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Abstract: This study comprises analyses of contents of mycotoxins, such as 

deoxynivalenol and zearalenone, as well as the level of oxidative stress in ears of a 

susceptible wheat cultivar Hanseat and cv. Arina, resistant to a pathogenic fungus 

Fusarium graminearum. Starting from 48 h after inoculation, a marked increase was 

observed in the contents of these mycotoxins in ears of wheat; however, the greatest 

accumulation was recorded in the late period after inoculation, i.e., during development  

of disease. Up to 120 h after inoculation, in ears of both wheat cultivars, the level of 

deoxynivalenol was higher than that of zearalenone. The susceptible cultivar was 

characterized by a much greater accumulation of deoxynivalenol than the resistant cultivar. 

At the same time, in this cultivar, in the time from 0 to 72 h after inoculation, a marked  

post-infection increase was observed in the generation of the superoxide radical (O2
•−). 

Additionally, its level, at all the time points after inoculation, was higher than in the 
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control. In wheat cv. Arina, a markedly higher level of O2
•− generation in relation to the 

control was found up to two hours after inoculation and, next, at a later time after 

inoculation. In turn, the level of semiquinone radicals detected by electron paramagnetic 

resonance (EPR) increased at later culture times, both in cv. Hanseat and Arina; however, 

in infested ears of wheat, it was generally lower than in the control. Analysis of disease 

symptoms revealed the presence of more extensive lesions in ears of a susceptible wheat 

cv. Hanseat than resistant cv. Arina. Additionally, ergosterol level as a fungal growth 

indicator was higher in ears of susceptible wheat than in the resistant cultivar. 

Keywords: deoxynivalenol; semiquinone radicals; Fusarium graminearum; oxidative 

stress; winter wheat; zearalenone; ergosterol 

 

1. Introduction 

Interactions of plants and their pathogenic fungi now constitute an interesting and rapidly 

developing field in plant science, with a significant impact on new strategies for plant protection.  

The plant response to infection is determined by the genetic background of the host, as well as the 

pathogen [1]. The type of induced response that is effective against a given pathogen varies, depending 

on the lifestyle of the pathogen [2]. Pathogens have devised different strategies to invade a plant, as 

well as to feed on and reproduce in the plant. Biotrophic pathogens need living tissue for growth and 

reproduction; in many interactions the tissue will die in the late stages of the infection (hemi-biotrophic 

pathogens). By contrast, necrotrophic pathogens kill the host tissue at the beginning of the infection 

and feed on the dead tissue [3]. 

As plants are confined to the place where they grow, they have to develop a broad range of defense 

responses to cope with pathogenic infections. Oxidative burst, a rapid, transient production of huge 

amounts of reactive oxygen species (ROS), is one of the earliest observable manifestations of a plant’s 

defense strategy [4–6]. Various aspects, mechanisms, and functions of the oxidative burst with 

generation of superoxide anions (O2
•−) in plant cells, which is stimulated by active defense-inducing 

fungal infection or elicitor treatment, were reviewed mainly on the basis of experimental evidence 

obtained in different pathosystems [7–9]. Free radicals, including ROS, may function in defense 

through their direct toxicity to pathogens, or may activate various metabolic pathways. Enhanced 

generation of free radicals, such as ROS, plays a significant role especially at the early plant-pathogen 

interaction, whereas, at a later stage of the disease development—when not coordinated with an 

effective system of their removal—it may enhance destructive changes in plants and facilitate the 

spread of a pathogen [6,10,11]. Recently, concluding evidence suggests that the ROS network is 

essential to induce disease resistance [12]. On the other hand, investigations show also that 

necrotrophic pathogens can use oxidative processes during their attack and invasion of plant  

tissues [13]. Therefore, host cell death can occur through the action of fungal toxins and an oxidative 

burst generated by both the pathogen and the host [14]. 

