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Abstract: Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many 

taxonomically diverse organisms. Its origin has been the topic of much debate, with 

suggestions including endogenous production, acquisition through diet, and symbiotic 

bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine 

biota, but at lower than expected concentrations. In this study, 102 strains were isolated 

from Pleurobranchaea maculata (Opisthobranchia) and Stylochoplana sp. (Platyhelminthes). 

Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect 

the C9 base of TTX via liquid chromatography—mass spectrometry. Bacterial strains were 

characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the 

possibility that TTX is produced by a consortium of bacteria, a series of experiments using 

marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique 

strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight 

different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, 

Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting 

of bacterial communities from broth experiments showed little change over the first  

four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0), 

suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp.  

is unlikely. 
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1. Introduction 

Tetrodotoxin (TTX) is a small non-protein neurotoxin closely related to saxitoxin [1,2].  

It selectively targets voltage-gated sodium channels, resulting in the inhibition of action potentials 

across neurons. Ingestion of quantities as little as 1–2 mg can be fatal to humans [3,4]. Its highly 

selective nature has resulted in its frequent use in neurological medical studies, yet its biosynthetic 

pathway is still largely unknown [5,6]. The name tetrodotoxin is derived from the tetrodontidae order 

of pufferfish, in which TTX was first found. However, it has since been discovered globally in a wide 

range of organisms covering eight different phyla, excluding bacteria [5]. The source of TTX and its 

distribution among so many phylogenetically unrelated species remains a mystery. The most commonly 

cited hypothesis is that TTX has a bacterial origin (Table 1). In 1986, the first TTX-producing bacteria, 

a Pseudomonas species, was isolated from a red calcareous alga, Jania sp. [7]. Tetrodotoxin and the TTX 

analogue anhydro-tetrodotoxin were detected via high performance liquid chromatography (HPLC) and 

mouse bioassay [7]. 

Tetrodotoxin producing bacteria representing 22 genera have since been isolated from a range of 

host organisms including; puffer fish, octopi, sea stars, reef crabs, sea urchins, sea snails, gastropods, 

worms, and algae [5,8–10]. A summary of the bacterial genera, the concentrations of TTX they 

produce, the method of detection, and the organisms they were isolated from is provided in Table 1. 

The most common method of bacterial isolation among these studies involves homogenization of  

the host organism tissue followed by plating of aliquots onto non-selective medium. Individual 

bacterial strains are then selected and cultured in liquid media before harvesting and testing for TTX 

via various methods including; mouse bioassay, enzyme-linked immunosorbent assay (ELISA),  

gas chromatography-mass spectrometry (GC-MS), and HPLC (Table 1) [11–16]. However, the TTX 

concentrations in these bacterial cultures are significantly lower than the amounts contained in host 

organisms leading to doubt that they are the definitive source of TTX [16–19]. For example,  

Wang et al. [15] reported a maximal TTX concentration of 184 ng·g−1 from an isolated Vibrio sp. in 

comparison to 36 μg·g−1 tissue in the host sea snail Nassarius semiplicatus. 

Matsumura [20] provided additional uncertainty by demonstrating that the culture media used to 

isolate the TTX producing bacteria could produce false positives for TTX when analyzed by HPLC 

and GC-MS. Of the numerous studies demonstrating bacterial TTX-production, to our knowledge only  

one [21] has used liquid chromatography-mass spectrometry (LC-MS) to confirm the presence of TTX 

(Table 1). The use of non-disputable chemical methods as a means of quantifying TTX in bacterial 

isolates would greatly assist in dispelling the controversy surrounding the bacterial origin of TTX. 
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Table 1. Bacteria reported to produce tetrodotoxin (TTX) or TTX like compounds. 

Ref Source 
Toxicity of Host 

Species/Tissue * 
Bacteria 

Toxicity (TTX or Related 

Substances) ** 
Detection Method * 

[10] 
Takifugu niphobles 

(pufferfish) 
intestines: N/A Raoultella terrigena 4.3 μg·L−1 ELISA 

[22] 
Fugu obscurus 

(pufferfish) 
liver: 80 MU·g−1 Lysinibacillus fusiformis 23.9 MU in 200 mL broth mouse bioassay 

[14] 
Fugu obscurus 

(pufferfish) 
ovary: 125 MU·g−1 Bacillus sp. + HPLC, EMI-MS 

[16] 
Takifugu obscurus 

(pufferfish) 
ovary: N/A Aeromonas sp. 1.88 μg·L−1 cultured bacteria ELISA 

[21] 
Arothron hispidus 

(pufferfish) 
1 μg·g−1 Vibrio harveyi 0.05–1.57 μg·mL−1 LC-MS 

[15] 
Nassarius semiplicatus 

(sea snail) 

