Supplementary Materials: Venom of Parasitoid Pteromalus puparum Impairs Host Humoral Antimicrobial Activity by Decreasing Host Cecropin and Lysozyme Gene Expression

Qi Fang, Bei-Bei Wang, Xin-Hai Ye, Fei Wang and Gong-Yin Ye

Abstract

(A) cgcgggaccattcaacaagcagcacgcttcacaagttgttagtgacaaaggaagaaagaaaaataaaaaATGAAT [M N TTCGGAAAATTGTTTTTGTTCGTCTTCGCATGTGTCTTGGCTITGAGCTCGGTGTCGGCGGCGCCAAAATGGAAG F G K L F L F V F A C V L A L S S V S A A P] K K K ATTTTCAAGAAAATTGAACATATGGGCCAAAACATTCGTGATGGTCTCATTAAAGCTGGTCCGGCAGTTCAGGTA I F K K I E H M G Q N I R D G L I K A G P A V \quad R V GTAGGCCAAGCTGCCACCATCTATAAAGGAAAATAGaaaagctagaatttcagctagaagccataccattaacgg $V G \quad Q \quad A \quad A \quad I \quad Y \quad K \quad K \quad$ * ttatttgaattaagaatccaagaccaaaccttctgatacaaatattatcaattcaatcggaaaaaaactaatgta cctatatctgacattactttagaaaatattaactttcgcaaccacctacattttgtatcactgccgctactcttt gttattcccaatcattgactcataatttgctgaaatatagaaaagcctgtataccaataatcatgacgagcgatt atgctattctgatggaaatgctggaatttcctactatctattattgaaataggctttacgcagcaagcctgcaga atgtttaaactatctctactcttgagtttggttattggttctattgtaattatttactctgtacttactgcctca aatacccgaattaatttatttgcttattaagatattaggattatttggtaataaatatttaagacgaaaaaaa aaaaaaaaaaaaa

(B)

Figure S1. Nucleotide and deduced amino acid sequences of the Pr-cec gene. (A) Pr-cec cDNA (above) and amino acid (below) sequences are shown with a predicted signal peptide (shown in a pair of brackets), and the predicted cleavage site is indicated by a black triangle. Positively charged amino acid residues, arginine (K) and lysine (R), which bind to the negatively charged bacterial cell membrane, are shaded. Polyadenylation signal sequence is double underlined. Initial and stop codons are single underlined. (B) Multiple comparison of the amino acid sequence of Pr-cec with typical lepidopteran cecropin precursors (containing the signal peptide of each cecropin). The sequences that were used are listed in Supplementary Table S1. The boxes with the same color indicate the same amino acid residues in those species. Spots indicate gaps to optimize the sequence alignment. The target sequence is boxed in red and is the same in the other supplementary figures.

Figure S2. Phylogenetic analysis between Pr-cec and other cecropins. Construction was performed based on homology sequences that were calculated from the complete amino acid sequences of cecropin (cec) using the UPGMA method. Sequences were selected from NCBI databases (listed in Supplementary Table S1), and the sequence of the nematode Ascaris cecropins (AscecP1-4) was used as the out-group. The values in the tree are bootstrap support values.

Abstract

(A)

1 gcggggatacgcctttggtcaagagtagagaacacaactATGAAGTTAGCAGTATTCATTTTTGCACTTGCTGCT 76 CTGTTCGGAGCAGAAGCCGTTACGTTTACAAGATGCCAATTGGTGCGCGAATTAAGGAATCAAGGCTTTCCAGAA L F G A E A]IV T F T R C Q L V R E L R N Q G F P E 151 ACTAAAATGAGAGATTGGGTATGTCTCGTTGAAAACGAGAGTAGCCATAACACAGCCAAAGTGGGAAAAGTGAAC T K M R D W V C L V E N E S S H N T A K V G K V N 226 AAGAATGGTTCCAGAGACTACGGTCTCTTCCAGATCAACGACAAGTACTGGTGCAGCAATACTAACACTGCCGGA K N G S R D Y G L F Q I N D K Y W C S N T N T A G 301 AAAGACTGCAATGTCACATGTGCGCAGGTGACAACGGACGACATCACAAAAGCTGCAACCTGTGCTAAAAAGATC K D C N V T C A Q V T T D D I T K A A T C A K K I 376 TTTAAGCGCCATGGATTCAATGCTTGGTATGGTTGGAAGAACCACTGCCAAGGCTCTCTCCCTGACATAAGTTCT F K R H G F N A W Y G W K N H C O G S L P D I S S 451 TGTTAAaagctctactctagttaaacaatattatataaaacactacgatcctatacagaatattgtgaaataata C.*

526 tatctatgtaattagttatttcacaaatgttctcaaataaaaataattaaatccaaaaaaaaaaaaaaaaa

(B)

Figure S3. Nucleotide and deduced amino acid sequences of the Pr-lys gene. (A) Pr-lys cDNA (above) and amino acid (below) sequences are shown with a predicted signal peptide (shown in a pair of brackets), and the predicted cleavage site is indicated by a black triangle. The polyadenylation signal sequence is doubly underlined. Initial and stop codons are single underlined. (B) Multiple comparison of the amino acid sequence of Pr-lys with typical lepidopteran lysozyme precursors (containing the signal peptide of each lysozyme). The sequences that were used are listed in Supplementary Table S1. The boxes with the same color indicate the same amino acid residues in those species. Spots indicate gaps to optimize the sequence alignment.