This study, next to oxidative stress indexes indicating early defense responses of plants, also 

investigated the accumulation of mycotoxins formed by a pathogenic fungus Fusarium graminearum. 
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Reverberi and co-workers reported that several secondary metabolites are synthesized by fungi during 

morphological and metabolic transitions when the accumulation of ROS occurs [15]. Plant compounds 

involved in plant-fungi interactions are able to interfere with mycotoxin biosynthesis in host  

tissues [16]. Mycotoxins are harmful and often carcinogenic secondary metabolites produced by a 

range of widespread fungi, including Fusarium. In general, they are low-molecular-weight compounds 

synthesized by filamentous fungi and are capable of causing disease and death in plants, animals and 

humans [17]. While in the literature there are many reports indicating high toxicity of mycotoxins, 

little is known about their role in plant-pathogen interactions. The relationship between the decrease in 

cell proliferation, the presence of oxidative stress generated by the enhancement of intracellular ROS 

production, and ROS-induced lipid peroxidation by mycotoxins is a priority direction of research [18]. 

Fusarium mycotoxins, currently considered of importance from the toxicological point of view, 

include zearalenone, trichothecenes and fumonisins, and their occurrence is now regulated by legal 

limits in all developed countries [19,20]. Among trichothecenes, deoxynivalenol (DON) is the most 

popular mycotoxin formed mainly by Fusarium graminearum and F. culmorum [19]. Fusarium 

graminearum is most common in moist and warm continental climates, such as Central and  

South-Eastern Europe, whereas F. culmorum is found more often in maritime and cooler European 

countries [21–23]. The primary sources of DON are cereals, including wheat, barley, maize, and  

oat [24,25]. Toxicity is associated with the presence of both 9, 10 double bond, 12, 13 epoxide group 

and varied substituent groups in the deoxynivalenol structure [26]. DON is responsible for the 

inhibition of protein biosynthesis, reduction of enzymatic activity, disturbance in cytoplasmic 

membrane permeability, and cell division disorders [26]. Another important mycotoxin, similar to 

DON, produced mainly by the same fungi, is zearalenone (ZON) [27]. 

The aim of the present study was to examine the interdependence between the level of oxidative 

stress and mycotoxin contents in ears of two winter wheat cultivars, i.e., the susceptible cv. Hanseat 

and cv. Arina, resistant to a pathogenic fungus Fusarium graminearum. Therefore, the level of 

superoxide anion radical generation and concentrations of free radicals, such as semiquinones, were 

estimated in non-inoculated (control) and F. graminearum - inoculated ears of winter wheat. The 

semiquinone radicals analyzed in this study using electron paramagnetic resonance (EPR) 

spectrometry are among the relatively stable radicals that readily donate electrons to molecular oxygen 

(O2), forming O2
•−. Moreover, changes in mycotoxin contents, such as deoxynivalenol and 

zearalenone, were determined in ears of the above-mentioned wheat cultivars. Additionally, disease 

symptoms were analyzed and ergosterol level as a fungal growth indicator was estimated in both  

wheat cultivars. 

2. Results 

2.1. Mycotoxin Contents 

Starting from 48 h after inoculation with a pathogenic fungus F. graminearum a marked increase 

was observed in the contents of mycotoxins, such as deoxynivalenol and zearalenone, in ears of 

wheat—both the susceptible cv. Hanseat and the resistant Arina (Figure 1). The highest accumulation 

of mycotoxins was recorded at late time points after inoculation (at 168 h and in week two), i.e., during 
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development of disease. Up to 120 h after inoculation in ears of both wheat cultivars, a higher level of 

deoxynivalenol (DON) was found in comparison to zearalenone (ZON). Analysis of variance 

(ANOVA) results showed that the differences in concentrations of DON and ZON in inoculated ears of 

wheat cultivars were highly statistically significant. It needs to be stressed that the susceptible cultivar 

(Figure 1A,B) was characterized by a much greater accumulation of deoxynivalenol than the resistant 

cultivar (Figure 1C,D). In the susceptible cultivar, the level of deoxynivalenol ranged from 1.1 to 

109.88 ng g−1 FW, while in the resistant cultivar it was from 1.76 to 62.41 ng g−1 FW. Only at 168 h 

and in week two after inoculation in ears of the resistant wheat cv. Arina, zearalenone level was higher 

than that of deoxynivalenol (Figure 1C,D). ANOVA results showed that the differences in DON 

concentration in infected tissue of cultivars Hanseat/Arina and the control plants at 72, 120, 168 h, and 

two weeks were highly statistically significant (e.g., p = 0.00006/0.00005, p = 0.00016/0.00033,  

p = 0.00047/0.0069, p = 0.00005/0.00011, respectively). Moreover, ANOVA results showed that the 

differences in ZON concentration in infected tissue of cultivars Hanseat/Arina and the control plants at 

168 h and two weeks were highly statistically significant (e.g., p = 0.00027/0.00028 and  

p = 0.00006/0.00001, respectively). 