2 × 102 MU·g−1 tissue  

(3.6 mg in 100 g tissue) 

Vibrio spp. 11–184 ng·g−1 competitive ELISA 

Marinomonas spp. 85–98 ng·g−1 competitive ELISA 

Tenacibaculum spp. 54 ng·g−1 competitive ELISA 

[8] 
Pseudocaligus fugu 

(copepod) 
N/A Roseobacter sp. + HPLC, GC-MS, LC-MS 

[23] 
Chelonodon patoca 

(pufferfish) 
skin: N/A Serratia marcescens + HPLC 

[18,19] 
Fugu rubripes 

(pufferfish) 
ovary: 120 ± 6.2 MU·g−1 

Bacillus spp. 0.1–1.6 MU·g−1 cells mouse bioassay 

Nocardiopsis dassonvillei 0.5 MU·g−1 cells mouse bioassay 

Actinomycete spp. 0.1–1.6 MU·g−1 cells mouse bioassay 

[17] 

Takifugu alboplumbeus 

(pufferfish) 

intestines: 24.9 ± 24.2 MU·g−1 

[24] 
Vibrio spp. 

78.3 MU in 500 mL broth  

(4 × 107 cells) 
mouse bioassay 

Takifugu niphobles 

(pufferfish) 

ovary—100–1000 MU·g−1 

[24] 

Microbacterium 

arabinogalactanolyticum 

105.3 MU in 500 mL broth  

(4 × 107 cells) 
mouse bioassay 
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Table 1. Cont. 

Ref Source 
Toxicity of Host 

Species/Tissue * 
Bacteria 

Toxicity (TTX or Related 

Substances) ** 
Detection Method * 

[25] Seven species of nemertean worms N/A Vibrio spp. + HPLC 

[13] 
Fugu vermicularis radialis 

(pufferfish) 
70 ± 8 MU·g−1 Vibrio spp. + HPLC 

[26] Meoma ventricosa (sea urchin) N/A Pseudoalteromonas spp. + immunoassay 

[11] 
Niotha clathrata  

(marine gastropod) 
2–50 MU·g−1 

Vibrio spp. + HPLC 

Pseudomonas spp. + HPLC 

Aeromonas spp. + HPLC 

Plesiomonas spp. + HPLC 

[27] Freshwater sediment +HPLC, GC-MS 

Micrococcus spp. + HPLC 

Bacillus spp. + HPLC 

Caulobacter spp. + HPLC 

Flavobacterium spp. + HPLC 

[28] Marine sediment +HPLC, GC-MS Streptomyces spp. + HPLC 

[29] Deep sea sediment 
25–90 ng TTX equivalents g−1 

of mud [30] 

Vibrio spp. + HPLC 

Bacillus spp. + HPLC 

Acinetobacter spp. + HPLC 

Alteromonas spp. + HPLC 

Aeromonas spp. + HPLC 

Micrococcus spp. + HPLC 
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Table 1. Cont. 

Ref Source 
Toxicity of Host 

Species/Tissue * 
Bacteria 

Toxicity (TTX or Related 

Substances) ** 
Detection Method * 

[31] 

Four species of 

Chaetognaths 

(arrowworms) 

320 pg individual−1 [32] Vibrio spp. 280–790 pg·μL−1 culture medium cell culture bioassay 

[12] 
Hapalochlaena maculosa 

(blue-ringed octopus) 
140–174 MU idividual−1 

Vibrio spp. + HPLC, GC-MS 

Pseudomonas spp. 3 MU, + 
mouse bioassay, HPLC, 

GC-MS 

Bacillus spp. 5 MU, + 
mouse bioassay, HPLC, 

GC-MS 

Alteromonas spp. + HPLC, GC-MS 

[33] 
Takifugu niphobles 

(pufferfish) 
intestine 3890 MU·g−1 Shewanella putrefaciens 15 MU in 250 mL culture broth, + 

mouse bioassay, HPLC, 

GC-MS 

[34] 
Fugu vermicularis 

vermicularis (pufferfish) 
178 MU·g−1 Vibrio spp. 3 MU, +, + 

mouse bioassay, HPLC, 

GC-MS 

[35] 
Astropecten polyacanthus 

(comb seastar) 
32 MU·g−1 Vibrio spp. + HPLC, GC-MS 

[36] 
Fugu poecilonotus 

(pufferfish) 
N/A Pseudomonas spp. + HPLC, GC-MS 

[34] 
Atergatis floridus  

(reef crab) 
+ TLC, eletrophoresis Vibrio spp. + HPLC, GC-MS 

[7] Jania spp. (red alga) N/A Pseudomonas spp. + HPLC, GC-MS 

* MU: Mouse Units; HPLC: high-performance liquid chromatography; GC-MS: gas chromatography-mass spectrometry; TLC: thin layer chromatography;  

