
Toxins 2012, 4, 991-1007; doi:10.3390/toxins4110991 
 

toxins 
ISSN 2072-6651 

www.mdpi.com/journal/toxins 

Article 

Toxigenic Potential of Aspergillus Species Occurring on Maize 
Kernels from Two Agro-Ecological Zones in Kenya 

Sheila Okoth 1,*, Beatrice Nyongesa 1, Vincent Ayugi 1, Erastus Kang’ethe 2, Hannu Korhonen 3 

and Vesa Joutsjoki 3 

1 School of Biological Sciences, University of Nairobi P. O. Box 30197–00100 Nairobi, Kenya;  

E-Mails: bmutele@yahoo.com (B.N.); vayugi811@gmail.com (V.A.) 
2 Department of Public Health Pharmacology and Toxicology, University of Nairobi 30197-00100 

Nairobi, Kenya; E-Mail: mburiajudith@gmail.com 
3 Biotechnology and Food Research, MTT Agrifood Research, 31600 Jokioinen, Finland;  

E-Mails: hannu.j.korhonen@mtt.fi (H.K.); vesa.joutsjoki@mtt.fi (V.J.) 

* Author to whom correspondence should be addressed; E-Mail: dorisokoth@yahoo.com;  

Tel: +254-720006908; Fax: +254-2-4440092. 

Received: 24 July 2012; in revised form: 17 October 2012 / Accepted: 17 October 2012 /  

Published: 25 October 2012 

 

Abstract: Two agro-ecological zones in Kenya were selected to compare the distribution 

in maize of Aspergillus spp. and their toxigenicity. These were Nandi County, which is the 

main maize growing region in the country but where no human aflatoxicoses have been 

reported, and Makueni County where most of the aflatoxicosis cases have occurred. Two 

hundred and fifty-five households were sampled in Nandi and 258 in Makueni, and 

Aspergillus was isolated from maize. Aspergillus flavus and A. parasiticus isolates were 

tested for the presence of aflD and aflQ genes. Positive strains were induced to produce 

aflatoxins on yeast extract sucrose and quantified using liquid chromatography-tandem 

mass spectrometry (LCMSMS). Aspergillus flavus was the most common contaminant, and 

the incidence of occurrence in Nandi and Makueni was not significantly different  

(82.33% and 73.26%, respectively). Toxigenic strains were more prevalent than  

non-toxigenic strains. All the toxigenic strains from Makueni were of the S-type while 

those from Nandi belonged to the L-type. Quantitative differences in aflatoxin production 

in vitro between isolates and between strains were detected with S strains producing 

relatively larger amounts of total aflatoxins, B toxins and lower values for G toxins. This 

was in accord with the frequent aflatoxicosis outbreaks in Makueni. However some  

L strains produced considerable amounts of B toxins. Given the widespread distribution of 
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toxigenic strains in both regions, the risk of aflatoxin poisoning is high when favorable 

conditions for toxin production occur.  

Keywords: Aspergillus; section Flavi; aflatoxins; maize; Kenya 

 

1. Introduction 

Maize is a staple food crop in Kenya for both urban and rural areas with an estimated 1.6 million 

hectares under cultivation. It is grown by both small- and large-scale farmers. Small-scale farmers 

contribute 75% of the total maize produced in the country. The quantity of maize consumed in Kenya 

per person per year is approximately 98 kg translating to about 30–34 million 90 kg bags per year [1], 

and in some families maize may be consumed twice daily. Each family in Kenya has a garden if not a 

farm where they grow maize that is mostly for their own consumption and sometimes for sale 

signifying the importance of this crop in the country. Several cases of aflatoxicosis have been reported 

in Kenya yearly since 1981 following consumption of maize contaminated with Aspergillus flavus and 

aflatoxins. In 1981 the outbreak was as a result of drought followed by heavy rains during harvest of 

home grown maize [2]. The worst outbreak was in 2004 where 317 cases and 125 deaths were  

reported [3], and ever since cases have been reported yearly. In 2010 Kenya had about 2.3 million bags 

(estimated at $69 million) of maize contaminated with aflatoxins making it unfit for both human and 

livestock consumption and also for trade, which was a loss to the small-scale farmers who depend on 

the crop for food and income [4]. 

Aspergillus flavus and A. parasiticus are ubiquitous and cosmopolitan fungi producing aflatoxins on 

a wide variety of substrates such as maize, peanut and cotton. Aspergillus flavus is a very important 

toxigenic fungus that produces aflatoxins that are toxic and of great concern because of their health 

effects on humans and animals [5]. Aspergillus can attack crops at different times, in the field, during 

harvest, transport and storage. High moisture and temperatures are favorable for the growth of this 

fungus and toxin production.  

In this study two agro-ecological zones were selected to compare the distribution in maize of 

Aspergillus spp. and their toxigenicity. The Nandi district in the Rift Valley Province was chosen as it 

is the main maize growing zone in the country, but no aflatoxicosis has been reported in this region. 