Figure 1. The effect of pathogenic fungus Fusarium graminearum on the content of 

mycotoxins, such as deoxynivalenol and zearalenone, in ears of a susceptible wheat cv. 

Hanseat (A,B) and resistant cv. Arina (C,D). Significant differences (p < 0.05) were 

observed between control and infected ears. 

(A) (B) 

(C) (D) 
Note: * significant differences on figures using asterisks are shown. 
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2.2. Generation of Superoxide Anion 

In the period from 0 to 72 h after inoculation in ears of wheat cv. Hanseat, a marked post-infection 

increase was observed in the generation of superoxide anion (O2
•−), while starting from 120 h after 

inoculation it fluctuated (Figure 2A). Moreover, in the susceptible cv. Hanseat at all time points after 

inoculation a higher post-infection level of O2
•− generation was found in comparison to the control. In 

turn, in the wheat resistant cv. Arina up to 2 h after inoculation a higher level of O2
•− was recorded than 

in the control and next at later time points after inoculation with F. graminearum, i.e., at 120, 168 h, and 

in week two after inoculation, O2
•− generation level was markedly higher than in the control (Figure 2B). 

It is of interest that at 24 and 48 h after inoculation a strong increase was found in the generation of 

O2
•−, both in the control and in inoculated ears of wheat cv. Arina, whereas at 72 h a marked reduction 

of O2
•− was recorded in these tissues, while in inoculated ears the concentration of O2

•− was lower than 

in the control. Starting from 120 h after inoculation, the post-infection level of O2
•− was much higher 

than in the control. The significant differences in the level of superoxide anion were observed among 

the experimental variants as analyzed by ANOVA. ANOVA results showed that the differences in the 

concentration of O2
•− in infected tissue of cultivar Hanseat and the control plants at 0.5, 4, 72, and 168 h 

were highly statistically significant (e.g., p = 0.0001, p = 0.0011, p = 0.0007 and p = 0.0005), while in 

infected tissue of cultivar Arina and the control plants at 72, 120, 168 h, and two weeks they were 

highly statistically significant (e.g., p = 0.005, p = 0.00016, p = 0.00006 and p = 0.00009, respectively). 

Figure 2. The effect of pathogenic fungus Fusarium graminearum on the generation of 

superoxide anion radical in ears of a susceptible wheat cv. Hanseat (A) and resistant cv. 

Arina (B). Significant differences (p < 0.005) were observed between control and  

infected ears. 

(A) (B) 

Note: * significant differences on figures using asterisks are shown. 

2.3. Generation of Semiquinone Radicals 

Levels of semiquinone radicals detected by electron paramagnetic resonance (EPR) increased at 

later time points of culture both in cv. Hanseat and Arina; however, in inoculated ears of wheat it was 

lower than in the control (Figure 3), except for 168 h after inoculation in ears of cv. Arina. Moreover, 
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in the period from 0 to 120 h of culture in both wheat cultivars, Hanseat and Arina, slight fluctuations 

were observed in the concentration of semiquinone radicals both in the control and in inoculated 

tissues. However, the range of generation of these radicals in 168-h and two-week-old control tissues 

in the susceptible cv. Hanseat was two-fold greater than in the resistant cv. Arina. ANOVA results 

showed that the differences in concentrations of semiquinone radicals both in the control and in 

inoculated tissues were highly statistically significant. ANOVA results showed that the differences in 

semiquinone radical concentrations in infected tissue of the susceptible cv. Hanseat and the control 

plants at 168 h and two weeks were highly statistically significant (e.g., p = 0.0027 and p = 0.00064, 

respectively), while in the infected tissue of the resistant cv. Arina and the control plants at two weeks 

they were highly statistically significant (e.g., p = 0.00378). 