EMI-MS: Electrospray ionization-mass spectrometry; ELISA: enzyme-linked immunosorbent assay; LC-MS: liquid chromatography-mass spectrometry; ** “+”: Denotes 

positive detection but no quantitative information given. 
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Research on terrestrial TTX-containing organisms has found limited evidence to support exogenous 

sources of TTX and endogenous production is commonly postulated. Lehman et al. [37] were unable 

to PCR amplify 16S ribosomal RNA (rRNA) genes using bacterial specific primers from toxic tissues 

of the rough skinned newt (Taricha granulosa), including the liver, gonads, and skin. Positive 

amplification was obtained from intestines; however, TTX concentrations in these tissues were 

consistently low. Additionally, when T. granulosa were induced via electrical stimulus to excrete TTX 

through their skin, TTX concentrations were found to regenerate after nine months in captivity, despite 

being maintained on a TTX-free diet [38]. Collectively these studies indicate that symbiotic bacteria 

are unlikely to be the source of TTX in this species. 

In 2009, populations of the opisthobranch Pleurobranchaea maculata (grey side-gilled sea slug; 

Family: Pleurobranchidae) from Auckland (New Zealand) were found to contain significant 

concentrations of TTX [39]. Located in shallow sub-tidal areas they are known to be opportunistic 

scavengers with diets including algae, mussels and anemone [40]. Recent studies have revealed distinct 

spatial patterns in TTX concentrations among populations with specimens from the South Island 

containing no detectable TTX [41]. It has also been suggested that the high concentrations of TTX 

measured in adults during the egg laying season (June–August) and in eggs and early larval stages, 

indicates that P. maculata utilize TTX for protection and to increase survival rates of their  

progeny [41]. In 2013, high concentrations of TTX were detected in a Platyhelminthes Stylochoplana 

species from Pilot Bay (Tauranga, New Zealand), a site where toxic P. maculata occur [42]. Similar 

seasonal trends were shown in the Stylochoplana sp. population and preliminary studies on TTX in egg 

masses suggest that the toxin could also play a protective role in this species. Salvitti et al. [42] used 

molecular techniques to probe the foregut contents of P. maculata and demonstrated that they consume 

Stylochoplana sp. However, based on the concentrations of TTX in Stylochoplana sp. and P. maculata, 

and probable growth and consumption rates it is unlikely that they are their only supply of TTX. The  

co-occurrence of these species may indicate that they are both sourcing TTX from the same dietary 

source. A microbial origin (either dietary or endosymbiotic) of TTX (or a precursor molecule) is highly 

likely, given that extensive environmental surveys of hundreds of organisms at sites with dense 

populations of highly toxic P. maculata only detected trace (<0.1 mg·kg−1) quantities of TTX in a few 

organisms [43]. 

Chau et al. [44] recently isolated a limited number (16 isolates, 9 strains) of bacteria from adult  

P. maculata and found no evidence of TTX production. Multiple researchers have suggested that 

microbial organisms may produce a precursor molecule which is then converted to TTX through a  

yet-to be identified biochemical pathway within the host organisms [25,45]. This could explain why 

TTX was not detected in P. maculata isolates previously and/or why only low concentrations have 

been shown to be produced by other bacteria. McNabb et al. [46] recently developed an LC-MS 

method to detect the carbon backbone of TTX. This method detects TTX precursor or degradation 

products that form the C9 base (2-amino-6-(hydroxymethyl)quinazolin-8-ol) of TTX under the 

reaction conditions described. The method will not detect all potential molecules related to TTX and 

will exclude some newly discovered analogues [47]. However as the C9 base reaction is the basis of 

HPLC detection this method will at least detect anything previously assigned to TTX by HPLC. This is 

the first study to utilize this method to screen bacterial isolates for the C9 base of TTX. 
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The aim of this study was to utilize standard microbiological methods, similar to those used in 

previous studies, to attempt to isolate TTX-producing bacteria from P. maculata and Stylochoplana  

sp. [16,25,48]. In 2013, three P. maculata and three Stylochoplana sp. from Pilot Bay, New Zealand 

were collected and aseptically dissected. Over 100 bacterial strains were isolated on three different 

media types under aerobic conditions. To determine the diversity of the strains a region of the 16S 

rRNA gene was PCR amplified and the products were analyzed by restriction digest analysis. 