The other zone is the Makueni district in the Eastern Province where most aflatoxicosis cases have 

been reported.  

2. Materials and Methods 

2.1. Description of Study Sites  

Nandi County lies in the Rift Valley Province at elevations between 900–1800 m with an annual 

rainfall of between 950 and 1500 mm, a mean temperature of 20 °C and one maize planting season 

from March to April. Makueni County, on the other hand, is in a semi-arid zone in the Eastern 

Province at an elevation between 800–1700 m with an annual rainfall of between 300 and 600 mm and 

a mean temperature of 24 °C. Makueni County has two maize planting seasons, from March to May 
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and from October to December. Across the regions from Nandi to Makueni, mean temperatures 

increase as rainfall decreases [6]. 

Three sublocations were selected for sampling from each of the two Counties. This study is part of 

a larger project whose aim is to survey aflatoxin exposure in the maize value chain. The selection of 

sublocations for the study in this project was based on rearing of dairy cattle and maize cultivation. 

Kilibwoni, Kaptumo and Laboret were selected in Nandi County while Ukia, Nguumo and Wote 

locations were selected in Makueni County. Within the sublocations, households that qualified for 

sampling were those that had children below five years of age. Such households were listed, and 

random samplings were carried out to select the required sample size, which was calculated using the 

formula described by Cochrane [7]. From August to December 2010, 255 households were sampled in 

Nandi County and 258 households in Makueni County. 

2.2. Sample Collection 

Five hundred grams of shelled maize kernels were collected randomly in sterile paper bags from the 

household storage facilities within the sublocations, sealed and stored at 4 °C. Maize stored in sacks 

was sampled from different parts using a closed spear driven through the top and sides of each sack to 

obtain a total of 500 g of incremental samples. In stores where there were less than 10 sacks, all were 

sampled, while for those storing over ten to one hundred, ten sacks were randomly sampled [8]. 

2.3. Isolation and Identification of Moulds 

Five kernels were surface sterilized for 1 min in 2.5% NaOCl, washed in three changes of sterile 

distilled water and plated on ¼ strength Potato Dextrose Agar (PDA) prepared from Potato Dextrose 

Broth (Difco) amended with 2 mL/L lactic acid to suppress bacterial contamination. Six replicates 

from each household were plated. Plated kernels were incubated at 31 °C for three days. Fungal 

growth colonies on maize kernels were visualized using stereo-binocular microscope (Magnus M24), 

counted and identified to genus level according to the following authorities: Fusarium spp. according 

to Nelson et al. [9]; Aspergillus spp., Penicillium spp., and other fungi according to Pitt and Hocking 

[10]. Representative isolates of fungal species that could not be identified directly were transferred 

onto PDA and those suspected to be Fusarium were also grown on Spezieller Nahrstoffarmer agar 

(SNA) and carnation leaf agar medium to confirm the genus using the description by Leslie and 

Summerell [11]. Only Aspergillus species were single spored and transferred onto PDA medium to 

study macro and micro morphological characteristics for identification using the taxonomic keys of 

Klich [12]. These were then transferred onto Aspergillus flavus parasiticus agar (AFPA) as described 

by Pitt et al. [13], and incubated in the dark at 28 °C for 42 to 72 hrs to confirm group identification by 

colony reverse color. The isolates were also grown on 5/2 agar medium (5% V-8 juice and 2% agar, 

pH 5.2) at 30 °C for 7–10 days to induce sclerotia formation for strain classification [14].  
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2.4. Molecular Characterization 

2.4.1. Detection of Aflatoxin Genes aflD (=nor1) and aflQ (=ordA = ord-1) 

The conventional naming system of the aflatoxin genes outlined by Yu et al. [15] is used in this 

report. All Aspergillus flavus isolates (78 from Nandi; 87 from Makueni) and A. parasiticus isolates 

(22 from Nandi; 7 from Makueni) were tested for presence of aflD, and aflQ genes. The aflD gene 

encodes an enzyme that catalyzes the conversion of the first stable aflatoxin biosynthesis intermediate, 

norsolorinic acid to averantin in both A. flavus [16] and A. parasiticus [17] while the aflQ gene is 

involved in the conversion of O-methylsterigmatocystin (omst) to aflatoxin B1 (AFB1) and aflatoxin 

G1 (AFG1) and dihydro-O-methylsterigmatocystin (dmdhst) to aflatoxin B2 (AFB2) and aflatoxin G2 

(AFG2) in A. parasiticus [18] and in A. flavus [15]  

2.4.2. DNA Extraction 

A spatula full of spores was transferred from a seven-day old culture into a 2 mL eppendorf tube 

containing 2 mm diameter glass beads, then 650 µL of lysis CTAB buffer was added and the mixture 

was ground in a tissue miller at a frequency of 30/sec for 3 minutes after which the samples were 

incubated at 65 °C for one hour. Proteins were precipitated by adding 600 µL phenol inverted gently 

and centrifuged at 14000 rpm for 20 minutes. The top aqueous layer was pipetted to a new tube,  

