Supplementary Information

1. NMR Spectra

1.1. Deoxynivalenol and Derivatives

Figure S1. ¹H (200 MHz, CDCl₃) of 3-ADON (1).

Figure S2. ¹H (200 MHz, CDCl₃) of 15-ADON (**3**).

Figure S3. ¹³C (50 MHz, CDCl₃) of 15-ADON (**3**).

Figure S5. ¹³C (50 MHz, CDCl₃) of 3,15-diADON (4).

Figure S7. ¹³C (50 MHz, CDCl₃) of (+)-*cis*-carveole (**11**).

1.2. 7,8-Dihydroxycalonectrin and its Derivatives

Figure S8. ¹H (400 MHz, methanol- d_4) of 3,7,8,15-tetrahydroxyscirpene (5).

Figure S9. ¹³C (100 MHz, methanol- d_4) of 3,7,8,15-tetrahydroxyscirpene (5).

Figure S10. COSY (400 MHz, methanol- d_4) of 3,7,8,15-tetrahydroxyscirpene (5).

Figure S11. HSQC (400 MHz, methanol- d_4) of 3,7,8,15-tetrahydroxyscirpene (5).

Figure S12. HMBC (400 MHz, methanol- d_4) of 3,7,8,15-tetrahydroxyscirpene (5).

Figure S13. ¹H (400 MHz, methanol- d_4) of 15-deacety-7,8-dihydroxylcalonectrin (7).

Figure S14. ¹³C (100 MHz, methanol- d_4) of 15-deacetyl-7,8-dihydroxycalonectrin (7).

Figure S15. COSY (400 MHz, methanol- d_4) of 15-deacetyl-7,8-dihydroxycalonectrin (7).

Figure S16. HSQC (400 MHz, methanol- d_4) of 15-deacetyl-7,8-dihydroxycalonectrin (7).

Figure S17. HMBC (400 MHz, methanol- d_4) of 15-deacetyl-7,8-dihydroxycalonectrin (7).

Figure S18. ¹H (400 MHz, methanol- d_4) of 3-deacetyl-7,8-dihydroxycalonectrin (8).

Figure S19. ¹³C (100 MHz, methanol- d_4) of 3-deacetyl-7,8-dihydroxycalonectrin (8).

Figure S20. COSY (400 MHz, methanol- d_4) of 3-deacetyl-7,8-dihydroxycalonectrin (8).

Figure S21. HSQC (400 MHz, methanol- d_4) of 3-deacetyl-7,8-dihydroxycalonectrin (8).

Figure S22. HMBC (400 MHz, methanol- d_4) of 3-deacetyl-7,8-dihydroxycalonectrin (8).

Figure S23. ¹H (200 MHz, methanol- d_4) of 7,8-dihydroxycalonectrin (9).

Figure S24. ¹³C (50 MHz, methanol- d_4) of 7,8-dihydroxycalonectrin (9).

2. CD Spectra

Figure S27. CD spectra of 15-Deacetyl-7,8-dihydroxycalonectrin (7), 1 mmol in H₂O.

Figure S28. CD spectra of 3-Deacetyl-7,8-dihydroxycalonectrin (8), 1 mmol in H₂O.

Figure S29. CD spectra of 7,8-dihydroxycalonectrin (9), 1 mmol in H₂O.

3. Quantum Chemical Calculations

On the basis of the observed NOESY correlations a reasonable starting geometry of **5** was optimized (geometry optimization to energy minimum as well as subsequent frequency analysis) applying DFT calculations [1,2] at the level 6-311++G(d,p) [3], using the B3LYP hybrid functional [4], as implemented in the Gaussian 09 (Revision A.1) program package [5]. Data analysis was done using GaussView 5 (Gaussian, Inc., Wallingford, CT, USA). The obtained geometry is shown in Figure S25 including selected NOESY correlations as indicated by dashed bonds. The determined H,H-distances for the selected NOESY correlations are summarized in Table S1.

Figure S30. Optimized geometry of 5 (selected NOESY correlations are indicated by dashed bonds).

Table S1. Determined H,H-distances (r_{HH} , in Å) for selected NOESY correlations on the basis of the optimized geometry of **5** in gas phase.