Representatives of each unique banding pattern were sequenced, grown in batch culture and analyzed 

for the C9 base using LC-MS. Researchers have suggested that the significantly lower concentrations 

of TTX produced by isolates in vitro may be due to the lack of an “inducer” provided by either the host 

organism or associated bacterial community [5,49]. To explore the possibility that TTX is produced by 

a consortium of bacteria or influenced by host tissues, a series of broth experiments were also undertaken. 

These involved inoculating marine broth with subsamples of organs/tissue from P. maculata and 

Stylochoplana sp. and tracking TTX concentrations over a series of days. 

2. Results and Discussion 

2.1. Bacterial Isolation and Toxin Analysis 

All of the tissue samples from individual P. maculata and Stylochoplana sp. tested positive for TTX 

via LC-MS (Table 2). Tetrodotoxin concentrations in P. maculata specimens from Matakana Island were 

low when compared to those reported in populations from near-by Pilot Bay (ave. 90 mg·kg−1; [41,42]). 

The individuals were collected in May, before known peaks in TTX occur (June–August), which may 

partially explain their unusually low TTX concentrations [41]. Additionally, it is possible that the 

individuals used in this study had not consumed any Stylochoplana sp., a suggested dietary source of 

TTX for this species [42]. The concentrations detected still indicate that they may have accessed  

(or harbored) an alternative and possibly microbial source of TTX. Thus, it was deemed reasonable to 

continue isolating bacteria from these individuals. In contrast, TTX concentrations of  

Stylochoplana sp. (ave. 174 mg·kg−1) were consistently in the range of previously sampled specimens 

(ave. 380 ± 210 mg·kg−1; [42]). 

A total of 102 bacterial strains were isolated from the 5 samples (P. maculata-63; Stylochoplana 

sp.-39) and their diversity was assessed by restriction fragment length polymorphism analysis (RFLP) 

of a region of the 16S rRNA gene (Table 2). This analysis identified 28 unique strains or operation 

taxonomic units (OTUs). Sequencing of the 16S rRNA gene from a representative isolate of each OTU 

yielded 16 unique strains from P. maculata tissues and one from Stylochoplana sp. tissues. 

Phylogenetic analyses revealed that the P. maculata 16S rRNA gene sequences grouped into eight distinct 

clades representing the orders: Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, 

Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales, whereas the Stylochoplana sp. sequences 

grouped into one clade representing Vibrionales (Figure 1). One P. maculata isolate PRMR011, grouped 

phylogenetically with the isolates from Stylochoplana sp. Chau et al. [44] sequenced the 16S rRNA gene 

from ten different bacterial strains isolated from the tissues of adult P. maculata collected from 

Narrow Neck Beach (Auckland, New Zealand). Their sequences grouped into two different clades 

representing the orders Alteromonadales and Vibrionales (shown in red—Figure 1). In this study, 
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strains representing an additional seven clades have been isolated. These differences could possibly be 

due to the individuals having been collected from different geographic locations, or having consumed a 

different dietary source prior to sampling, and further sampling and bacterial isolation efforts from multiple 

populations are required to establish the degree of variability in microbial consortiums among sites. 

Table 2. Concentrations (mg·kg−1) of tetrodotoxin (TTX) and number of bacterial strains 

isolated from pooled (n = 3) tissues samples of Pleurobranchaea maculata and 

Stylochoplana sp. collected 7 May 2013 from Matakana Island (M.I.) and Pilot Bay (P.B), 

New Zealand, and TTX concentrations in pooled samples of P. maculata tissue used for 

broth experiments collected from Illiomama Rock (I.R) (Auckland), New Zealand 

collected 28 September 2011. 

Sample Location TTX (mg·kg−1) Bacterial Strains 

P. maculata; digestive M.I. 2 16 

P. maculata; gonad M.I. 5 3 

P. maculata; mantle M.I. 7 21 

P. maculata; “rest” M.I. 8 23 

Stylochoplana sp. M.I., P.B. 174 39 

P. maculata; digestive I.R. 771 - 

P. maculata; gonad I.R. 136 - 

P. maculata; mantle I.R. 97 - 

Although many bacteria isolated grew from the Stylochoplana sp. inoculum, the molecular analysis 

showed that the diversity was very low (only one strain). This may indicate that this bacterial species 

(Vibro sp.) is very abundant, or alternatively that other bacterial strains could not grow on the media 

used in this study, possibly due to an antimicrobial interaction. Pryosequencing could be used to help 

elucidate the total bacterial diversity within this organism. The Vibro sp. strain isolated from 

Stylochoplana sp. was also detected in P. maculata, and although no TTX was identified, strains found 

in both species may be good candidates for further investigation. 