600 µL phenol:chloroform (25:24 v/v) was added, inverted gently and centrifuged at 14000 rpm for  

20 minutes. This procedure was repeated twice with 600 µL of chloroform. Clean supernatant was 

transferred to a new 1.5 mL eppendorf tube to which 60 µL 3M sodium acetate (pH8) and 800 µL 

isopropanol were added, inverted gently and incubated overnight at 4 °C for precipitation. The samples 

were centrifuged at 14000 rpm for 10 minutes at 4 °C, the supernatant discarded, after which the DNA 

pellet was washed twice with 1 mL 70% ethanol and centrifuged again at 14000 rpm for 5 minutes at  

4 °C. The supernatant was discarded and the DNA pellet dried in an oven with the eppendorf tube lid 

open at 55 °C for 30 minutes. The pellet was re-suspended in 80 µL low salt TE buffer, 5 µL RNase 

(1mg/mL) was added to remove any RNA contamination and, depending on the yield after running  

1 µL on 1% agarose gel, stored at −20 °C. 

2.4.3. PCR Amplification 

Polymerase chain reaction (PCR) amplifications were performed on 25 µL of a reaction mixture 

containing MgCl2-free reaction buffer, 50 mM MgCl2, 10 mM dNTP mix, 10 µM of each primer,  

5 U/µL Taq DNA polymerase and 5 ng/µL of template DNA. PCR was carried out as follows:  

(1) one step at 94 °C for 3 minutes; (2) 30 cycles of the following three steps: 1 minute at 94 °C,  

1 minute at 57 °C, 1 minute at 72 °C and (3) one final 10-minute step at 72 °C. 

The alfD gene was tested using the primers Nor1-F (5′-ACC GCT ACG CCG GCA CTC TCG 

GCA C-3′) and Nor1-R (5′-GTT GGC CGC CAG CTT CGA CAC TCC G -3′) developed by 

Rodrigues, et al., [19]. The aflQ gene was tested using the primers Ord1-gF (5′-TTA AGG CAG CGG 

AAT ACA AG-3′) and Ord1-gR (5′-GAC GCC CAA AGC CGA ACA CAA A-3′) [20].  
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2.5. Aflatoxigenicity of the Isolates 

2.5.1. Fluorescence on Coconut Agar Medium (CAM) 

Isolates that were positive for either aflD or aflQ or both, were inoculated on coconut agar medium 

(CAM) to detect aflatoxin production [21]. Four negative isolates from each region were also 

inoculated on CAM to act as controls. The plates were incubated at 30 °C for 7 days then examined 

under UV light (365 nm) after 3, 5 and 7 days. 

2.5.2. Aflatoxin Analysis 

Sixty-five percent of A. flavus isolates that were positive for either aflD or aflQ or both and 

fluoresced on CAM were randomly selected and grown on aflatoxin-inducing Yeast Extract Sucrose 

(YES) Agar [19] to test their aflatoxin production profile. All the positive A. parasiticus isolates were 

also included. The isolates were inoculated on 9 cm diameter Petri plates and incubated at 27 °C for  

7 days in the dark. Aflatoxins were extracted using the methods described by Vega [22] and 

Smedsgaard [23] with some modifications. Using a 9 mm diameter sterile cork borer, 9 plugs were 

harvested uniformly from the plates into 50 mL propylene tubes. Three plugs were randomly picked 

and added to a 5 mL amber screw-cap vial of known weight and weighed again. The plugs were 

extracted in 2 mL methanol:formic acid (25:1) for 1 h at 25 °C ultrasonically. Using a sterile syringe, 

the extract was drawn from the vials and filtered through 0.2 µm nylon membrane filter discs into a 

clean autosampler vial (11.6 mm OD × 32 mm height) and analyzed by liquid chromatography-tandem 

mass spectrometry (LCMSMS) (XevoTM Waters). Aflatoxin standards were supplied by Sigma (South 

Africa Part number 46300-U). A mix of aflatoxins contained 1000 µg/kg of AFG1 and AFB1 and  

3000 µg/kg of AFB2 and AFG2. This mixture was then diluted 10×, 100× and 1000× to create four 

calibration standards (including the undiluted mix) (1 µg/kg, 10 µg/kg, 100 µg/kg, 1000 µg/kg). These 

four standards were injected separately onto the LCMSMS, and a calibration curve was created for 

each of the four aflatoxins (peak area vs. concentration). The injection volume was 10 µL for the 

aflatoxin standard mix and 5 µL for all the other standards and the samples. The sample concentrations 

were determined from the area of each of the aflatoxins using the calibration curve of each aflatoxin. 
The aflatoxin concentration in the Petri dishes was obtained using the equation below:  

( )
)/(.100

)(

)2()(.
kggdishPetriinconc

gplugsthreetheofWeight

mlvolumeExtractiongLCMSMSfromreadingConc μμ =××
 

2.6. Statistical Analysis 

Statistical analysis was done using the program R [24]. Qualitative and quantitative binary Chi 

square tests for equality of proportions (Pearson's Chi-squared test with Yates' continuity correction) 

were used to compare frequencies of occurrence of isolates.  



