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Abstract: Some Clostridium difficile strains produce, in addition to toxins A and B, the 

binary toxin Clostridium difficile transferase (CDT), which ADP-ribosylates actin and may 

contribute to the hypervirulence of these strains. The separate binding and translocation 

component CDTb mediates transport of the enzyme component CDTa into mammalian 

target cells. CDTb binds to its receptor on the cell surface, CDTa assembles and 

CDTb/CDTa complexes are internalised. In acidic endosomes, CDTb mediates the  

delivery of CDTa into the cytosol, most likely by forming a translocation pore in 

endosomal membranes. We demonstrate that a seven-fold symmetrical positively charged  

β-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-β-cyclodextrin, which was 

developed earlier as a potent inhibitor of the translocation pores of related binary toxins of 

Bacillus anthracis, Clostridium botulinum and Clostridium perfringens, protects cells from 

intoxication with CDT. The pore blocker did not interfere with the CDTa-catalyzed  

ADP-ribosylation of actin or toxin binding to Vero cells but inhibited the pH-dependent 

membrane translocation of CDTa into the cytosol. In conclusion, the cationic  
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β-cyclodextrin could serve as the lead compound in a development of novel 

pharmacological strategies against the CDT-producing strains of C. difficile. 

Keywords: cellular uptake; Clostridium difficile CDT; binary toxin; membrane transport; 

translocation pore; pore blocker; β-cyclodextrin 

 

1. Introduction 

Clostridium difficile (C. difficile) causes enteric diseases in patients treated with broad-spectrum 

antibiotics that range from diarrhea to severe, potentially life-threatening pseudomembranous colitis 

because disturbance of the gut flora enables spore germination and growth of this pathogen [1].  

The causative agents of C. difficile-associated diseases are the exotoxins A (TcdA, 308 kDa) and  

B (TcdB, 270 kDa), which catalyse the glucosylation of Rho, Rac and Cdc42 in the cytosol of cells 

thereby inhibiting signal transduction via these GTPases [2,3]. This action leads to destruction of the 

actin cytoskeleton, cell rounding and loss of integrity of the intestinal wall (for review see [4]). In 

addition to toxins A and B, about 6%–35% of the strains produce the binary actin ADP-ribosylating 

toxin CDT [5–7], which directly attacks the actin cytoskeleton and contributes to the hypervirulence of 

these strains with associated increased patients morbidity and mortality [7–13]. Like the other 

members of the clostridial binary actin-ADP-ribosylating toxins family, C. botulinum C2 toxin [14–16],  

C. perfringens iota toxin [17–20], and C. spiroforme transferase (CST) [21], CDT consists of two  

non-linked proteins, which must assemble on the surface of target cells to exhibit their cytotoxic 

effects (for review see [22,23]). The binding/translocation component CDTb binds to lipolysis 

stimulated receptor (LSR), which is the protein receptor for CDT, CST and iota toxin [24,25] and 

induces clustering of LSR in lipid rafts [26]. Besides LSR, CD44 is involved in binding of CDT and 

the other iota-like toxins to target cells and might serve as a co-receptor [27]. After uptake of the 

CDTb/CDTa complexes by receptor-mediated endocytosis, CDTa translocates from acidified 

endosomes into the cytosol [28] to ADP-ribosylate G-actin [5,29]. The molecular and cellular 

consequences following toxin-catalysed mono-ADP-ribosylation of actin at arginine-177 were 

described in detail for the related C2 and iota toxins [14,30–37]. Taken together, this modification 

inhibits actin polymerization [38] and causes cell-rounding. Moreover, it also affects the microtubules, 

which form long protrusions around the cell body and in the case of CDT it was shown that these 

protrusions bind C. difficile and increase its adherence to enterocytes [39,40]. 

We provided evidence that the transport of CDTa across endosomal membranes into the cytosol 

occurs by a pH- and chaperone-dependent translocation mechanism [28], which seems to be common 

for the binary clostridial actin ADP-ribosylating toxins and was previously investigated for the C2 and 

iota toxins in more detail [41,42]. After proteolytic activation, the binding/translocation components of 

these toxins, C2IIa and Ib, respectively, form heptamers, which bind to their cellular receptors and 

assemble with the enzyme components C2I and Ia, respectively [41–47]. After receptor-mediated 

endocytosis of the toxin complexes, the binding/translocation components mediate the translocation of the 

enzyme components from the lumen of acidified endosomal vesicles into the cytosol [28,41,42,48,49]. 