To date, eleven studies have isolated a TTX-producing Vibrio sp. [11–13,15,17,25,29,31,34,35,50] 

making this the most common genera to be associated with TTX production. Other common groups 

associated with TTX production include Bacillus spp. [12,18,19,22,27,29,51], Pseudomonas  

spp. [7,11,12,36], Aeromonas spp. [11,16,29], and Alteromonas spp. [12,29]. Although representatives 

of three of these genera were isolated in this study, phylogenetic comparisons are challenging as only 

four previous studies that have attempted to isolate TTX-producing bacteria have undertaken any 

molecular analysis and submitted these data to public databases [15,26,44,51]. 
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Figure 1. Neighbor-joining phylogenetic tree of 16S rRNA gene sequences of isolates  

from this study and related bacteria. Isolates from different organisms are color coded as 

follows: green = Stylochoplana sp., blue = Pleurobranchaea maculata (this study),  

red = P. maculata [44]. (Bootstrap values < 70 are omitted). 
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To date, the majority of studies describing TTX-producing bacteria have only provided positive 

detection of toxin from isolated strains, without measuring quantitative concentrations of TTX 

produced (Table 1). Of those that have provided quantitative concentrations, strains have been shown 

to produce very low TTX concentrations compared to host organisms. For example, Wu et al. [18,19] 

isolated TTX-producing bacterial strains from the tissues of pufferfish Fugu rubripes including the 

ovaries (120 MU·g−1), liver (78.5 MU·g−1) and intestines (36.2 MU·g−1). In contrast, the toxicity 

concentrations in bacterial isolates were only 0.1–1.6 MU·g−1 of cells. Researchers have suggested that 

the relatively low concentrations of TTX-producing bacterium are due to the altered conditions when 

grown in vitro or, alternatively, that strains are providing hosts with TTX precursors. Thus, in this study 

we tested bacterial strains for the C9 base of TTX using the methods described in McNabb et al. [46]  

as it may detect TTX precursors or degradation products. It also has the additional benefit of greater 

sensitivity with the limit of detection. ca. 0.1 mg·kg−1 compared to the standard TTX LC-MS-based 

method used by our research group of. ca. 0.5 mg·kg−1 [39]. Despite the additional benefits and 

sensitivity of this method no C9 base was detected in any samples (data not shown). 

2.2. Bacterial Community Analysis 

The P. maculata used to initiate the broth experiments all contained TTX although the 

concentrations varied considerably (Table 2). One limitation of this experiment is that specimens were 

maintained in aquarium for up to five days prior to dissection and inoculation of the broths. It is 

possible that TTX-producing bacteria may have expired or been expelled during this period. However, 

given the considerable concentration of TTX in the individuals (Table 1), we suggest that any  

TTX-producers would have been present in high concentration, and therefore it is unlikely that there 

would be none remaining. These samples were pooled by tissues type prior to initiation of the broth 

experiments. Marine broth samples from day 0 had trace levels of TTX (data not shown). No TTX was 

detected in the day 3, 6, and 10 samples. The multidimensional scaling (MDS) analysis of the bacterial 

communities as determined using ARISA showed a 40% similarity between those samples taken in the 

first four days indicating limited change in the community structure and abundance of each strain 

among those time points (Figure 2). By day 4 the broths all contained dense bacterial assemblages  

(as determined by the cloudy nature of the broth), thus, if a TTX- producing bacterium were present in 

the intimal inoculum it should have had sufficient time to produce toxins before possibly being 

outcompeted by other bacteria within the community. 

Using standard microbiological methods, and very similar media and conditions to studies 

describing the successful isolation of many TTX producing bacteria no TTX-producing isolates were 

identified from either Stylochoplana sp. or P. maculata in this study. By using a new method that 

detects the C9 base of TTX, we had anticipated that the possibility of detecting precursor or 

degradation molecules would be increased, however, none were detected. The biosynthetic pathway of 

TTX is unknown, thus it is possible that not all precursors would be detected via this method. Another 

possibility is that an “unculturable” bacterium might produce TTX. Many studies have now shown that 

less than 1% of bacteria within a particular community are culturable [52]. However, based on 

previously published research (Table 1), many of the TTX-producing strains are genera which can be 

easily cultured. Strains isolated in this study fall into four of these genera, yet no C9 base of TTX was 
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detected in any of the isolates, or microbial communities, suggesting that further efforts to isolate  

TTX-producing bacterium might not be warranted. Among this literature extensive culturing efforts are not 

reported (i.e., generally less than 50 strains are isolated) to identify a TTX-producer and there are few 

[to our knowledge one; 44] that report unsuccessful attempts to isolate TTX-producing strains. 