Toxins 2012, 4 996 
 

 
 

3. Results 

3.1. Fungal Profile of Maize Kernels from Nandi and Makueni Districts 

The internal mycoflora associated with maize kernels after surface sterilization is shown in Table 1. 

Fungi grew from all Makueni samples, but only from 11% of the Nandi samples. None of samples 

from the Laboret location grew any fungus up until the 10th day of incubation. Nandi recorded a 
significantly higher ( 05.0,4

2χ  =16.15, p = 0.0028) incidence of fungal growth from the kernels 

compared to Makueni, Table 1. Aspergillus was the most common fungus isolated from maize in both 

regions with over 60% incidence in all locations followed by Fusarium species and Penicillium. Other 

genera were Drechslera, Curvularia, Rhizopus and Alternaria. Variations in contamination were also 

observed within the regions with Kaptumo in Nandi and Ukia in Makueni having the highest fungal 
incidence ( 05.0,4

2χ = 65.4; p < 0.0001). Within the locations, Aspergillus was still the predominant 

genus and the incidence of occurrence of all the other genera varied with locations. In Nandi, 

Aspergillus was predominant in Kaptumo while Fusarium and Penicillium was more common in 

maize from Kilibwoni. In Makueni, Aspergillus was predominant in samples from Nguumo while 

Fusarium and Penicillium were frequently isolated from Ukia samples. 

Table 1. Frequency of isolation of fungi from maize kernels in locations in two regions in Kenya. 

Region Fungal genera 

 Aspergillus 

sp. 

Fusarium 

sp. 

Penicillium 

sp. 

Trichoderma 

sp. 

Others Total 

Makueni 189 (62) 71 (23) 25 (8) 10 (3) 12 (4) 307(100) 

Nguumo 70 (73) 16 (17) 4 (4) 1 (1) 5 (5) 96 (100) 

Ukia 82 (52) 48 (31) 17 (11) 7 (4) 3 (2) 157(100) 

Wote 37 (69) 7 (13) 4 (7) 2 (4) 4 (7) 54 (100) 

Nandi 203 (67) 50 (16) 18 (6) 6 (2) 29 (9) 306 (100) 

Kaptumo 94 (73) 16 (13) 6 (5) 0 (0) 12 (9) 128 (100) 

Kilibwoni 58 (54) 27 (25) 9 (8) 6 (6) 7 (7) 107 (100) 

Laboret 51 (72) 7 (10) 3 (4) 0 (0) 10(14) 71 (100) 

Total (Nandi + Makueni) 392 (64) 121 (20) 43 (7) 16 (3) 41 (6) 613 (100) 

(1). The values are frequencies while those in brackets are row percentages. (2). The frequencies of isolating 

different genera varied significantly with regions (Chi sq = 16.15, df = 4, p = 0.0028). (3). The frequencies of 

isolating different genera varied significantly with location (Chi sq = 65.4, df = 20, p < 0.0001). 

3.2. Population Composition of the Genus Aspergillus  

Aspergillus was present in 80% (n = 203) and 73% (n = 189) of the samples from Nandi and 

Makueni, respectively. This variation was not significant (χ2
0.05(1) = 1.885; p-value = 0.1698). 

However, there was evidence of variation in Aspergillus presence in maize among the locations 

(χ2
0.05(5) = 50.5662; p-value = 1.061e-09). 

Members of Section Flavi, identified with a bright orange reverse color on the AFPA medium 

(Figure 1a), were the most dominant species occurring in maize constituting 60% of the total isolates. 

This was followed by Section Nigri (27%) Section Fumigati (9.7%), Section Circumdati (3%) and 
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Section Clavati (0.3%), Negative isolates had either cream or black reverse colors as shown in  

Figure 1b.  

Within the locations the highest incidence of Section Flavi was recorded in Nandi and the lowest in 

Makueni (Table 2). Three species, A. tamarii, A. flavus and A. parasiticus were all recovered from 

maize kernels. Aspergillus flavus was the most prevalent in both Nandi and Makueni (58.3%; n = 78; 

82.8%; n = 87, respectively), followed by A. tamarii (25.8%; n = 33; 10.8%; n = 10) and A. parasiticus 

(15.9%; n = 21; 6.6%; n = 6). All the three species frequently occurred singly. Co-occurrence was 

observed between A. tamarii and A. flavus in eight households and A. flavus and A. parasiticus in three 

households. A flavus was predominant in Makueni maize. Aspergillus parasiticus and A. tamarii were 

frequently isolated from Nandi than Makueni. 

Figure 1. Aspergillus isolates grown on Aspergillus flavus parasiticus agar (AFPA) 

medium to identify members belonging to Section Flavi; (a) Positive isolate (b) Negative 

isolate. 

