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Abstract

:

Spiders and scorpions are notorious for their fearful dispositions and their ability to inject venom into prey and predators, causing symptoms such as necrosis, paralysis, and excruciating pain. Information on venom composition and the toxins present in these species is growing due to an interest in using bioactive toxins from spiders and scorpions for drug discovery purposes and for solving crystal structures of membrane-embedded receptors. Additionally, the identification and isolation of a myriad of spider and scorpion toxins has allowed research within next generation antivenoms to progress at an increasingly faster pace. In this review, the current knowledge of spider and scorpion venoms is presented, followed by a discussion of all published biotechnological efforts within development of spider and scorpion antitoxins based on small molecules, antibodies and fragments thereof, and next generation immunization strategies. The increasing number of discovery and development efforts within this field may point towards an upcoming transition from serum-based antivenoms towards therapeutic solutions based on modern biotechnology.
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1. Introduction


Scorpion stings and spider bites are a major public health concern in developing parts of the world, yet envenomation from these creatures still remains a neglected tropical disease [1]. Scorpionism affects people in Northern Africa, the Middle East, Central and South America, and to some extent India [2,3]. In comparison, spider bites mainly affect people in the Americas, Australia, and Africa [4], although bites are also known to occur in Europe [5]. In the scorpion order, nearly 2000 species are recognized [3], which is significantly less than the 44,000 recognized spider species [6]. Fortunately, only a subset of these species are of medical relevance, with the members of the Buthidae family (including bark scorpions and fat-tailed scorpions), Latrodectus genus (widow spiders) and Loxosceles genus (recluse spiders) being the main species with venom that may cause harm to humans [6,7].



Scorpions are considered the second most dangerous venomous animals to humans (after snakes), and their stings mainly affect children and adolescents [6]. Effective treatment against envenomings from the most venomous scorpions and spiders consists of parental administration of animal-derived antisera by medically trained personnel. Currently, there are 19 antivenoms for human use and one antivenom for animal use on the market for scorpion stings, whereas only 10 antivenoms are used clinically for the treatment of spider bites (see Table 1 and Table 2, respectively). All of these antivenoms are of equine origin, and although they are effective in neutralizing scorpion and spider venoms, such animal-derived antisera suffer from significant drawbacks due to the heterologous nature of the proteins present in the antisera, which may elicit both early and late adverse reactions in human recipients [8,9]. Additionally, only a subset of the antibodies or antibody fragments present in these antivenoms have a therapeutic value since the presence of non-toxic immunogens in the venoms used for immunization may elicit therapeutically irrelevant antibodies in the immunized animal. This was demonstrated by Pucca et al., who showed that only 1%–2.5% of antibodies in equine scorpion antivenoms were able to neutralize important venom toxins [10]. Since scorpion and spider antivenoms are derived from animal serum, individual differences in the immune responses of the production animals may give rise to batch-to-batch variation [11]. Finally, due to the very minute amounts of venom that can be extracted from scorpions and spiders, production of antisera against scorpion stings and spider bites is dependent on a highly laborious venom collection process, where large numbers of spiders and scorpions need to be milked (under microscope for spiders) in order to procure enough venom for immunization [12]. These challenges warrant technological innovation, not only to obtain safer and more effective antivenoms, but also to establish more sustainable productions processes that are independent of both venoms and animals [9].



This review presents the different biotechnological trends in the development of next generation scorpion and spider antivenoms. Initially, focus will be directed towards the growing body of data on spider and scorpion toxins and proteomes, which may be harnessed for developing either recombinant or synthetic antivenoms. A comprehensive overview of the use of immunization strategies is beyond the scope of the paper, and can be found elsewhere [2]. However, the use of recombinant and synthetic toxins obtained through the use of biotechnological approaches is discussed, as well as the potential for including small molecules in future spider and scorpion antivenoms.