 

Figure 2. Two-dimensional non-metric multidimensional scaling ordination based on 

Bray-Curtis similarities of Automated Ribosomal Intergenic Spacer Analysis (ARISA) 

fingerprints of bacterial communities at different time points in broth experiments  

(stress = 0.1). ▲ 0 days, ▼ day 1,  day 2,  day 3, ● day 4, + day 6, × day 8,  day 10, 

∆ day 12, day 14. Points enclosed by solid line cluster at 40% similarity. 

3. Experimental Section 

3.1. Bacterial Strain Isolation 

3.1.1. Collection and Strain Isolation 

Collections took place (7 May 2013) from two sites in Tauranga Harbor, New Zealand. Three  

P. maculata and two Stylochoplana sp. were collected by divers from Matakana Island (37°38'38" S, 

176°8'55" E) and an additional Stylochoplana sp. specimen from Pilot Bay (37°63'5'' S, 176°17'6'' E). 

Specimens were transported to the laboratory in insulated containers and placed in aerated aquaria 

overnight before being rinsed with deionized water. Pleurobranchaea maculata were aseptically 

dissected and separated in to four tissue types; gonad, digestive organs, mantle and remaining tissues 

(“rest”). Each of the four tissue types from the three individuals were combined and homogenized to 

give four samples. The three Stylochoplana sp. specimens were combined and homogenized into one 

sample. Subsamples from each were frozen (−20 °C) for later toxin analysis. Aliquots of the five 

combined samples were diluted 1:10 (w/v) in marine broth (Difco), manually homogenized using a 

glass pestle, and centrifuged (1000× g, 1 min). The supernatant was then diluted (100, 1000, and 

10,000 fold) and 50 μL aliquots were used to inoculate three types of agar which have previously been 

 

▽   
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used to isolate TTX-producing bacteria; marine agar 2216 (Difco), Thiosulfate Citrate Bile Salts 

Sucrose TCBS agar (Difco), and Ocean Research Institute (ORI) agar [10,53]. Agar plates were placed 

in an incubator (ca. 20 °C) and grown for up to nine days. Multiple representatives of individual 

colonies that differed in morphology were selected. To ensure that each culture was comprised of a 

single strain, each was streaked again onto marine agar 2216 (Difco) and grown for 2–3 days at 27 °C. 

Single colonies were collected, grown overnight (27 °C) in marine broth 2216 (Difco), and stored 

frozen (−20 °C) after being split into two tubes with the following treatments; (1) preserved with 15% 

sterile glycerol and stored at −80 °C for later culturing, and (2) centrifuged (10,000× g, 10 min) with 

the supernatant removed for later DNA extraction. 

3.1.2. Molecular and Phylogenetic Analysis of Bacterial Strains 

DNA was extracted from bacterial pellets using a prepGEM® DNA Bacterial Extraction Kit 

(Zygem, Hamilton, New Zealand) according to the manufactures instructions. The PCR of bacterial 

16S rRNA genes was performed using the primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 

1518R (5'-AAGGAGGTGATCCANCCRCA-3'). Reactions were carried out in 25 µL volumes with 

the reaction mixture containing; 2.5 µL of 10×PCR buffer (Invitrogen, Waltham, MA, USA), 1.3 mM 

MgCl2 (Invitrogen, USA), 0.2 mM (each) de-oxynucleoside triphosphate (Bioline, Taunton, MA, 

USA), 0.02 mg·mL−1 bovine serum albumin (BSA, Sigma, St. Louis, MO, USA), 0.25 μM of each 

primer (IDT, San Diego, CA, USA), 0.04 U of Platinum Taq DNA polymerase (Invitrogen, USA), and 

20–30 ng of template DNA. The reaction mixture was held at 94 °C for 2 min followed by 30 cycles of 

94 °C for 20 s, 57 °C for 20 s, 72 °C for 1 min, with a final extension of 72 °C for 7 min. The resulting 

PCR products were screened by restriction fragment length polymorphism (RFLP) patterns generated 

using the restriction endonuclease HaeIII (as per the manufactures instructions) and based on their 

banding patterns grouped into operational taxonomic units (OTUs). One representative of each OTU 

was sequenced using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, 

Waltham, MA, USA) on a ABI3100 (Applied Biosystems, Waltham, MA, USA) using the 27F primer. 