To this end, the binding/translocation components change their conformation due to the acidic 
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conditions, insert into the endosomal membranes and form trans-membrane pores [41,42,48,50–54]. 

These pores serve as translocation channels for the unfolded enzyme components and are essential 

prerequisites for their transport across endosomal membranes into the cytosol [48,53,55], which is in 

analogy with the anthrax toxin PA63 channel [56]. In addition to the pores, cytosolic host cell factors 

including chaperones and protein folding helper enzymes are involved in membrane translocation of 

the enzyme components of C2 toxin [57,58], iota toxin [28,59] and CDT [28]. 

Due to their essential role in toxin uptake, the translocation pores represent attractive molecular 

drug targets [60] to protect cells from these binary toxins. We and others identified pore blockers for 

C2 toxin and iota toxin, but also for the related binary anthrax toxin (for review see [61–63]),  

such as small-molecule positively charged aromatic compounds [64–68] and tailored β-cyclodextrin 

derivatives [69–78] and characterized their inhibitory effects on the transmembrane pores formed by 

these toxins in vitro and in living cells. The tailored seven-fold symmetrical positively charged  

per-6-S-(3-aminomethyl)benzylthio-β-cyclodextrin (AMBnTβ-CD, see Figure 1D) efficiently blocks 

PA63, the translocation pore of anthrax toxin and prevents intoxication with anthrax toxin in vitro, in 

intact cells and in animal models [69,79]. Recently, we demonstrated that AMBnTβ-CD is also a 

potent pore blocker for C2IIa and Ib [74,76]. AMBnTβ-CD protects cultured cells from intoxication 

with C2 and iota toxins by inhibiting the channel-mediated membrane translocation of C2I and Ib [76]. 

Since the closely related binding/translocation components of CDT and iota toxin are functionally 

interchangeable [80] and exploit the same receptor on target cells [24,25], here we investigate whether 

AMBnTβ-CD also inhibits translocation of CDTa and protects cells from intoxication with CDT. 

2. Results and Discussion 

2.1. AMBnTβ-CD Protects Vero Cells from Intoxication with CDT 

Vero cells are the established target cells to probe for CDT cytotoxicity because they efficiently 

bind and internalize CDT. Vero cells incubated in the presence of CDTa plus CDTb rapidly round up 

due to the CDTa-catalyzed ADP-ribosylation of G-actin in the cytosol, which results in the 

depolymerization of F-actin. Therefore, cell rounding indicates the presence of CDTa in the cytosol 

and represents a highly specific and sensitive endpoint to monitor CDTb-mediated transport of CDTa, 

because cells treated with CDTa alone do not round up. When Vero cells were pre-treated with 10 µM 

of AMBnTβ-CD, which is a potent pore blocker for the closely related iota toxin [76] and challenged 

with CDT, a lower percentage of the cells rounded up compared to the cells treated with CDT in the 

absence of this substance (Figure 1A,B). 

The AMBnTβ-CD concentration was used in this experiment because it was sufficient to 

significantly delay the intoxication of cultured epithelial cells with C2 and iota toxins in our earlier 

study [76]. The solvent DMSO alone had no significant effect on the intoxication of Vero cells with 

CDT, indicating that the observed inhibitory effect was related to AMBnTβ-CD. In line with this 

observation, the CDT-induced depolymerization of F-actin was significantly decreased in the  

presence of AMBnTβ-CD (Figure 1C). Taken together, these results indicate that less actin was  

ADP-ribosylated by CDT in the cytosol when cells were pretreated with the inhibitor and suggest that 

less enzymatic active CDTa reached the cytosol of these cells. However, AMBnTβ-CD did not 
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completely inhibit CDT-induced cell rounding but significantly delayed it, as observed earlier for C2 

and iota toxins by using chloroquine derivatives as the pore blockers [51,67,68]. The protective effect 

of AMBnTβ-CD was more prominent when lower CDT concentrations were used (Figure 2A). These 

data suggest that a (minor) portion of the internalized CDTa translocates from endosomes into the 

cytosol over time even in the presence of the pore blocker and this portion is bigger when higher toxin 

concentrations are applied. 