2. Current Knowledge of Toxins and Venom Proteomes


Both scorpion and spider venoms contain a range of different non-enzymatic and enzymatic toxins [39,40]. The main toxic effects of scorpion venoms are in general derived from the inhibitory actions of neurotoxins, whereas the effects of most described spider venoms originate from both enzymatic toxins and neurotoxins. The most prominent components in spider venoms are enzymatic sphingomyelinases, hyaluronidases, phospholipases, metalloproteases, serine proteases and neurotoxins [39]. Scorpion venoms on the other hand mainly consist of neurotoxins (of which particularly sodium and potassium channel targeting neurotoxins are prevalent) as well as enzymatic proteins, such as hyaluronidases and phospholipases [3], protease inhibitors, and small molecules such as histamine and serotonin [3].



Due to the very large number of spider and scorpion species, the toxin arsenal from these venomous creatures is enormous and, to a large extent, unexplored. Based on the number of species it is estimated that about 10 million spider toxins and about 100,000 scorpion toxins may exist [40]. These high theoretical numbers will naturally comprise orthologs with greater or lesser degree of sequence identity. The scorpion Mesobuthus martensii (Manchurian scorpion), whose genome has been sequenced, may express products from 116 neurotoxin genes, which mainly contain toxins from four groups [41]. Based on a hierarchical clustering analysis, 17 clusters with very similar toxins (closely resembling sub-family classification of the proteins) were identified within the 116 genes [41]. Taking these findings and the fact that different species can possess very similar toxins, an adjusted rough estimate of the number of distinct scorpion toxin sub-families is in the order of 100–1000. Given the much higher diversity within venomous spider families, the corresponding number of distinct spider toxin sub-families is likely to be one or more orders of magnitude higher.



As of 13 June 2016, 1483 spider toxins and 949 scorpion toxins are annotated in the UniProtKB database [42]. The vast majority of these toxins are derived from medically relevant species, possibly leaving an enormous arsenal of bioactive venom components unexplored. Although much of the exploration of spider and scorpion toxins has been triggered by an interest in using toxins for drug discovery [43] and exploring crystal structures of receptors (see e.g., [44]), this pool of structural and bioinformatics data serves as an excellent foundation for developing modern antivenoms, as several important families of toxins are represented with a significant number of entries.



Our investigation shows that the majority (774 toxins) of annotated scorpion toxins (949 toxins) can be found primarily within a single scorpion family (Buthidae) and belongs to a very limited number of protein families (Figure 1B). The annotated toxins from spider venoms are more diverse both in terms of protein family and taxonomic relationship (see Figure 1A). Four spider families, namely Theraphosidae, Lycosidae, Sicariidae, and Ctenidae, are responsible for 1157 of the 1483 annotated spider toxins. The high density of annotated scorpion toxins deriving from venoms of the Buthidae family correlates with the fact that these scorpions are considered to be the most dangerous to human health among all scorpion families [2]. In contrast, the multitude of families from which annotated spider toxins originate may indicate that most studies on spider venoms have focused on finding novel toxins that may be used for drug discovery, and not on critical toxins in an envenoming case.



Deeper investigation of the UniProtKB annotated toxin dataset reveals that only 100 species of spiders and 77 scorpions contribute to the UniProtKB annotated toxin dataset. The majority of these species contribute with five or fewer toxins, indicating that only the most abundant toxins in these venoms have been characterized. The spider species with most annotated toxins are Haplopelma hainanum (Chinese bird spider) with 292 toxin entries, Lycosa singoriensis (Wolf spider) with 222 toxin entries, and Chilobrachys guangxiensis (Chinese earth tiger tarantula) with 104 toxin entries. The corresponding top 3 contributors for scorpions are Mesobuthus martensii (Manchurian scorpion) with 106 toxin entries (the only scorpion for which the genome is also available) [41], Lychas mucronatus (Chinese swimming scorpion) with 89 toxin entries, and Leiurus quinquestriatus (Egyptian scorpion) with 45 toxin entries. These numbers are likely to reflect the venom complexity of the class of creatures in general. However, the presence of a large number of entries does not necessarily indicate that the venom from a given species or the individual toxins are important from a medical point of view.