NOESY correlation	$r_{\rm HH}$ (5)			
H7–H8	2.32			
H7–H13	2.69			
H7–H14	3.29			
H8–H16	2.57			

Nn Atom					Z-ma	Cartesian coordinates				
Nr. Atom	NA	NB	NC	Bond	Angle	Dihedral	X	Y	Ζ	
1	С							2.60957	0.93565	-0.77360
2	С	1			1.50487			2.48377	-0.56222	-0.70144
3	С	2	1		1.54324	114.02722		1.03425	-1.06357	-0.53077
4	С	3	2	1	1.55203	114.53607	-44.52659	0.20196	-0.28298	0.52128
5	С	4	3	2	1.60130	113.24874	174.16170	-1.33530	-0.72882	0.56839
6	С	5	4	3	1.57383	110.14051	-164.74757	-2.18572	0.33978	1.35058
7	С	6	5	4	1.55635	107.04738	88.94198	-2.66054	1.39543	0.31021
8	С	7	6	5	1.54093	103.97291	-5.77396	-1.94792	0.98136	-0.99179
9	С	4	3	2	1.56192	105.22625	56.89452	0.24761	1.20752	0.05664
10	С	1	2	3	1.33142	119.91003	14.69751	1.58895	1.70621	-0.40313
11	С	8	7	6	1.51708	100.51706	33.90298	-1.93356	-0.52720	-0.83189
12	С	11	8	7	1.46136	124.83681	147.80617	-2.01451	-1.48422	-1.93331
13	С	1	10	9	1.50389	123.57680	179.40739	3.93320	1.47601	-1.24016
14	С	4	3	2	1.56325	112.18598	-64.44281	0.77327	-0.44855	1.96694
15	С	5	4	3	1.53483	114.75570	70.14387	-1.58087	-2.12947	1.14593
16	0	8	7	6	1.42110	113.99811	-82.49657	-0.60939	1.44817	-1.09167
17	0	2	1	10	1.44275	108.20024	-109.75966	3.33159	-1.03473	0.36602
18	0	3	2	1	1.44558	107.22092	-168.71583	1.10328	-2.47155	-0.21057
19	0	7	6	5	1.42388	115.36349	-126.84526	-2.35864	2.74890	0.63334
20	0	12	11	8	1.43810	59.64435	-101.13525	-3.17643	-1.19131	-1.13815
21	0	14	4	3	1.41596	116.73478	80.54735	1.88059	0.36402	2.31120
22	Н	2	1	10	1.10182	108.76104	133.84972	2.86358	-0.99540	-1.64064
23	Н	3	2	1	1.09226	106.48716	74.46622	0.54691	-0.93878	-1.50028
24	Н	6	5	4	1.08978	113.21654	-32.58852	-1.63123	0.82684	2.15241
25	Н	7	6	5	1.09526	109.69558	108.54902	-3.73668	1.28615	0.13826
26	Н	8	7	6	1.09006	113.20362	156.08476	-2.45767	1.33008	-1.89000
27	Н	9	4	3	1.09252	108.88526	-165.60008	-0.09428	1.84402	0.87615
28	Н	10	1	13	1.08596	119.89627	2.46129	1.67549	2.78683	-0.46710
29	Н	12	11	8	1.08745	119.82552	156.47846	-1.62569	-2.49154	-1.80424
30	Н	12	11	8	1.08785	119.70215	2.34656	-2.05308	-1.12364	-2.95894

Table S2. Optimized geometry for 5 in gas phase (DFT, 6-311++G(d,p), B3LYP).

Nr. A	Atom				Z-ma	Cartesian coordinates				
	Atom	NA	NB	NC	Bond	Angle	Dihedral	X	Y	Ζ
31	Н	13	1	10	1.09622	110.94873	-121.04216	4.16116	1.13166	-2.25562
32	Н	13	1	10	1.09133	111.27095	-0.44044	3.93752	2.56734	-1.24013
33	Н	13	1	10	1.09441	110.76251	120.32235	4.74454	1.12577	-0.59457
34	Н	14	4	3	1.08931	108.76775	-161.13599	-0.00270	-0.18121	2.68318
35	Н	14	4	3	1.09518	108.31045	-45.34996	1.00220	-1.50747	2.12725
36	Н	15	5	4	1.09220	110.98074	67.36836	-1.33830	-2.16162	2.21037
37	Н	15	5	4	1.09201	108.95594	-174.23921	-2.63922	-2.37652	1.03947
38	Н	15	5	4	1.08777	112.48858	-53.26508	-0.98718	-2.89407	0.64977
39	Н	17	2	1	0.96784	106.25624	169.55318	3.10603	-1.96649	0.49891
40	Н	18	3	2	0.96289	108.45933	-80.84470	1.22914	-2.96434	-1.02818
41	Н	19	7	6	0.96198	108.59281	-75.02484	-2.95981	3.04043	1.32545
42	Н	21	14	4	0.96949	107.35043	-71.65088	2.64948	0.02483	1.82781
43	Н	6	5	4	1.09230	108.68967	-151.71110	-3.04324	-0.16055	1.80605

Table S2. Cont.

References

- 1. Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. *Phys. Rev.* **1965**, *140*, A1133–A1138.
- 2. Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules. Oxford University Press: London, UK, 1989.
- 3. Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.* **1980**, *72*, 650–654.
- 4. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98*, 5648–5652.
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; *et al. Gaussian 09, Revision A.1.* Gaussian Inc: Wallingford, CT, USA, 2009.

 \bigcirc 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).