Figure 3. The effect of pathogenic fungus Fusarium graminearum on the generation of 

semiquinone radicals in ears of a susceptible wheat cv. Hanseat (A) and resistant cv. Arina (B). 

Significant differences (p < 0.005) were observed between control and infected ears. 

(A) (B) 

Note: * significant differences on figures using asterisks are shown. 

2.4. Analysis of Disease Symptoms and the Level of Ergosterol 

Table 1 showed disease development in ears of the susceptible wheat cv. Hanseat and resistant cv. 

Arina after inoculation with Fusarium graminearum. From 120 h after inoculation a pronounced 

severity of disease development was observed in ears of the susceptible wheat cv. Hanseat, it was 

stronger than in resistant cv. Arina. Symptoms first began as water-soaked brownish spots at the base 

of the glumes and ultimately turned into bigger brown discolorations. Moreover, masses of black 

spores occurred along the base of the glumes or over the infected head. In addition, from 120 h after 

inoculation the level of ergosterol in infected tissue of the susceptible wheat cv. Hanseat was higher 

than the resistant cv. Arina (Figure 4). ANOVA results showed that the differences in ergosterol 

concentration in infected tissue of cultivar Arina/Hanseat and the control plants at 48, 72, 120, 168 h, 

and two weeks were highly statistically significant (e.g., p = 0.03293/0.14943, p = 0.02159/0.06088,  

p = 0.01926/0.00921, p = 0.00777/0.00048 and p = 0.0001/0.00091, respectively). 
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Table 1. Disease development in ears of a susceptible wheat cv. Hanseat and resistant cv. 

Arina after inoculation with Fusarium graminearum (− lack of disease symptoms,  

+ severity of disease symptoms, i.e., strong discolorations and browning of ears where 

+++++ bigger brown discolorations in over 50% ears, sometimes black spores were found 

along ears and + single, light brown discolorations). 

Time after inoculation

Disease development 

Arina - Resistant Hanseat - Susceptible 

Control Infected Control Infected 

24 h − − − − 
48 h − − − + 
72 h − ++ − ++ 
120 h − ++ − ++++ 
168 h − +++ − ++++ 

2 weeks − ++++ − +++++ 

Figure 4. The level of ergosterol as a fungal growth indicator in ears of a susceptible wheat 

cv. Hanseat (A) and resistant cv. Arina (B). Significant differences (p < 0.05) were 

observed between control and infected ears. 

(A) (B) 

Note: * significant differences on figures using asterisks are shown. 

3. Discussion 

This study investigated the interdependence between the level of oxidative stress and contents of 

mycotoxins, such as deoxynivalenol and zearalenone, in ears of two wheat cultivars, i.e., susceptible 

Hanseat and Arina, resistant to a pathogenic fungus Fusarium graminearum. Our objective was to 

understand the difference in the invasion process of the host plant by the pathogen and the differential 

defense response in the resistant and susceptible cultivars. We detected changes in the redox status of 

cells in wheat ears, associated with the generation of superoxide anion and semiquinone radicals 

accompanying the accumulation of mycotoxins produced by the pathogenic fungus F. graminearum. 

The pathogenic fungus F. graminearum produces a range of sesquiterpenoid mycotoxins, including 

several types of B trichothecenes, such as DON and its acetylated derivatives 15Ac-DON and  
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3Ac-DON, which are required for full virulence on wheat ears [28–31]. Bin-Umer and co-workers 

reported that trichothecene toxins can inhibit mitochondrial translation independent of their effects on 

cytosolic translation and mitochondrial membrane integrity [32]. 

As a consequence of contact between the pathogen and the plant cell, biochemical reactions are 

initiated, limiting development of infection and disease. The first step of defense is the rapid 

generation of free radicals, including reactive oxygen species (ROS) and the activation of pre-existing 

components, such as the liberation of toxic compounds (e.g., phenolics and subsequent oxidative 

reactions) [33]. Thus, in the present study, in wheat ears of the susceptible cultivar we observed a 

marked post-infection increase in the generation of the superoxide anion radical (O2
•−) in the period 

from 0 to 72 h after inoculation (Figure 2A). Additionally, its level at all time points after inoculation 

was higher than in the control. In turn, in wheat cv. Arina a markedly greater level of O2
•− generation 

in relation to the control was recorded at 2 h after inoculation and next at later time points after 

inoculation, i.e., at the phase of disease development (Figure 2B). The difference in the level of O2
•− 

generation between the resistant wheat cultivar and the susceptible cultivar was connected with the 

earlier reduction in the generation of O2
•− in the resistant cultivar. In the resistant cultivar Arina 

fluctuations were observed in its generation versus time after inoculation. Perhaps this is related to the 

capture of electrons originating from superoxide anion (O2
•−) by semiquinones. 