Figure 1. Pre-treatment with AMBnTβ-CD protects Vero cells from intoxication with 

Clostridium difficile transferase CDT. (A) Vero cells were grown in 12-well dishes to 

subconfluency and treated with 10 µM final concentrations of AMBnTβ-CD for 30 min at 

37 °C. Subsequently, 200 ng/mL CDTb + 100 ng/mL CDTa were added and cells were 

further incubated at 37 °C. For control, cells were either left untreated, treated with CDT 

alone, with AMBnTβ-CD alone, or with CDT in the presence of solvent. Pictures were 

taken after different incubation periods, but shown for 3 h as exemplary measurements;  

(B) The number of total cells and rounded cells was counted from the pictures and 

percentage of the round cells was calculated. Values are given as the means ± S.D. (n = 3). 

Significance was tested for each time point between CDT-treated cells with and without 

AMBnTβ-CD by using the Student t-test (*** p < 0.0005; ** p < 0.005; * p < 0.05);  

(C) Pretreatment with AMBnTβ-CD prevents the CDT-induced depolymerization of  

F-actin in Vero cells. Vero cells grown in a 96 well plate were treated with CDT in the 

presence and absence of AMBnTβ-CD as described before. After 2 h, cells were fixed and 

permeabilized. F-actin was stained with phalloidin-FITC and fluorescence detected at  

513 nm with a TecanReader Infinite M1000 (Tecan Deutschland GmbH, Crailsheim, 

Germany); (D) The seven-fold symmetrical synthetic molecule AMBnTβ-CD, which was 

used as CDT toxin blocker in this study. 

A 
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Figure 1. Cont. 
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The inhibitory effect of AMBnTβ-CD on the intoxication of Vero cells with CDT was 

concentration-dependent as shown in Figure 2B. While 1 and 5 µM final concentrations of this 

compound had only small inhibitory effects in the very early phase of intoxication, the 10 and 20 µM 

concentrations significantly delayed cell rounding to the extent of 24 h after CDT application. Under 

the conditions used in this experiment, 20 µM of AMBnTβ-CD completely inhibited the intoxication 

for 4 h. Of note, we have demonstrated earlier that treatment of Vero cells with AMBnTβ-CD alone up 

to 20 µM final concentration in the medium for 72 h has no effect on the morphology of  

Vero cells [76]. 

*
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Figure 2. AMBnTβ-CD delays the intoxication of Vero cells with CDT in a  

concentration-dependent manner. (A) Effects of AMBnTβ-CD (10 µM) on intoxication of 

Vero cells after application of different concentrations of CDT. Vero cells were treated 

with 10 µM AMBnTβ-CD for 30 min at 37 °C. Subsequently, CDT (200 ng/mL CDTb + 

100 ng/mL CDTa, or 100 ng/mL CDTb + 50 ng/mL CDTa) was added and cells were 

further incubated at 37 °C. For control, cells were either left untreated, or treated with the 

indicated concentrations of CDT alone or with AMBnTβ-CD alone. Pictures were taken 

after the indicated incubation times (shown for 4 h); (B) Percentages of round cells 

calculated from the pictures. Values are given as the means ± S.D. (n = 3) and significance 

was tested for each time point between the CDT-treated samples with or without 

AMBnTβ-CD by using the Student t-test (*** p < 0.0005; ** p < 0.005; * p < 0.05;  

ns = not significant); (C) Subconfluent Vero cells were pre-treated for 30 min at 37 °C 

with 1, 5, 10 and 20 µM of AMBnTβ-CD and CDT (50 ng/mL CDTb + 25 ng/mL CDTa) 

was added to the medium. For control, cells were left untreated, or treated with CDT alone 

or with AMBnTβ-CD (20 µM) alone. After the indicated incubation times pictures were 

taken, as shown for 5 h; (D) the percentages of round cells were calculated from the 

pictures. Values are given as the means ± S.D. (n = 3) and significance was tested for each 

time point between CDT-treated samples with or without AMBnTβ-CD by using the 

Student t-test (*** p < 0.0005; ** p < 0.005; * p < 0.05; ns = not significant). 

A 
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Figure 2. Cont. 
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2.2. The Inhibitory Effect Depends on the Time Point of AMBnTβ-CD Application 

AMBnTβ-CD inhibited the intoxication of Vero cells with CDT not only when applied prior to 

CDT, but also when added at the same time point into the medium or even 10 min after CDT  

(Figure 3). 