The alternative and more holistic venomics approach, aiming at constructing overviews of venom compositions on the protein family level, complements the studies of isolated toxins and may help elucidate the medical importance of different venom components. Venomics studies help generate knowledge of the abundance, toxicity, and sequence data for key toxin families, which may be harnessed for development of new cross-reacting antitoxins targeting shared features and functionalities of the toxins [45,46]. As a result of the scarcity of venoms as well as previous limitations on resolution and resolving power of separation and detection techniques, only a limited number of venomics studies determining toxin identity and abundance have been carried out [40]. A number of studies involving proteomics and/or transcriptomics have been performed for both spiders and scorpions, respectively (Table 3 and Table 4). As can be deduced from the tables, this number has been growing with increasing speed in recent years, indicating a rising interest in toxin bioactivity and venom compositions. For spiders, the main contributing species to these studies are found in the genus Phoneutria (wandering spiders, Ctenidae family) with ten proteomics and transcriptomics studies (see Table 3). For scorpions, the number of proteomics and transcriptomics studies (18) performed on members of the genus Tityus from the Buthidae family dwarfs the number of studies performed on any other genus, signifying scientific interest and indicating the importance of this genus to human health [47] (see Table 4).



Verano-Braga and coworkers provide an excellent example of a venomics study performed on the venom of Tityus serrulatus, in which they were able to detect the presence of 147 different proteins [111]. In terms of abundance, neurotoxins targeting sodium and potassium channels comprised 23% of the venom, while enzymatic toxins were responsible for 32% of the protein content of the venom [111]. In another study, performed by Ma et al. on the venom of Heterometrus petersii, 22 protein families were detected by a combined transcriptomics and proteomics approach [122], indicating high diversity in scorpion venoms. In comparison, the venom of the African Citharischius crawshayi (King baboon spider) was also analyzed by a venomics approach. Here, the venom was determined to be dominated by peptides in the 3–6 kDa (58%) range, followed by lower molecular weight components in the 1–3 kDa (29%) range [71], suggesting that the effects of this venom are possibly derived from smaller inhibitory toxins. A final example of a tour-de-force in proteomics is provided by Palagi and coworkers, who investigated 18 venom samples from Australian funnel-web spiders (Hexathelidae family). They detected an average of about 800 peptidic compounds in female spider venoms and approximately 400 peptidic compounds in male spider venoms with significant inter- and intra-species variation in venom compositions [40], indicating that the high toxin diversity makes venoms very complex drug targets.



In order to engage in specific toxin-directed antivenom development, a full overview of the venom is warranted. However, in addition to estimations of quantitative venom proteomes, it is highly beneficial to have information on toxin structures and estimates of toxin toxicities (e.g., LD50s), in order to have a full view on which toxins should be neutralized by novel antivenoms [128]. In 2016, Rodríguez-Rodríguez and coworkers employed approaches based on the Toxicity Score [46] to determine which toxins are the medically most relevant in the venoms of selected Centruroides scorpions [45]. This approach differentiated between medically relevant and medically irrelevant toxins, and enabled the researchers to select key toxins for antitoxin development. Furthermore, Rodríguez-Rodríguez et al. successfully employed structural analysis of complexes between toxins and antitoxins to optimize binding affinity for their inhibitors [45]. Within the annotated toxin dataset previously discussed, we find that 3D structures have been solved for a total of 63 spider toxins and 93 scorpion toxins. Moreover, LD50s are known for 102 spider toxins and 86 scorpion toxins. For 20 spider toxins and 27 scorpion toxins, both a 3D structure and an LD50 exist. The distribution of these well characterized toxin entries between the taxonomic families are visualized in Figure 2 and Figure 3.



The estimated >10 million scorpion toxins and spider toxins existing in nature [40] dwarf the number of currently annotated toxins (2432) from these creatures. Hence, a more in depth characterization would be beneficial in order to provide a better foundation for development of novel antivenoms. Furthermore, the untapped pool of highly bioactive compounds constitutes a treasure chest for toxin-derived drug discovery. Nevertheless, toxins from many of the medically important species of both spiders and scorpions have already undergone thorough investigation. The accumulated data on the structures, toxicities and abundances of these toxins represent a good foundation for developing next generation antivenoms based on biotechnological approaches and modern drug discovery techniques.