Although superoxide anion (O2
•−) is the proximal product generated, the more stable hydrogen 

peroxide (H2O2) species is detected in many studies [34]. Oxidative burst could have a direct effect on 

the pathogen or the defenses because of its reactivity. ROS could directly kill the pathogen, especially 

in the case of the more reactive species such as hydroxyl radicals [35]. ROS could also contribute to 

the establishment of physical barriers at the large papillae that are formed at the site of interaction of 

many pathogens by cross linking of cell wall glycoproteins [36] or via oxidative cross-linking  

of precursors during the localized biosynthesis of lignin and suberin polymers [37]. Gupta and  

co-workers reported that ROS are known to play pivotal roles in pathogen perception, recognition, and 

downstream defense signaling [38]. However, how these redox alarms coordinate, in planta, into a 

defensive network is still intangible. 

Published literature sources comprise reports concerning modulation of the cellular redox status by 

mycotoxins produced by pathogenic fungi, but it is mainly in cells of animals and the human body, 

while there are scarce studies showing the above dependencies in plant cells. For example, recent 

studies showed modulation of the cellular redox status in human body cells by toxins of a pathogenic 

fungus, such as the Alternaria [39]. Therefore, the mycotoxins alternariol (AOH) and alternariol 

monomethyl ether (AME) were found to modulate the redox balance of HT29 cells from the human 

body, but without an apparent negative effect on DNA integrity. Additionally, Arunachalam and 

Doohan reported that trichothecene mycotoxins inhibit eukaryotic protein synthesis and are toxic to 

plants, humans and farm animals [40]. At the cellular level, they induce oxidative stress cell-cycle arrest 

and apoptosis, and affect membrane integrity. In animals, trichothecenes can be either immunostimulatory 

or immunosuppressive and induce apoptosis via mitochondria-mediated or -independent pathways. In 

turn, in plants trichothecenes induce programmed cell death via production of reactive oxygen species 

and they can induce genes involved in oxidative stress, cell death, and plant defense signaling. Studies 

by Gilchrist revealed a connection of mycotoxins between plants and animals in apoptosis and 

ceramide signaling [41]. Dobosz and co-workers showed also a relationship between the increase of 
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the free form of salicylic acid (SA), free radical (FR) concentration, and propagation of F. proliferatum 

and F. oxysporum as a consequence mycotoxin formation, such as moniliformin and fumonisin B1 in 

infected plants of Asparagus officinalis [42]. In plants, the use of the Arabidopsis model system to 

understand molecular events in trichothecene-induced phytotoxicity has identified the involvement of 

MAPK signaling pathways and downstream transcription factors that manifest the toxicity  

effects [43,44]. Additionally, Desmond and co-workers demonstrated that infusion of wheat leaves 

with DON induced hydrogen peroxide production within 6 h, followed by cell death within 24 h that 

was accompanied by DNA laddering, a hallmark of programmed cell death [45]. 

In this study with an enhanced post-infection generation of O2
•− (Figure 2) a marked increase was 

observed in the contents of mycotoxins, such as DON and ZON; however, the highest accumulation of 

these toxins was recorded at the late period after inoculation in ears of both wheat cultivars, i.e., at the 

disease development phase (Figure 1, Table 1). Up to 120 h after inoculation in ears of both wheat 

cultivars, the level of DON was higher than that of ZON, while at later time points (168 h and two 

weeks after inoculation) the resistant cultivar was characterized by a lower accumulation of DON than 

the sensitive cultivar. In parallel, in the resistant cultivar the development of disease symptoms 

(necrotic changes, discoloration of tissue) was limited (Table 1) and the level of ergosterol was lower 

than in the sensitive cultivar (Figure 4). Ergosterol (ERG) is a specific component of the fungal cell 

membrane [46]. It is also present in membranes in the cell walls and mitochondria in some yeasts, but 

is not produced in significant quantities by higher plants, rust fungi, or phycomycetes, hence, it can be used 

as a tool to estimate fungal biomass from any kind of mixtures [47,48]. A good positive correlation has 

been established between ergosterol content and fungal growth in other studies [49–53]. 