AMBnTβ-CD had no significant inhibitory effect towards CDT when applied 30 min after the 

toxin, comparable to what we observed earlier for C2 toxin [76]. This is plausible because we 

previously determined that AMBnTβ-CD acts by blocking the translocation pores of the toxins in 

endosomal vesicles thereby preventing translocation of their enzyme components into the cytosol. 

Within 30 min, most of the internalized CDTa would be translocated into the cytosol and therefore 

would not be targeted by AMBnTβ-CD. In this context, we demonstrated earlier that AMBnTβ-CD has 

no effect on the C2I-catalyzed ADP-ribosylation of actin [76] and, in line with this finding, 10 µM of 

AMBnTβ-CD had no inhibitory effect on the ADP-ribosylation of actin by CDTa in vitro (Figure 4A). 

AMBnTβ-CD did not interfere with binding of CDTb to its receptor (Figure 4B). When cells were 

pretreated with AMBnTβ-CD and subsequently incubated at 4 °C with CDTb to enable its binding to 

the receptors on the cell surface, there were no obvious differences in the amounts of cell-bound CDTb 

in a Western blot analysis compared to the cells treated with CDTb in the absence of AMBnTβ-CD. 
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Figure 3. The time point of AMBnTβ-CD application determines its protective effect 

against CDT. (A) AMBnTβ-CD (10 µM) was added to Vero cells either 10 min before, or 

at the same time point, or 10 or 30 min after CDT (50 ng/mL CDTb + 25 ng/mL CDTa). 

For control, cells were left untreated or treated with CDT alone or with AMBnTβ-CD  

(10 µM) alone. The cells were incubated at 37 °C and pictures were taken after the 

indicated time points (shown for 5 h); (B) The percentage of round cells was determined 

from the pictures. Values are given as the means ± S.D. (n = 3) and significance was tested 

for each sample treated with CDT and AMBnTβ-CD against cells treated with CDT alone 

by using the Student t-test (*** p < 0.0005; ** p < 0.005; * p < 0.05; ns = not significant). 

A 
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Figure 4. AMBnTβ-CD does not inhibit the enzyme activity of CDTa or the binding of 

CDT to cells. (A) Effect of AMBnTβ-CD on the CDTa-catalyzed ADP-ribosylation of 

actin in vitro. Vero cell lysate (10 µg of protein) was preincubated for 10 min at 37 °C with 

AMBnTβ-CD (10 µM) and subsequently 500 ng of CDTa and 10 µM of biotin-NAD
+
 were 

added. For control, lysate proteins were incubated without CDTa or without AMBnTβ-CD. 

After 30 min incubation at 37 °C, the proteins were separated by SDS-PAGE, blotted onto 

nitrocellulose and the ADP-ribosylated (i.e., biotin-labelled) actin was detected by Western 

blotting with streptavidin-peroxidase. Comparable amounts of blotted protein were 

confirmed by Ponceau S-staining (not shown). The two lanes are duplicates from the same 

experiment; (B) Effect of AMBnTβ-CD on binding of CDTb to Vero cells. Cells were 

incubated for 10 min at 37 °C with or without AMBnTβ-CD (10 µM) and for additional  

30 min at 4 °C with CDTb (300 ng/mL) to enable its binding to the cell receptors. After 

removal of the medium and extensive washing, cells were lysed and equal amounts of 

lysate proteins were separated by SDS-PAGE and blotted onto a nitrocellulose membrane. 

The cell-bound CDTb was detected by Western blotting with a specific antibody against Ib, 

which cross reacts with CDTb. Comparable amounts of blotted protein were confirmed by 

Ponceau S-staining (not shown). The two lanes are duplicates from the same experiment. 

 

 

Having confirmed that AMBnTβ-CD did not interfere with binding of CDT to the cells and  

with CDTa-catalyzed ADP-ribosylation of actin, we finally tested the effect of AMBnTβ-CD on  

pH-mediated membrane translocation of CDTa. To this end, we performed an established assay where 

the conditions in the lumen of acidified endosomal vesicles are mimicked on the surface of cultured 

cells, as originally described for diphtheria toxin [81]. After binding of CDT to Vero cells at 4 °C, cells 

were exposed to an acidic pulse to trigger insertion of CDTb pores into the cytoplasmic membrane and 

translocation of CDTa through these pores into the cytosol. Noteworthy, the “normal” uptake of CDT 

via acidified endosomes was blocked by incubating the cells with bafilomycin A1. Since only 

translocated CDTa modifies actin in the cytosol and thereby induces cell rounding, the percentage of 

round cells allows monitoring toxin translocation under these conditions [28]. To investigate whether 