3. Toxin Inhibition by Small Molecules


To the best of our knowledge, no small organic molecule has ever been tested for spider or scorpion toxin neutralization in a clinical setting. Compared to snake venoms, limited research efforts have focused on the discovery of small-molecule drugs targeting specific toxins in scorpion and spider venoms. Only a handful of compounds has been reported to have neutralizing effects on scorpion or spider venom components (Table 5).



The first reported small molecule that was investigated in relation to inhibition of scorpion toxins was heparin. Using turbidometric methods, heparin has been shown to inhibit hyaluronidases isolated from various scorpion species, such as the Chinese red scorpion (Buthus martensi) [129] and the Indian black scorpion (Palamneus gravimanus) [130]. In addition, heparin has been shown to inhibit the hyaluronidase activity of venom from Heterometrus fulvipes, a species of the giant forest scorpions [140]. However, most studies on the effect of heparin on spider venoms demonstrate no inhibitory effect on venom-induced necrosis [141]. In contrast, surgical excision or administration of effective antivenom has been shown to be more efficacious [142]. However, it has been suggested that administration of heparin alongside other treatments, such as steroids, hyperbaric oxygen treatments, experimental antivenom, and/or surgical excision, may be beneficial in the treatment of bites from Loxosceles spiders [143].



Neutralization studies on venom from the Brazilian yellow scorpion (Tityus serrulatus) with Aristolochic acid demonstrate that this polyphenolic compound has the ability to decrease lethality in mice [132]. Although focus in this study was on hyaluronidase enzymes, direct inhibition of hyaluronidases was not tested. Other studies have shown, however, that Aristolochic acid has an inhibitory effect on phospholipases A2 (PLA2s), which are found in scorpion venoms [120,132]. To date, no inhibition studies with Aristolochic acid on PLA2s from spider venom have been reported, despite the presence of PLA2s in arachnid venoms.



The bivalent metal ion chelators, EDTA and 1,10-phenanthroline, both function as metalloprotease inhibitors (see Figure 4), and several studies indicate that both compounds are capable of neutralizing spider and scorpion venoms by inhibiting various venom components [133,134]. EDTA has been shown to inhibit PLA2 isolated from the scorpion H. fulvipes [140], as well as a range of different proteinases isolated from the venom of the scorpion Isonietrus vittatus from Pakistan [135]. Moreover, both EDTA and 1,10-phenatroline inhibit heminecrolysin, which is the enzyme responsible for the main pathological effects in envenomation by the scorpion Hemiscorpius lepturus [133]. Heminecrolysin is completely inhibited in vitro by EDTA at a concentration of 5 mM, and 50% inhibited by 1,10-phenantroline at a concentration of 2.5 mM [133].



Apart from the inhibition of individual venom components, EDTA has also been shown to inhibit the proteolytic activity of the venom from T. serrulatus on fibrinogen [136,139]. A similar inhibition of proteolytic activity on fibrinogen has also been observed in vitro for EDTA (concentration of 2 mM) and 1,10-phenanthroline (concentration of 3 mM) on Loxosceles intermedia (Brown spider) venom [134]. Finally, both EDTA and 1,10-phenanthroline, at a concentration of 5 mM each, have been shown to specifically inhibit metalloproteases isolated from Hippasa partita venoms [138], whilst EDTA (1 mM) alone has proven to block metalloproteases from Parawixia bistriata (Araneidae genus) [137].



In addition to the examples discussed above, a number of other molecules have shown neutralizing effects on toxins similar to those found in spider and scorpion venoms. As an example, a recent study by El-kik et al. (2013) has indicated the ability of the poly-anionic compound suramin to antagonize the cytotoxic and enzymatic effects of crude venom from the bee, Apis mellifera [144]. Interestingly, suramin has previously been indicated to inhibit the myotoxic actions of PLA2s in snake venoms [128]. Therefore, it would not be surprising if suramin showed the same inhibitory effects on scorpion and spider venoms containing these enzymes in abundance [39,145]. In a similar way, a large number of other compounds that have shown neutralizing effect against snake venom toxins could potentially also inhibit toxins from spiders and scorpions (particularly PLA2s) [128]. Nevertheless, further experimental investigation is needed to determine such potential effects.