 
(a)      (b) 

Morphological characteristics of A. flavus and A. parasiticus on AFPA and V8-juice was used to 

differentiate the two species. Aspergillus flavus had yellow green colonies, was predominantly 

biseriate or biseriate and uniseriate with smooth to finely rough conidia; while A. parasiticus had dark 

green colonies with a diameter of between 24–36 mm, was predominantly uniseriate or uniseriate with 

20% biseriate and had rough conidia. Aspergillus tamarii had dark brown colonies with a diameter of 

2–10 mm, was uniseriate with spiky globose conidia. The reverse of A. tamarii was bright orange in 

early stages and turned dark brown after four days.  

All the isolates were grown on V8-juice agar for sclerotia formation. Sclerotia formed on the 

surface of the agar after 3–7 days of inoculation. Sclerotia formation was more frequent from Makueni 

A. flavus isolates (71%; n = 61) compared to Nandi (37%; n = 29). Further, Makueni isolates were all 

of the S-type producing sclerotia with a diameter range of 200–320 µm. Nandi isolates on the other 

hand were all L-type producing sclerotia of a diameter range of 1000–3100 µm. Sclerotia formed by  

A. parasiticus isolates from Nandi (935–1590 µm) were larger than those of Makueni isolates  

(240–280 µm). Aspergillus tamarrii did not form sclerotia on V8-juice agar (Table 2).  
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Table 2. Distribution and characteristics of Aspergillus Section Flavi in two  

agro-ecological zones, Kenya. 

 Location Number of isolates A. flavus (%) Strain A. parasiticus (%) A. tamarii (%) 

N
an

di
 

Kilibwoni 33 64 L 21 15 

Kaptumo 65 55 L 9 36 

Laboret 34 62 L 26 12 

No. producing 

sclerotia (%) 

 37 (n = 29)   19 (n = 4) 0 

M
ak

ue
ni

 

Nguumo 41 95 S 5 0 

Ukia 42 67 S 7 26 

Wote 20 94 S 6 0 

No. producing 

sclerotia (%) 

 71(n = 61)  67 (n = 4) 0 

Figure 2. Agarose gel electrophoretic pattern of polymerase chain reaction (PCR) products 

expressing aflD and aflQ genes. (a) Aspergillus flavus isolates from Makueni county :  

M—molecular weight 100 bp ladder (Promega); -C—Negative control 3VM482dg;  

-C—Negative control 1VM291br; +C—Positive control 1VM118g; +C— (2VM963Lg); 

1—2M1090; 2—2VM983br; 3—1VM147g; 4—1VM97yg; 5—3VM566g; 6—2VM902br; 

7—1VM83y; 8—3VM566Lg; 9—1VM403g; 10—2VM964yg; 11—1VM132g;  

12—1VM408dg; 13—1VM239g; 14—1VM79g; 15—3VM482dg; 16—1VM328g;  

17—1VM175g; 18—3VM671g; 19—1VM39wy; 20—2VM966yg; 21—2M1223yg;  

22—2VM882g; 23—2VM890g; 24—2VM892g; 25—1VM80sg. (b) Aspergillus flavus 

isolates from Nandi county: M—molecular weight 100 bp ladder; 1—BM69YG;  

2-BM38YG; 3—BM73YG; 4—BMG; 5—BM1YG; 6—BM10YG; 7—BMYG 

 
(a)        (b) 
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3.3. Molecular Analysis of Aspergillus Strains and Aflatoxin Production on CAM 

Figure 2 is a representative of the electrophoretic band patterns obtained for both aflD (400 bps) 

and aflQ (719 bps). All isolates that were positive for any one or both gene amplicons fluoresced on 

CAM after 3 days of incubation at 28 °C, whereas those that were negative for both aflD and aflQ 

amplicons did not fluoresce. Figure 3 shows colonies of non-aflatoxigenic and aflatoxigenic isolates of 

A. flavus observed under UV light.  

Of the 78 A. flavus isolates tested in Nandi 71% (n = 55) were positive for the aflatoxigenic genes 

while in Makueni 87 isolates were tested and 62% (n = 54) positive. This difference was not 

significant (χ2
0.05(1) = 1.2422; p = 0.265). Positive (toxigenic) strains were significantly predominant 

over negative (non-toxigenic) strains in all the locations (Table C; χ2
0.05(5) = 54.9; p < 0.0001). Figure 4 

shows the distribution of toxigenic and non-toxigenic isolates within the locations. Ukia, Laboret and 

Kaptumo had over 70% occurrence of toxigenic isolates compared with non-toxigenic isolates. 

Figure 3. Colonies of non-aflatoxigenic and aflatoxigenic strains of Aspergillus flavus 

observed under ultra violet light. Strains were cultivated in Yeast Extract Sucrose (YES) 

medium and photographed on the third day of incubation at 28 °C. 

 

Figure 4. Frequency of toxigenic strains of Aspergillus flavus in two zones in Kenya. 
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Of the seven A. parasiticus isolates from Makueni, four expressed the toxigenic genes while in 

Nandi out of the 22 isolates, four were positive. 