At the same time in this study, next to the increased generation of O2
•−, which may be one of the 

lines of defense against F. graminearum, the concentration of free radicals, such as semiquinones was 

also determined (Figure 3). These free radicals detected in ears of wheat give signals characterized by 

g-value of 2.0037−2.0039 ± 0.0005, similarly as in previous reports [6,54–57], indicating that they are 

semiquinone-derived radicals. 

It should also be mentioned that quinones, which represent the largest group of redox cycling 

compounds, are particularly active in ROS generation. Semiquinone radicals exhibit high reactivity 

and cytotoxicity and are formed during the oxidation of phenols by phenolases, peroxidases, and also 

by polyphenol oxidase activity. Moreover, the semiquinone radicals analyzed in this study using  

EPR spectrometry are among the relatively stable radicals. These oxidized phenolic species have an 

enhanced antimicrobial activity and thus may be directly involved in stopping pathogen development. 

During the pathogen-plant interaction, oxidation processes are stimulated, which enhances the 

effectiveness of defense mechanisms [6,10,11,56]. 

Measurements of semiquinone radicals using electron paramagnetic resonance (EPR) showed that 

the level of these radicals, in the period from 0 to 120 h, both in the control and in the infested ears of 

the sensitive and resistant cultivars showed fluctuations and ranged from 0.9 to 2 × 1015 spins g−1 dry 

weight. In turn, at the time points the concentration of these radicals increased rapidly in tissues both in 

cv. Hanseat and Arina, although, in infested ears of wheat, it was generally lower than in the control. 

We assume that the lower level of these radicals in relation to the control may indicate their 

involvement in the stimulation of defense mechanisms connected with strengthening of cell walls. It is 

also possible that these radicals in plant cells may be incorporated into polymers, such as lignins and 



Toxins 2014, 6 584 

 

by combining with reactive free radicals that propagate depolymerization through the lignin matrix, 

these protective free radicals could prevent the breakdown of associated cell walls [11,58]. 

Additionally, in the resistant cultivar the concentration of semiquinone radicals was lower than in the 

susceptible cultivar (Figure 3). 

Summing up, recorded results indicate that the accumulation of mycotoxins produced by  

F. graminearum in ears of winter wheat was accompanied by a markedly enhanced generation of 

superoxide anion as an indicator of oxidative stress. A lower level of semiquinone radicals at later time 

points after inoculation may probably indicate their incorporation into polymers, e.g., such as lignins, 

by bonding with reactive oxygen species especially superoxide anion (O2
•−) and, thus, strengthen the 

cell wall. The resistant cultivar was characterized by a lower level of semiquinone radicals than the 

sensitive cultivar especially at the late phase after inoculation. Development of disease was inhibited in 

the resistant cultivar and ergosterol content was lower than in the sensitive cultivar. Additionally, in 

the resistant cultivar production of the mycotoxin DON and the level of generation of superoxide anion 

(O2
•−) at the late phase after inoculation was lower than in the sensitive cultivar. 

4. Experimental Section 

4.1. Plant Material and Growth Conditions 

Plant material comprised two popular winter wheat cultivars with different susceptibility to 

Fusarium, i.e., —a susceptible cv. Hanseat and a resistant cv. Arina. The experiment was performed in 

Cerekwica (Central West Poland, 30 km northwest of Poznań), in the randomized complete block 

design in triplicate, with plot size of 1 m × 1 m. Seeds of both winter wheat cultivars were sown in 

three independent plots both in the control and infected F. graminarum. Both cultivars, i.e., Hanseat 

(susceptible) and the resistant Arina, originate from the Plant Breeding Company in Poznań, Poland. 