In conclusion, no small molecules targeting toxins from scorpion or spider venoms are in use in the clinic. Although only few small molecules have been investigated, a range of compounds acting on similar toxins from snakes has been discovered [128]. The potential of using such molecules in future spider bite or scorpion envenoming therapy could be pursued with the aim of developing compounds with improved stability and a large volume of distribution. Such properties may be of particular benefit for targeting locally acting toxins in distal tissue, such as muscle tissue in arms and legs, which are notoriously difficult to neutralize with traditional antivenoms. However, further research is needed to explore the feasibility of this approach.




4. Research Efforts within Antibodies and Antibody Fragments


Modern biotechnological techniques for the generation, isolation, and production of monoclonal antibodies (mAbs) or antibody fragments have recently been applied in the experimental development of next generation antivenoms against scorpion stings and spider bites (see Table 6, Table 7, and Table 8) [9]. The first reported neutralizing mAb in this field (mAb 4C1) was directed against the venom of the Androctonus australis hector (Aah) scorpion [146], and it was generated using hybridoma technology [147]. The toxicity of A. australis hector venom is derived from three small neurotoxins belonging to two distinct structural and immunological groups (Group 1: Aah I and Aah III, and Group 2: Aah II), and mAb 4C1 showed affinity for Aah II with a Kd of 0.8 nM [146]. Another antibody, mAb 9C2, was generated against Aah I with a Kd of 0.15 nM, and it showed to be cross-reactive with other toxins of the same group, having Kds of 1.5 nM for Aah III and 24 nM for Aah IV [148]. In mice, 1 mg of mAb 4C1 neutralizes 30,000 LD50s of Aah II, and 1 mg of mAb 9C2 neutralizes 1500 LD50s of Aah I. When tested against whole venom, both mAbs were capable of neutralizing 40 LD50s [146,148]. Moreover, 1 mg of the mixture of 9C2 and 4C1 was able to neutralize 71 LD50 of the venom [148], providing an excellent example of how selected mixtures of antibodies can be used to neutralize selected medically relevant toxins, thereby abrogating the toxicity of whole venom [46].



Similarly, the neutralizing mAb BCF2 was generated against toxins from scorpions of the genus Centruroides [152]. The venoms of the three main species of Centruroides scorpions contain toxins of high similarity (Css2 from C. sufusus suffusus, Cn2 from C. noxius, and CII1 and CII2 from C. limpidus limpidus), and all bind to Na+ ion channels in excitable cells, modifying ion channel activation and/or inactivation. BCF2 was directed against Cn2 from C. noxius, and 1 mg of this mAb was capable of neutralizing 32 LD50s of the purified toxin and 28 LD50s of whole venom in mice [153]. Moreover, the antibody was tested for cross-reactivity against the venoms of C. limpidus limpidus, C. limpidus tecomanus, C. limpidus acatlanesis, C. suffusus suffusus, C. infamatus infamatus, C. elegans and T. serrulatus in ELISA plates. Despite a high degree of similarity between toxins from related scorpion families, a clear strong signal was only detected against venom components of C. limpidus limpidus, C. limpidus tecomanus and C. limpidus acatlanesis. Unfortunately, the neutralization capacity of BCF2 against venoms from these species was not tested in these studies.



The first reported mAb against a spider toxin was Li mAb(7), also obtained from a hybridoma cell line [149]. Li mAb(7) was directed against venoms of spiders from the Loxosceles genus, commonly known as recluse or brown spiders. The toxic effects of brown spiders are elicited by proteins of the sphingomyelinase D (SMase D) family, which cause local effects at the bite site, such as edema, local hemorrhage, and necrotic lesions, and systemic effects, such as hemolysis, thrombocytopenia, and renal failure in some occasions. Li mAb(7) is capable of preventing dermonecrotic activity in mice by targeting SMase D of L. intermedia. Nevertheless, the antibody did not show cross-reactivity with venoms from other Loxosceles species [149]. Recently, a new murine mAb (LiD1mAb16) able to recognize a highly conserved epitope in the SMases D of the three major medically important species of Loxosceles spiders was generated by the same procedure. However, in vivo assays are only reported for this mAb against the recombinant toxin and not whole venom [151].