AMBnTβ-CD interferes with the CDT translocation, cells, which have bound CDT on their surface, 

were incubated with this compound 10 min prior to and during the pH pulse. The results shown in 

Figure 5 indicate that less cells rounded up when AMBnTβ-CD was present, implicating that 

translocation of CDTa was inhibited. 
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Figure 5. Effect of AMBnTβ-CD on the pH-induced translocation of CDT across the 

cytoplasmic membrane of Vero cells. Cells were pre-treated for 30 min at 37 °C with  

100 nM bafilomycin (Baf) A1 and subsequently incubated for 30 min on ice with CDT 

(100 ng/mL CDTa + 200 ng/mL CDTb), or for control without CDT. To one portion of 

CDT-treated cells, 20 µM of AMBnTβ-CD (or DMSO as solvent control to the other 

portion of CDT-treated cells) was added after 20 min on ice. All cells were incubated at  

37 °C for 15 min in acidic medium (pH 4.5) and for further 2 h in neutral medium  

and after 2 h pictures were taken to determine the percentage of round cells. Values  

are the means ± S.D. (n = 3). Significance between CDT-treated cells and  

CDT + AMBnTβ-CD-treated cells was tested by using the Student t-test (** p < 0.005). 

 

 

Comparable inhibitory effects of AMBnTβ-CD on the pH-triggered membrane translocation were 

earlier obtained for the related binary C2 and iota toxins [76], confirming that this inhibitor targets the 

hepatmeric transmembrane pores of binary actin ADP-ribosylating toxins and prevents translocation of 

their enzyme components into the cytosol of mammalian target cells. 

3. Experimental Section 

3.1. Materials and Reagents 

Cell culture medium MEM and fetal calf serum were purchased from Invitrogen (Karlsruhe, 

Germany) and cell culture materials from TPP (Trasadingen, Switzerland). Complete
®

 protease 

inhibitor was from Roche (Mannheim, Germany), the protein molecular weight marker Page Ruler 

prestained Protein ladder
®

 from Fermentas (St. Leon-Rot, Germany), biotin-labelled NAD
+
 from  

R & D Systems GmbH (Wiesbaden-Nordenstadt, Germany), bafilomycin A1 from Calbiochem  

(Bad Soden, Germany). AMBnTβ-CD was custom synthesized at LycloLab (Budapest, Hungary) as 

described in detail previously (compound 14b, [70]). CDTa and CDTb (from C. difficile strain 196) 

were expressed as recombinant His-tagged proteins in the B. megaterium expression system and 

purified as described earlier [24]. 
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3.2. Cell Culture and Intoxication Assays 

African green monkey kidney (Vero) cells were cultivated at 37 °C and 5% CO2 in MEM 

containing 10% heat-inactivated fetal calf serum, 1.5 g/L sodium bicarbonate, 1 mM sodium-pyruvate, 

2 mM L-glutamine, 0.1 mM non-essential amino acids and 10 mg/mL Penicillin/Streptomycin. Vero 

cells were trypsinized and reseeded twice a week for at most 15–20 times. For cytotoxicity 

experiments, cells grown in culture dishes in serum-free medium were incubated at 37 °C with CDT 

and after the indicated incubation periods visualized by using a Zeiss Axiovert 40CFl microscope 

(Oberkochen, Germany) with a Jenoptik progress C10 CCD camera (Carl Zeiss GmbH, Jena, 

Germany). The CDT-induced cell rounding as specific indication of the intoxication process and 

inhibitory effects of AMBnTβ-CD were analysed by incubating cells with CDT in the presence and 

absence of this substance. The percentage of round cells was determined from the pictures. The  

pH-induced translocation of cell-bound CDT across the cytoplasmic membrane of Vero cells was 

performed as described earlier [28]. 

3.3. Quantification of F-Actin Content in Cells 

Vero cells grown in a 96-well plate were pre-treated for 30 min at 37 °C with AMBnTβ-CD or left 

untreated for control. Then, cells were incubated for further 2 h with CDT. As an additional control, 

cells were left untreated. Subsequently, the medium was removed and cells were fixed by 20 min 

incubation with paraformaldehyde (4% in PBS) and permeabilized with Triton-X100 (0.4% in PBS). 