3.4. Production of Aflatoxins by the Isolates in Vitro 

All the 78 isolates with toxigenic genes produced AFB1. Only six did not produce AFB2. AFB1 

was produced in the largest quantities (highest of 83491 ppb from Makueni and 64030 ppb from 

Nandi) followed by AFB2 (highest 52600 ppb from Makueni and 59231 ppb from Nandi), AFG1 

(highest 28728 from Makueni and 48914 ppb from Nandi) and lastly AFG2 (highest 8411 ppb from 

Makueni and 9629 ppb from Nandi). Makueni isolates produced more AFB1 and AFB2 than Nandi 

isolates while the reverse was true for the G aflatoxins. AFB2 was detected in all isolates except four 

from Nandi and two from Makueni. Out of the 83 isolates, AFG1 was not detected in 14 samples  

(11 from Nandi and three from Makueni). AFG2 was detected in only eight isolates (four from Nandi 

and another four from Makueni). Ten isolates from Nandi and five from Makueni did not produce  

G aflatoxins. The amount of toxins produced varied with isolates (Table 3). 

Table 3. Production of aflatoxins in vitro by Aspergillus flavus and A. parasiticus isolates 

from Makueni and Nandi. Values reading nil (not detected) equal <20 ng  

(a) Makueni isolates 

Code Isolate AFB1 

(µg/kg) 

AFB2 

(µg/kg) 

AFG1 

(µg/kg) 

AFG2 

(µg/kg) 

Total Aflatoxin 

(µg/kg) 

1VM326g A. flavus 8159 2037 2 0 10199 

2VM890g A.flavus 19916 9564 1 2 29484 

Kp-B A. flavus 1502 343 6 0 1850 

2VM983g A.flavus 13143 2265 20 0 15427 

2M1204g A. flavus 127 13 0 0 140 

Km-A A. flavus 57 0 5 0 62.133 

1VM79g A. flavus 257 75 0 0 332.35 

2M1002L A.flavus 63390 33777 17 0 97184 

1VM403g A.flavus 10113 3438 22 0 13574 

1VM147g A. flavus 898 267 0 0 1165 

2M1014g A. flavus 702 82 1 0 785 

1VM402g A.flavus 12032 6989 17 0 19038 

2VM892g A.flavus 33173 14458 22 0 47653 

1VM83y A. flavus 1988 721 203 0 2912 

3VM482g A.flavus 14092 8947 30 0 23069 

1VM235g A. flavus 459 135 7 0 602 

1VM130d A.flavus 61878 30349 22 0 92249 

1VM175g A.flavus 52229 15100 20 0 67350 

3VM559g A. flavus 1686 200 7 0 1893.2 

2M1090g A. flavus 516 50 568 64 11971 

1VM223g A.flavus 32145 15245 365 65 47820 

2M1016g A. flavus 798 229 12 0 1039 

1VM328g A.flavus 31797 6743 54 0 38594 
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Table 3. Cont. 

Km-B A. flavus 673 81.356 12 0 766 

2VM882g A.flavus 30939 11627 10 0 42576 

2M1365g A.flavus 83491 52600 16875 0 152966 

3VM551g A.flavus 30637 13620 21 0 44278 

Um A. flavus 1692 420 8 0 2120 

2M1383g A. flavus 270 47 7 0 324 

2M1122g A. flavus 5028 1008 42 0 6078 

1VM250 A. flavus 2719 969 8 0 3695 

1VM95yg A.flavus 59374 29456 25 0 88878 

1VM79Lg A. flavus 1073 382 3 0 1458 

3VM643g A.flavus 339 47 0 0 387 

2VM983g A. parasiticus 22 0 0 0 22 

1VM149g A.parasiticus 15139 3141 28728 8411 55419 

1VM118g A. parasiticus 97 6 9 0 112 

2VM983 A. parasiticus 45 8 8 0 61 

(b) Nandi isolates 

Code ISOLATE AFB1 

(µg/kg) 

AFB2 

(µg/kg) 

AFG1 

(µg/kg) 

AFG2 

(µg/kg) 

Total Aflatoxin 

(µg/kg) 