The ability to clone and synthetically produce antibodies opened the possibility for replacing hybridoma cell lines for heterologous expression systems and also exploring other antibody formats with potentially optimized pharmacokinetic properties and enhanced shelf lives (Figure 5). As an example, single-chain variable fragments (scFvs) based on the mAbs 9C2 and 4C1 were developed and expressed in E. coli, and the resulting scFvs have Kds in the same nanomolar range as the intact immunoglobulins [154,156]. In vivo, scFv4C1 displayed a protective capacity of 4000 LD50s of Aah II per mg of scFv [154], and scFv 9C2 showed a protective capacity of 6600 LD50s of Aah I per mg of the antibody fragment [156]. Due to their reduced size (Mw around 30 kDa), scFvs have been argued to have several potential advantages, such as increased diffusion rates, increased tissue penetrability, increased biodistribution, and decreased immunogenicity. Since toxins are rapidly absorbed and distributed, scFvs are potentially optimal molecules for neutralizing the effects of animal toxins [175]. In order to increase efficacy by exploiting avidity, scFvs can be joined together by a short linker, creating bivalent molecules able to bind two different antigens simultaneously. The scFvs 4C1 and 9C2 were used as building blocks to design a tandem-scFv comprising the two scFvs fused together at the genetic level (T94H6). This tandem-scFv showed Kds of 0.1 nM against Aah I and 1 nM against Aah II. When tested in vivo, all mice co-injected with T94H6 and 3 LD50s of Aah I survived, whereas the tandem-scFv only protected 50% of the mice challenged with 3 LD50s of Aah II [161].



A major breakthrough in antibody technology was achieved when McCafferty et al. succeeded in expressing the antibody V domains on filamentous M13 phages, allowing for rapid screening of antibody genes via phage display selection (Figure 6) [176]. Using this technique, scFvs based on the mAb BCF2 were developed using error-prone PCR to introduce mutations in the CDR regions. Improved variants were selected by phage display, and two of these, scFv G5 and scFv B7 (containing two and one mutations, respectively), showed enhanced stability and a higher affinity for the toxin (Kds of 0.43 nM and 0.71 nM, respectively) compared to the parental mAb. However, they still failed to neutralize the toxin [159]. Subsequently, in order to overcome this weakness, the mutations contained in G5 and B7 were introduced in a scFv triple mutant, which showed a Kd of 75 pM and increased stability. In mice, 1 mg of the dimeric construct was able to neutralize 400 LD50s of Cn2 [159].



One of the scarce examples of antibody fragments against spider toxins is the Fragment antigen-binding (Fab) FM1, directed against α-latrotoxin from the venom of spiders of the genus Lactrodectus, which are commonly known as widow spiders [150]. The venom of widow spiders causes potent neurotoxic effects by destabilizing presynaptic membranes of nerve terminals, which leads to Ca2+ influx and massive release of neurotransmitters. FM1 was isolated from a phage display library constructed with the antibody repertoire of immunized mice and showed an affinity for the toxin in the low nM range. When mice were treated with one LD100 of whole venom, 20 μg of purified FM1 prevented lethality in 100% of the cases [150].



Another important antibody format is the single variable domain, consisting of only the antibody heavy chain (VHH). These VHH fragments (popularly termed “nanobodies”, abbreviated “Nb”) can be isolated from the immune system of camelids and sharks [128,177]. With a molecular weight of 15 kDa, nanobodies represent the smallest, intact, natural antigen-binding fragments known, and they have the beneficial properties of good stability (ex vivo), high level of expression in microbial systems, high solubility, good specificity, and high affinity for their respective antigens [178,179]. Although nanobodies are rapidly cleared from the blood [180], their low molecular weight may be advantageous for reaching the toxins having been distributed into organs and deep tissue upon a scorpion sting or spider bite. Moreover, nanobody-toxin complexes remain below the renal cut-off (60 kDa), thus enabling their excretion by renal clearance in envenomed victims [168].