4.2. Fusarium Strain and Inoculum Preparation 

Fusarium graminearum strain KF 2870 (elsewhere referred to as F. graminearum) was obtained 

from the Collection of Plant Pathogenic Fungi held by the Institute of Plant Genetics Polish Academy 

of Sciences, Poznan. The pathogen was incubated in the dark at 25 °C in Petri dishes (+9 cm diameter) 

on potato dextrose agar (PDA) medium (Difco; pH 5.5). After three weeks of growth the F. 

graminearum spore suspension was prepared. The spore suspension was obtained by washing the 

mycelium with sterile water and shaking with glass pearls. At mid-anthesis (Zadoks scale 65),  

30 winter wheat heads of each replication were inoculated individually (by brushing) with the conidial 

suspension (2 × 106 spores) isolate of Fusarium graminearum (KF 2870). Non-inoculated plots of the 

same genotypes were used as the control. Inoculated and control samples (heads) for the determination 

of superoxide anion and semiquinone radicals were collected at 0, 0.5, 2, 4, 24, 48, 72, 120, 168 h, and  

two weeks after inoculation. In turn, for the determination of mycotoxins and ergosterol content, and 

analyses of disease development plant samples were collected at 24, 48, 72, 120, 168 h and two weeks 

after inoculation. To evaluate the disease, 50 ears of control plants and plants infected with  

F. graminearum were collected for both varieties, i.e., resistant and sensitive. 
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4.3. Standards, Chemicals, and Reagents 

Deoxynivalenol, zearalenone, and ergosterol standards and organic solvents (HPLC grade) were 

purchased with a standard grade certificate from Sigma-Aldrich (Steinheim, Germany). All chemicals 

used for extraction and purification of mycotoxins were purchased from POCh (Gliwice, Poland). Water 

for the HPLC mobile phase was purified using a Milli-Q system (Millipore, Bedford, MA, USA). 

4.4. Extraction and Purification Procedure for Mycotoxins 

Samples of 10 g homogenized winter wheat ears were prepared for analyses. Both mycotoxins  

(ZON and DON) were extracted and purified according to the detailed procedure described by 

Wiśniewska et al. [19]. The eluate was evaporated to dryness at 40 °C under a stream of nitrogen. Dry 

residue was stored at −20 °C until HPLC analyses. 

4.5. HPLC Analysis of Mycotoxins 

The chromatographic system consisted of a Waters 2695 high-performance liquid chromatograph 

(Waters, Milford, PA, USA) with detectors: 

• Waters 2996 Photodiode Array Detector with a Nova Pak C-18 column (300 mm × 3.9 mm) for 

DON (λmax = 224 nm) analysis, 

• Waters 2475 Multi λ Fluorescence Detector (λex = 274 nm, λem = 440 nm) and a Waters 2996 

Photodiode Array Detector with a Nova Pak C-18 column (150 mm × 3.9 mm) for ZON analysis. 

Quantification of mycotoxins was performed by measuring the peak areas at retention time according 

to the relevant calibration curve. The presence of mycotoxins was confirmed by a comparison of 

retention times with the external standard and by co-injection of every tenth sample with mycotoxin 

standards. Limits of detection were 0.001 µg g−1 for ZON and 0.01 µg g−1 for DON. 

4.6. Ergosterol Extraction, Purification, and HPLC Analysis 

Plant samples (100 mg) were suspended in 2 mL methanol in a culture tube, treated with 0.5 mL  

of 2 M aqueous sodium hydroxide, and sealed tightly. Samples were irradiated twice in a microwave 

oven (370 W) for 20 s. After 15 min contents of cultures tubes were neutralized with 1 M aqueous 

hydrochloric acid, then 2 mL methanol were added and samples were extracted with n-pentane  

(3 × 4 mL). The combined pentane extracts were evaporated to dryness in a stream of nitrogen,  

before analysis dissolved in 1 mL of methanol and 20 µL of thus prepared mixture were analyzed by 

HPLC. The ergosterol separation was performed on a 3.9 mm Nova Pak C-18, 4 mm column  

with methanol:acetonitrile (90:10, v/v) as the mobile phase at a flow rate of 1.0 mL min−1. EGR was 

detected with a Waters 2996 Photodiode Array Detector (Waters Division of Millipore, Milford, MA, 