Sequences obtained in this study were deposited in the NCBI GenBank database under accession 

numbers KJ995704 to KJ995726. Phylogenetic analysis of isolates was conducted by aligning their 

sequences, and those from Rocky et al. [44], to closely matching sequences from the Greengenes [54] 

database of bacterial 16S sequences using ARB [55]. Aligned sequences were 399 bp in length and all 

gaps and ambiguities were excluded from the alignment to ensure reliability. Phylogenetic inferences 

were made using the PHYLIP package [56]. Pairwise evolutionary distances were computed from 

percent similarities by the correction of Jukes and Cantor [57] and the phylogenetic tree was 

constructed by the Neighbor-joining method [58]. The support for each node was determined by 

assembling a consensus tree of 1000 bootstrap replicates. 

3.1.3. Bacterial Culturing 

One representative of each unique bacterial strain (as identified using RFLP) was retrieved from the 

cryopreserved stocks, inoculated into marine broth (400 mL) and grown at 30 °C with shaking  

(110 rpm) for 4 days. Cultures were centrifuged (6000× g, 20 min) and the supernatant removed and 

the pellets frozen (−20 °C) for later C9 analysis (Section 3.3). 
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3.2. Bacterial Community Broth Experiments 

3.2.1. Collection and Inoculation 

Three P. maculata were collected by divers (28 September 2011) from Illiomama Rock 

(36°48'44"S, 174°52'48"E), Auckland Bay, New Zealand. The specimens were transported to the 

laboratory in insulated containers and placed in aquaria for five days. Pleurobranchaea maculata were 

aseptically dissected and separated into three tissue types; gonad, digestive organs and mantle. Each of 

the three tissue types from the three individuals were combined, homogenized (1 min, Heidolph Diax 

600 Homogenizer, Heidolph, Germany) and diluted 1:10 (w/v) in marine broth (Difco). Samples were 

then homogenized (1 min, Heidolph Diax 600 Homogeniser) to ensure that bacteria from the tissues 

were dispersed throughout the media, and then centrifuged (1000× g, 1 min) to prevent tissue being 

inoculated into the broths. Aliquots (200 μL) of each supernatant were added to separate 1-L marine 

broth (Difco) in Erlenmeyer flasks. Three control flasks were used. A second contained marine broth 

spiked with TTX (Tocris Bioscience, Cat. No: 1078) at a final concentration of 6.9 μg·mL−1 (to ensure 

that there was no TTX degradation over the experimental period). This concentration was chosen as it 

could easily be detected allowing changes in TTX to be monitored throughout the experiment. A final 

control consisting of marine broth, mantle tissue supernatant and sodium azide (0.02% final volume w/v) 

was used to ensure that any increase in TTX was not due to TTX-unbinding from tissue, or a similar 

scenario causing an increase in toxins. Flasks were placed in a thermally controlled shaker (120 rpm) 

set approximately at 25 °C. Sub-samples for TTX analysis (30 mL) and DNA extraction (1 mL) were 

collected on day 0, 1, 2, 3, 4, 6, 8, 10, 12, and 14. These were centrifuged (3000× g, 10 min) and the 

supernatant removed before the remaining pellets were stored frozen (−20 °C) for later TTX and 

molecular analysis. 

3.2.2. Molecular Analysis 

DNA was extracted from the broth experiment pellets using hexadecyl trimethyl-ammonium 

bromide (commonly known as the CTAB method) as described in Barrett et al. [59]. Automated rRNA 

intergenic spacer analysis (ARISA) is a PCR-based method that exploits the length heterogeneity of 

the intergenic spacer region (ITS) between the 16S and 23S ribosomal genes. Total community DNA 

is amplified with a fluorescently labeled forward oligonucleotide, allowing the electrophoretic step to 

be performed with an automated system in which a laser detects the fluorescent PCR fragments, 

providing a “finger-print” of the bacterial community in each sample. In this study, ARISA was used 

to track shifts in bacterial community structure throughout the broth experiments, with the aim of 

determining if these were associated with changes in TTX concentrations. Polymerase chain reactions for 

ARISA were preformed using the reaction mixture described above and the bacterial primers ITSF and 

ITSReub from Cardinale et al. [60]. Reactions were run on an DNAEngine® Peltier thermal cycler 

