ought to be tested in different 

models of DON-intoxication. This point is crucial since nesfatin-1 has a food intake-reducing effect 
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that is also linked to the recruitment of the melanocortinergic pathway [80]. Another intriguing 

question regarding the central action of the toxin is the pattern of activated structures observed after 

per os DON administration. Surprisingly, DON does not induce a neuronal activation throughout the 

brain, but on the contrary the number of central structures found activated in response to gastric 

administration of the toxin are quite limited [21,22]. What is the mechanism underlying this 

specificity? We believe that the proximity to circumventricular organs i.e., AP and median eminence, 

which facilitates the toxin penetration into the brain could explain the strong activation in adjacent 

structures and connected nuclei such as the NTS, Arc or PVN. This hypothesis should be confirmed in 

the future. Nevertheless, this does not make clear why only anorexigenic pathways are modulated in 

these structures [21]. 

The cellular mechanisms through which DON could modify neuronal activity and brain 

neurochemistry are also still unknown. DON binds to ribosomes and in turn inhibits protein synthesis 

(for review [7]). In mice, per os DON administration (5 to 25 mg/kg) inhibits protein synthesis in the 

spleen, peyer’s patches, kidney, liver, intestine and plasma from 3 h to 9 h post-treatment [37]. It was 

recently proposed that the ribotoxic effect of the toxin induces a modulation of mitogen activated 

protein kinases (MAPKs) activity. In turn, MAPKs activation may result in the activation of 

transcription factors that induce for instance cytokine or COX-2 expression [93–95]. It was proposed 

that other signaling factors such as double stranded RNA-activated protein kinase or hematopoietic cell 

kinase relay DON toxicity from ribosome inhibition to MAPKs activation [96–98]. Whether such 

mechanisms intervene in the brain and may account for the neuronal activation observed in response to 

orally administered DON remain to be evaluated. Alternatively, other mechanisms were proposed to 

explain trichothecene toxicity especially T-2 toxin [99,100]. On L-6 myoblasts, T-2 toxin has multiple 

effects on cell membrane functions independently of protein synthesis inhibition. T-2 Toxin modifies 

the activity of amino acid and glucose transporters as well as calcium and potassium channel  

activities [99]. This toxin was also shown to increase cellular calcium concentration in the human 

promyelotic line HL-60 [100]. The assumption that DON induces such modulations of membrane 

functions or intracellular pathways remains to be evaluated. Since DON was shown to induce rapid 

behavioral responses (1 h), i.e., anorexia, anapyrexia, reduced locomotor activity, the possibility of an 

action independent of protein synthesis inhibition can be reasonably envisaged. In neurons, such 

alterations can result in modifications of neuronal electrical activity. Electrophysiological experiments 

performed on brain slices originating from DON-administered animals or on hypothalamic or 

brainstem slices acutely treated with the toxin could bring essential information regarding the central 

action of the toxin.  

11. Conclusions 

From pioneer studies and more recent works, it clearly appears that DON acts at the brain level to 

modify neurochemistry and neuronal activity. In turn, behaviors regulated by the central nervous 

system are modified. Notwithstanding these interesting progresses, the study of DON impact on brain 

functioning is still in its infancy. Among the different aspects that must be addressed in this field in the 

close future, the study of the possible consequences of chronic DON consumption on long-term brain 

deregulation will surely constitute a major issue and a great challenge. 
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