USA) set at 282 nm. The presence of ergosterol was confirmed by a comparison of retention times 

with the external standard and by co-injection of every tenth sample with an ERG standard. The 

detection limit was 0.01 µg g−1 and standard deviation was below 7%. 
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4.7. Determination of Superoxide Anion Radical Content 

Determination of superoxide anion radical (O2
•−) content in biological samples was based on its 

ability to reduce nitro blue tetrazolium (NBT) [59]. The superoxide anion was detected according to 

Mai and co-workers [57], ears of wheat (0.30 g fr. wt) were cut into fragments (3 mm × 3 mm) and 

immersed in 10 mM potassium phosphate buffer (pH 7.8) containing 0.05% NBT and 10 mM NaN3  

in a final volume of 3 mL and incubated for 1 h at room temperature. After incubation, 2 mL of the 

reaction solution were heated at 85 °C for 15 min and rapidly cooled. The levels of O2
•− in ears of wheat 

were expressed as absorbance at 580 nm per 1 g of fresh materials (A580.g
−1 fr. wt). The measurement 

was carried out in the Perkin Elmer Lambda 15 UV-Vis spectrophotometer (Norwalk, CT, USA). 

4.8. Determination of Semiquinone Radicals 

Samples of several g fresh weight of wheat ears were frozen in liquid nitrogen and lyophilized in a 

Jouan LP3 freeze dryer. The lyophilized material was transferred to EPR-type quartz tubes of 6 mm in 

diameter. Electron paramagnetic resonance measurements were performed with a Bruker ELEXSYS 

spectrometer operating at the X-band. The EPR spectra were recorded at room temperature as 

derivatives of microwave absorption. A magnetic field modulation of about 2 Gs and a microwave 

power of 5 mW were typically used for all experiments to avoid line saturation and deformation.  

EPR spectra of free radicals were recorded in the magnetic field range of 3000–3650 Gs and  

with 4096 data points. In order to determine the number of paramagnetic centers (free radicals) in the 

samples, the spectra were double-integrated and compared with the intensity of the monocrystal 

standard chromium-doped corundum (Al2O3:Cr3+) with a known spin concentration [6,11,55,57,60,61]. 

Before and after the first integration of the spectra, small background corrections were made to obtain 

a reliable absorption signal before the second integration. Double integration of the free radicals was 

performed separately and this value was subtracted from the value obtained for the full 3000–3650 Gs 

scan range integration. As samples placed in quartz tubes were of equal volume, but of different 

weights, EPR intensity data were recalculated per 1 g of dry sample. 

4.9. Statistical Analysis 

All determinations were performed in three independent experiments. Analysis of variance 

(ANOVA) was applied to verify whether means from independent experiments within a given 

experimental variant were significant. Data shown in the figures are means of triplicates for each 

variant and standard errors of mean (SE). In individual figures significant differences are shown  

using asterisks. 

5. Conclusions 

A marked increase was found for the contents of mycotoxins, such as deoxynivalenol and 

zearalenone, in ears of both wheat cultivars in relation to the time after inoculation. 

1. The susceptible cultivar was characterized by a much greater accumulation of deoxynivalenol 

than the resistant cultivar. 
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2. In the susceptible cultivar a marked post-infection increase in O2
•− level was found up to 120 h 

after inoculation. 

3. The level of O2
•− generation in infested ears of both wheat cultivars was generally greater than in 

the control. 

4. An earlier reduction in the level of O2
•− generation with the time after inoculation was observed 

in the resistant rather than in the susceptible cultivar. 

5. The concentration of semiquinone radicals, detected by EPR, increased at later culture times; 

however, in infested ears of wheat it was generally lower than in the control. 

6. The resistant cultivar was characterized by a lower level of semiquinone radicals than the 

sensitive cultivar especially at the late phase after inoculation. It may probably indicate their 

incorporation into polymers, such as lignins, and strengthening of the cell wall. 

7. Development of disease was inhibited in the resistant cultivar and ergosterol content was lower 

than in the sensitive cultivar. 

8. Production of the mycotoxin DON and the level of generation of superoxide anion (O2
•−) in the 

resistant cultivar at the late phase after inoculation was lower than in the sensitive cultivar. 
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