(Biorad, Hercules, CA, USA) with the following cycling parameters: 94 °C for 2 min, 30 cycles of  

94 °C for 45 sec, 55 °C for 60 sec, 72 °C for 2 min, and a final extension of 72 °C for 7 min. PCR 

products were visualized on 1% agarose gel and then diluted 20 fold using Milli-Q water. Intergenic 

spacer fragments were run on an ABI 3130 xI sequencer (PE Applied Biosystems, Foster City, CA, USA) 

employing the GeneScan mode at 15 kV for a run time of 45 min according to the manufacturer’s 
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manual. The internal GS1200LIZ Zy Standard (0.25 µL; PE Applied Biosystems) was added to each 

sample to determine the size of fluorescently labelled fragments during analysis. PeakScanner™ 

software v1.0 (PE Applied Biosystems) and an in-house pipeline modified from Abdo et al. [61] 

written using Python 2.7.1 (Python Software Foundation) and R [62] were used to process ARISA 

profiles. Electropherogram analysis included all peaks that made up 0.1% of the entire signal,  

were between 100 and 1200 base pairs, and were over 30 relative fluorescence units. Peaks were 

binned to the nearest 1 base pair. ARISA fluorescence intensities data were log transformed and 

analyzed with the PRIMER 6 software package (PRIMER-E, Ltd., Plymouth, UK) using nonmetric 

multidimensional scaling (MDS) based on Bray-Curtis similarities conducted with 100 random 

restarts. Results and agglomerative hierarchical clustering of similarities, executed using the 

CLUSTER function, were plotted onto two-dimensional plots. 

3.3. Tetrodotoxin and C9 Analysis 

Tissue samples from P. maculata, Stylochoplana sp., and pellets from broth aliquots from day 0, 3, 

6, 8, and 10 were extracted using a slightly modified method from McNabb et al. [39]. Milli-Q water 

containing 0.1% acetic acid was added on a 1:10 w/v basis to sub-samples of tissue or cell pellet and 

homogenized (for tissue; Heidolph Diax 600 Homogeniser; Heidolph, Germany) or sonicated (for cell 

pellet; Misonix XL2020, Misonix Inc., Farmingdale, NY, USA). Samples were centrifuged (3000× g, 

10 min) and an aliquot of the supernatant (1 mL) transferred into 9 mL of 100% methanol containing 

0.1% acetic acid and placed at −20 °C for at least 1 h. After freezing, samples were centrifuged  

(3000× g, 10 min) and diluted 1:4 with 100% methanol containing 0.1% acetic acid. Samples were 

analyzed for TTX using LC-MS as described in McNabb et al. [39]. 

Frozen bacterial isolate pellets for testing for the C9 base were extracted using methods from  

McNabb et al. [46]. Briefly, Milli-Q water with 0.1% acetic acid was added to. ca. 1.0 g pellet on a 

1:10 w/v basis. Samples were then homogenized using a sonicator (Heidolph Diax 600 Homogeniser; 

Heidolph, Germany) set at level 4 for 30 s and centrifuged (3000× g, 5 min). Supernatant was 

transferred to a new tube and sodium hydroxide was added to a final concentration of 1 M. Tubes were 

then placed in a boiling water bath (45 min), cooled, and neutralized with concentrated acetic acid to 

pH 4–6. Samples were purified and concentrated using an SPE cartridge (Phenomonex StrataX;  

60 mg 3 mL−1). These were conditioned with methanol (MeOH, 100%; 3 mL) followed by 50 mM 

ammonium acetate (3 mL). After samples were loaded, the filter was washed with 50 mM ammonium 

acetate (3 mL), followed by 5% MeOH in 50 mM ammonium acetate (3 mL). Samples were eluted  

(3 mL) using of 30% MeOH containing 1% formic acid, and tested for the C9 base via LC-MS as 

described in McNabb et al. [46]. 

4. Conclusions 

This study used a recently developed highly sensitive LC-MS based method to attempt to identify 

the C9 base or TTX precursor/degradation products in bacterial strains isolated from toxic P. maculata 

and Stylochoplana sp. A total of 102 strains were isolated and sequencing of the 16S rRNA gene from 

a representative isolate of each OTU yielded 16 unique strains from P. maculata tissues and one from 

Stylochoplana sp. tissues. Despite these intensive culturing efforts, newly developed extremely 
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sensitive TTX detection capabilities, and an experiment where we investigated whether a consortium 

of bacteria from P. maculata could produce TTX, no evidence was found to support a bacterial origin 

of TTX in P. maculata or Stylochoplana sp. 
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