Non-specific binding sites were blocked by incubating the cells for 45 min with 5% non-fat dry milk in 

PBS containing 0.1% Tween-20 (PBS-T) and F-actin was stained by 45 min incubation at 37 °C with 

phalloidin-FITC. Cells were washed and the fluorescence measured at 513 nm emission with a 

TecanReader Infinite M1000 (Tecan Germany, Crailsheim, Germany). 

3.4. SDS-PAGE and Western Blotting 

For the Western blot analysis of cell-bound CDTb, cells were incubated for 30 min at 4 °C with 

CDTb in the presence (10 min pre-treatment) or absence of AMBnTβ-CD, washed and lysed. Equal 

amounts of lysate protein were subjected to SDS-PAGE according to the method of Laemmli [82] and 

blotted onto a nitrocellulose membrane (Whatman, Dassel, Germany). The membrane was blocked for 

30 min with 5% non-fat dry milk in PBS-T and probed with a specific antibody against iota b (a kind 

gift from Bradley G. Stiles, Integrated Toxicology, Bacteriology Divisions, U.S. Army Medical 

Research Institute of Infectious Diseases, Fort Detrick, MD, USA), which cross-reacts with the closely 

related CDTb. The membrane was washed with PBS-T, incubated with anti-rabbit antibody coupled to 

horseradish peroxidase (Santa-Cruz, Heidelberg, Germany), washed again, and CDTb was detected 

with the enhanced chemiluminescence (ECL) system from Millipore (Schwalbach, Germany) 

according to the manufacturer’s instructions. 

3.5. ADP-Ribosylation of Actin by CDTa in a Cell-Free System 

Vero cell lysate (10 µg of protein) was pre-incubated for 10 min at 37 °C together with the inhibitor 

AMBnTβ-CD or left untreated for control. Subsequently, 500 ng/mL of CDTa and 10 µM  
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biotin-NAD
+
 were added and the samples incubated for 30 min at 37 °C. Then, the proteins were 

subjected to SDS-PAGE, blotted onto a nitrocellulose membrane and the biotin-labelled, i.e.,  

ADP-ribosylated, actin was detected by Western blotting with streptavidin-peroxidase and the ECL 

system. Intensity of biotin-actin was measured by densitometry using the Adobe Photoshop software 

(version 7.0, Adobe Systems GmbH, Munich, Germany, 2002). 

3.6. Reproducibility of the Experiments and Statistics 

All experiments were performed independently at least two times and results from representative 

experiments are shown in the figures. For quantification, the values (n = 3) were calculated as the 

means ± standard deviation (S.D.) with the Prism4 Software (GraphPad Software, Inc., La Jolla, CA, 

USA). Significance was tested with the Student t-test. 

4. Conclusions 

We have performed a series of experiments to demonstrate that the symmetrical positively  

charged β-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-β-cyclodextrin (AMBnTβ-CD), 

efficiently protects cultured epithelial cells from intoxication with the binary toxin CDT of C. difficile. 

The more detailed investigation of the underlying mechanism strongly suggests that this compound 

inhibited the pH-dependent translocation of the enzyme component CDTa across cell membranes, 

which is mediated by trans-membrane pores formed by the separate binding/translocation component 

CDTb. This finding is in agreement with our recent data showing that AMBnTβ-CD blocks the 

translocation pores of the closely related binary C2 and iota toxins [74,76], thereby protecting cells 

from intoxication. This substance was originally generated as a tailored blocker for the translocation 

pore of the binary toxins of Bacillus anthracis, protective antigen [69], which shares the overall 

structure and mode of action with the translocation pores of the clostridial binary toxins [22,62]. 

Indirectly, our findings suggest that the CDTb pores, which have not been characterized as  

trans-membrane channels in vitro so far, might play an essential role for the translocation of CDTa 

across membranes during uptake of CDT into the targeted mammalian cells. 

However, the findings might also have an important medical implication since the observed 

inhibitory effects of AMBnTβ-CD suggest that this compound could serve as the broad-spectrum 

inhibitor against binary bacterial toxins that form oligomeric translocation channels to deliver their 

enzymatic active components into the host cell cytosol. Moreover, since the CDT-production 

contributes to the hypervirulence of C. difficile, AMBnTβ-CD might be an attractive lead compound to 

develop novel pharmacological strategies against these hypervirulent, CDT-producing strains. 
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