BM I YG A.flavus 42 4 0 0 46 

BM130YG A.flavus 64030 16583 51 0 80664 

BM112YG A.flavus 13775 2054 48914 9624 74367 

BM 43 G A.flavus 898 56 7 0 962 

BM 12 G A.flavus 35 0 22 0 57 

BM 1 G A.flavus 110 38 3 0 151 

BM 59 G A.flavus 21 1 0 0 22 

BM 1G A.flavus 10164 2622 17 0 12803 

BM 3 YG A.flavus 39 8 49 0 96 

BM 1 G A.flavus 57142 59231 292 0 116666 

BM 3 G A.flavus 23 7 3 0 33 

BM 9 G A.flavus 22 0 0 0 22 

BM 54 YG A.flavus 12888 9272 44 0 22203 

BM 80 G A.flavus 6233 2857 0 0 9089 

BM 1 YG A.flavus 91 0 0 0 91 

BM 78 YG A.flavus 31 7 4 0 42 

BM 1 YG A.flavus 119 25 1 0 145 

BM 14 G A.flavus 3771 2488 9826 7798 23883 

BM 69 G A.flavus 16 6 0 0 22 

BM 1 G A.flavus 40 6 0 0 46 

BM 1 YG A.flavus 200 43 4 0 247 

BM 1 G A.flavus 10058 1217 17 0 11292 

BM 49 G A.flavus 64 10 2 0 77 

BM 1 Y A.flavus 108 9 207 0 325 

BM 1 G A.flavus 12960 4661 7 0 17628 
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Table 3. Cont. 

BM 55 YG A.flavus 13288 8072 54 0 21413 

BM 1 YG A.flavus 77 18487 68 0 18632 

BM 1 YG A.flavus 2923 25 514 0 3463 

BM 2 YG A.flavus 806 488 9 0 1304 

BM 3 YG A.flavus 42 13 7 0 63 

BM 4 YG A.flavus 216 53 0 0 269 

BM 2 G A.flavus 33 8 3 0 44 

BM 1 G A.flavus 18 0 0 0 18 

BM 1 YG A.flavus 19 2 2 0 24 

BM 1 G A.flavus 41 5 0 0 46 

BM 2 G A.flavus 139 18 63 0 221 

BM 38 YG Aparasiticus 10763 2876 24 0 13662 

BM 39 G A.parasiticus 11077 832 1288 0 13197 

BM 1 YG A.parasiticus 603 208 1699 7798 10308 

BM 1 G A.parasiticus 991 292 5982 2717 9982 

Comparative toxin readings from A. parasiticus isolates from both regions were not as high as those 

from A. flavus. Isolates from Nandi produced more toxins compared to those from Makueni.  

4. Discussion 

The results obtained in this study have provided, for the first time, an important comparison of 

fungal contamination between maize sampled in Makueni County, the main region that has 

experienced repeated lethal human aflatoxicosis outbreaks and Nandi County, the main maize growing 

region in Kenya. The study shows that Aspergillus, specifically Section Flavi, are the main 

contaminants of maize in household storage in the two regions and A. flavus was the most common 

species. The incidence of occurrence of A. flavus in Nandi and Makueni was the same regardless of the 

differences in mean temperatures (20 °C and 24 °C, respectively) and rainfall (900–1800 and  

950–1500 mm). High temperatures and drier conditions are known to favor infection by A. flavus but 

this was not the case in this study. Similar results were observed in Nigeria [25].  

Toxigenic strains of A. flavus were more prevalent than non-toxigenic strains across five out of the 

six locations. This indicates the risk of aflatoxin poisoning in the event that favorable conditions occur 

in both regions. The widespread occurrence of the fungus indicates the extent of pre-harvest infection; 

thus field management strategies stand out as an indispensible intervention strategy towards the fight 

against aflatoxin contamination of maize in Kenya. In this regard, Abbas et al., [26] observed a higher 

incidence and greater numbers of A. flavus infection and toxin production when there was no crop 

rotation. Maize is planted in the same fields every season in the two regions. The importance of field 

management is further stressed by Zablotowicz et al., [27] who report that the history of maize 

cultivation in terms of soil fertility factors correlates with the occurrence of A. flavus and toxin 

production.  

All the A. flavus toxigenic strains from Makueni maize were of the S-type while those from Nandi 

belonged to the L type. Quantitative and qualitative differences in aflatoxin production in vitro 

between isolates and between these strains were detected. The S strains were confirmed to produce 



Toxins 2012, 4 1003 
 

 
 

relative larger amounts of total aflatoxins, AFB1 and AFB2 and lower values for AFG1 and AFG2  

in vitro compared with the L strains. AFB1 is known to be more toxic than the other aflatoxins, and 

this explains why the S strain has been associated with acute aflatoxin poisoning in Makueni [28]. This 

is accentuated by high temperatures in Makueni (range 20–28 °C) compared to Nandi (range  

18–24 °C), which promotes toxin production [6,29]. However, some L strain isolates from Nandi 

produced large amounts of AFB1 and AFB2 contrary to the findings of Cotty [13], and Egel [30]. It is 

important that in vivo tests for toxin production with the L strains from Nandi are done to confirm the 

capability of these isolates to produce large amounts of toxin. These L strains pose a threat of endemic 

chronic exposure to humans if the maize is exposed to conditions suitable for toxin production given 

that they are distributed widely in the region. Further, Nandi is the major maize production zone in the 

country implying that the maize is distributed to most parts of the country. Control of moisture and 

temperature during transportation and storage is important since the maize is already contaminated 

with the toxigenic A. flavus. The most toxic AFB1 were produced in larger quantities compared to the 

AFB2. AFG1 were produced in low quantities and only eight out of 78 samples tested produced 

AFG2.  

