Supplementary Information

Figure S1. Biacore analysis to determine the concentration of anti-ricin Ab in polyclonal Fab/F(ab')₂ preparations. Serial dilutions of Ab or fragments (30–250 nM, based on total protein concentration) were captured on a ricin-coated sensor chip under mass transport limited conditions (flow rate 5 μ L/min) or non-mass transport limited (100 μ L/min) conditions. Concentration of anti-ricin Ab or fragment was determined according to the following calculations [21].

The concentration of the analyte [Abulk] is calculated by the following equation:

$$[A_{\text{bulk}}] = \frac{\frac{1}{L_{m1}} - \frac{1}{L_{m2}}}{\text{MW} \cdot G \cdot \left(\frac{1}{\frac{dR_1}{dt_1}} - \frac{1}{\frac{dR_2}{dt_2}}\right)}$$

 $L_{\rm m}$ = mass transport coefficient MW = 100,000g/mole for F(AB')₂ G = 1000RU·mm²/ng = 1x10⁶ RU·m²/g

dR/dt = linear slope (measured within the first ~36s of binding where k_d is negligible) of 2 curves

- 1. Mass transport limited (flow 5 μ l/min) flw₅ = 8.33 χ 10⁻¹¹ m³/s
- 2. Non mass transport (flow 100 μ l/min) flw₁₀₀ = 1.67 χ 10⁻⁹ m³/s

L_m in m/s is calculated as follows:

$$L_m = \sqrt[3]{\frac{D^2 \cdot \text{flw}}{\text{h}^2 \cdot \text{w} \cdot \text{l}}}$$

h height of the flow cell = 1.8×10^{-5} m w width of the flow cell = 5×10^{-4} m l length of the flow cell = 1.6×10^{-3} m

the diffusion coefficient for F(AB')₂ at 37°C calculated as follows:
$$D = \frac{1.0x10^{-11} \cdot 324.3 \cdot MW^{-\left(\frac{1}{3}\right)} \cdot C_{t37}}{\frac{f}{fo} \cdot \frac{v}{vo}}$$

f/fo friction factor =1.2

v/vo solution viscosity =0.89

 C_{t37} conversion to 37°C =1.06