Figure S4. Phylogenetic analysis between Pr-lys and other lysozymes. Construction was performed based on homology sequences that were calculated from the complete amino acid sequences of lysozyme (lys) using the UPGMA method. Sequences were selected from NCBI databases (listed in Supplementary Table S1). The sequence of the lysozyme of Gallus gallus (Chicken) (Gg-lys) was used as the out-group. The values in the tree are bootstrap support values.

Table S1. Deduced amino acid sequences of cecropin and lysozyme, which were used in the multiple sequences alignments and phylogenetic tree constructions.

Sequences of Cecropin					
Name	Accession No.	Species	Name	Accession No.	Species
Pr-cec	-	Pieris rapae	Bm-cecCBM1	NP_001037030	Bombyx mori
Ar-hinII	AAT94287	Artogeia rapae	Bm-cecCBM2	NP_001037031	Bombyx mori
As-cecP1	BAD89085	Ascaris suum	Bm-cecCBM2-2	NP_001037032	Bombyx mori
As-cecP2	BAD89086	Ascaris suum	Bm-cecD	NP_001036833	Bombyx mori
As-cecP3	BAD89091	Ascaris suum	Bm-cecE	NP_001037392	Bombyx mori
As-cecP4	BAD89092	Ascaris suum	Dm-cecA1	NP_524588	Drosophila melanogaster
Bm-cecA	NP_001037462	Bombyx mori	Dm-cecA2	NP_524589	Drosophila melanogaster
Bm-cecB	NP_001037460	Bombyx mori	Dm-cecB	BAA28722	Drosophila melanogaster
Hce-cecA	P01507	Hyalophora cecropia	Dm-cecC	AAB82507	Drosophila melanogaster
Hce-cecB	P01508	Hyalophora cecropia	Md-cec1	AAL08023	Musca domestica
Hce-cecD	P01510	Hyalophora cecropia	Ms-cec6	CAL25128	Manduca sexta
Tn-cecA	P50724	Trichoplusia ni	Pi-cecA	AAR99379	Pseudoplusia includens
Tn-cecB	ABV68872	Trichoplusia ni	Px-cecA	BAF64473	Plutella xylostella
Tn-cecD	ABV68873	Trichoplusia ni	Px-cecE	BAF36816	Plutella xylostella
Hcu-cecA	P50720	Hyphantria cunea	Hcu-cecA2	P50722	Hyphantria cunea
Hcu-cecA1	P50721	Hyphantria cunea	Hcu-cecA3	P50723	Hyphantria cunea
На-cec	AAX51304	Helicoverpa armigera	-	-	-
Sequences of lysozyme					
Name	Accession No.	Species	Name	Accession No.	Species
Pr-lys	-	Pieris rapae	Ha-lys	ABF51015	Helicoverpa armigera
Hcu-lys	AAA84747	Hyphantria cunea	Ac-lys	AAN87265	Agrius convolvuli
Ct-lys	ACJ64375	Culex tarsalis	Aae-lys	AAU09087	Aedes aegypti
Ag-lys	AAC47326	Anopheles gambiae	Hz -lys pre	ACL51928	Helicoverpa zea
Ap-lys	ABC73705	Antheraea pernyi	Hce-lys	P05105	Hyalophora cecropia
Ar-lysII	AAT94286	Artogeia rapae	Hv-lys	AAD00078	Heliothis virescens
Bm-lys	NP_001037448	Bombyx mori	Ms-lys	AAB31190	Manduca sexta
Gg-lys	NP_990612	Gallus gallus (Chicken)	Of-lys pre	ABN54797	Ostrinia furnacalis
Cq-lys	XP_001847112	Culex quinquefasciatus	Pi-lys	AAS48094	Pseudoplusia includens
Aal-lys	AAM11885	Aedes albopictus	Scr-lys	BAB20806	Samia cynthia ricini
Ag-lys c-2	AAT51797	Anopheles gambiae	Se-lys	AAP03061	Spodoptera exigua
Ag-lys c-8	AAY21241	Anopheles gambiae	Sl-lys	ACI16106	Spodoptera litura
As-sal lys	AAO74844	Anopheles stephensi	Aal-sal lys	AAV90643	Aedes albopictus
Ad-lys	ACI30031	Anopheles darlingi	Ag-lys c-3	AAT51798	Anopheles gambiae
Ag-lys c-1	AAY24699	Anopheles gambiae	-	-	-