This is the first report of A. flavus S and L strains isolated from Kenya producing both B and G 

aflatoxins on YES agar. Probst et al., [3,28] isolated in Kenya both S and L strains, which produced 

only B aflatoxins on maize. Ehrlich et al., [31] reported that all members of A. flavus lack the ability to 

synthesize G aflatoxins due to a 0.8- to 1.5-kb deletion in the 28-gene aflatoxin biosynthesis cluster 

agreeing with Cotty and Cardwell [32] and Egel [29]. However, S strains from Benin produced both 

AFB1 and AFG1 aflatoxins [33]. Davis et al., [34] also observed production of aflatoxin AFB1 and 

AFG1 by A. flavus in a synthetic medium. Cotty and Cardwell [32] reported that SBG strains from the 

United States and West Africa produced both B and the G aflatoxins. It is not clear if the difference in 

media is the reason for the variation in the production of B and G toxins or if the isolates that produced 

both toxins in this study are similar to the SBG strains referred to above. However Abbas et al. [35] 

demonstrated that cultural methods are suitable and effective in screening aflatoxin production by 

Aspergillus isolates. Aspergillus parasiticus was rare in both regions. The number of isolates was too 

small to allow a conclusion on their toxin production ability. The main source of aflatoxin 

contamination in maize in eastern and western Kenya is A. flavus.  

Incidences of sclerotia formation were greater among the S-type than the L-type on V8-juice agar. 

Sclerotia are important survival structures in the life cycle of many fungi. When conditions are 

favorable, they germinate into hyphae, which then form conidia. The conidia are blown away by the 

wind and reinfect maize kernels through the silk. Studies on the conditions responsible for sclerotium 

initiation might be important to develop methods for suppressing the formation of sclerotia, resulting 

in reduced survival of the fungus and better disease management [36]. Sclerotia have been associated 

with aflatoxin production [37]. However Cotty [14] explains that failure of some isolates of A. flavus 

to produce sclerotia on culture media can be due to one of the following: an attenuation of sclerotial 

production in culture, an unfavorable medium, unfavorable temperature, the differential sensitivity of 

isolates to light, or other environmental constraints in culture and that strain L isolates require more 

precise conditions to produce sclerotia than strain S isolates. However, disagreements between studies 

correlating the sclerotial production of isolates with aflatoxin production exist [37].  
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Apart from the risk of aflatoxin contamination of maize, bio-deterioration is another problem 

associated with high fungal contamination of kernels [38]. The internal mycoflora of maize in Nandi 

and Makueni is similar and is dominated by the species of Aspergillus, Fusarium and Penicillium, 

which predisposes the kernels to bio-deterioration. The resulting physiological and biochemical 

changes in the maize kernels eventually render grains unsuitable for human consumption. In addition, 

species of the genera Fusarium, Penicillium and Alternaria were isolated and some species are capable 

of producing a wide spectrum of compounds shown to be toxic to man and animals [39] and so 

increase the risk of multi-mycotoxin contamination and exposure.  

About 40% of maize kernel contamination was caused by Fusarium and less frequently Penicillium 

and Alternaria were also part of the internal mycoflora of maize. Fusarium species are the most 

important mycotoxin producers in northern temperate regions and their presence as part of the internal 

mycoflora of maize raises a concern. Occurrence of Fusarium spp. in maize in Kenya and fumonisin 

production has been reported previously [40]. Muthomi, et al., [41] reported Fusarium as the most 

predominant species in maize from eastern Kenya and not Aspergillus, but this observation may have 

been influenced by the fact that a Fusarium selective media was used for isolation. The frequency of 

isolation of Aspergillus, Fusarium, Penicillium and Alternaria was the same in the two regions. 

However, location variation was significant and this may be attributed to differences in pre- and  

post-harvest management practices, at location and household level. There was a high incidence of 

Aspergillus contamination in Nguumo and Kaptumo. Fusarium and Penicillium were dominant in 

Kilibwoni and Ukia. Laboret, a location constituted mostly of medium scale maize producers, recorded 

the highest incidence of clean maize. Medium-scale farmers are better placed to manage farming and 

storage of maize than small-scale farmers resulting in reduced aflatoxin contamination. 

5. Conclusions 

This research has shown that A. flavus is the main fungal species infecting maize grains in Kenya 

and that toxigenic strains are widespread. The situation is accentuated in the Eastern Province by the 

existence of the highly toxigenic S strain and high prevailing temperatures. However, the presence of 

the L strains should not be overlooked, as this indicates the possibility of chronic exposure from the 

lower levels of toxins produced by these strains. The influence of aflatoxins on human populations in 

Kenya over the past decade demonstrates a clear need for tools to manage contamination of locally 

produced maize. Given the widespread nature of toxigenic strains, any control strategy will have to 

include field interventions. Fungal infection of maize varies with households and this reflects different 

farm management practices, some of which adversely contribute to contamination of the maize  

value chain. 
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