In 2009, a large VHH library from the lymphocytes of an immunized dromedary was generated and screened by phage display selection against Aah II [164]. One particular nanobody (NbAahII10) showed an extraordinarily high neutralizing capacity (37,000 LD50s of Aah II per mg of nanobody). This represents a considerable accomplishment of paramount importance in the field of antibody fragments [164]. In 2010, the same group selected the nanobody NbAah’F12 against Aah I by a similar procedure, and this nanobody provided full protection in mice challenged with 100 LD50s of the toxin [165]. In the same study, a bispecific nanobody of 29 kDa directed against Aah I/Aah II, NbF12-10, was reported to neutralize 5 LD50s of whole venom and restoring the heart rate dysfunction induced by Aah envenoming in mice [165].



Thus far, none of the aforementioned mAbs or antibody fragments have been of human origin. Therefore, they come with a risk of eliciting undesired adverse reactions in human recipients. An attempt to overcome this issue is exemplified by the development of chimeric human antibody constructs, which are obtained by joining the variable region genes of an antibody molecule produced from a myeloma cell line with human immunoglobulin constant region genes [181]. The non-human regions of the resulting mAb are reduced while the pharmacokinetic properties remain unaffected. The chimeric Fab, chFab-BCF2, comprises the variable regions of the murine mAb BCF2 and human constant regions. In vitro, chFab-BCF2 showed an IC50 of 3 nM, which is in the same range as the IC50 of the whole mAb. When tested in mice, 3.75 μg of the chimeric construct neutralized one LD50 of the toxin, and 6.25 μg neutralized one LD50 of whole venom [157].



Humanization procedures have been developed for murine mAbs and its diverse formats [182,183], but humanization is a complex procedure, often accompanied by a decrease in affinity and neutralizing capacity of the molecules [182]. Therefore, mAbs should ideally be of human origin to be included in antivenoms. In the last decade, a few mAbs directed against scorpion toxins have been isolated from human phage display libraries (see Table 8). However, no mAbs of human origin against spider toxins have yet been reported.



In 2005, Riaño-Umbarila et al. isolated scFvs 3F and C1, two recombinant human antibody fragments capable of neutralizing the toxic effects of the toxin Cn2 and whole venom of C. noxius [162]. In the same study, scFv 3F was matured by three cycles of directed evolution to obtain scFv 6009F, with a Kd of 0.41 nM for Cn2. In vivo, scFv 6009F neutralized 2 LD50s of the Cn2 toxin when molar ratios of 1:10 and 1:2 toxin-to-antibody fragment were injected [162]. Some years later, the same group showed that scFv 6009F was cross-reactive against toxins Css2, Cn3, and Css4, suggesting that the fragment was able to recognize a conserved epitope important for neutralizing the toxin [166]. Subsequently, additional maturation cycles were performed with the parental scFv against the toxin Css2 from C. suffusus, leading to the isolation of scFv 9004G. scFv 9004G showed a Kd of 0.81 nM for Css2, and was able to provide protection in mice challenged with 1:10 molar ratio of toxin-to-antibody fragment [166]. With the aim of obtaining a molecule capable of simultaneously neutralizing Cn2 and Css2, the important mutations for toxin recognition were identified in both scFv 6009F and scFv 9004G, and the best properties were merged to generate a third scFv, named LR. scFv LR had a Kd value of 0.02 nM for Cn2 and 0.09 nM for Css2, and showed excellent stability in vitro when submitted to strong denaturing conditions. In vivo, all mice survived when treated with 1:10 molar ratios of toxin-to-antibody fragment for Cn2 or Css2, and the antibody fragment was able to provide full protection when 3 LD50s of whole venom of C. suffusus or C. noxius were administered at a molar ratio of 1:3 [166]. scFv LR and scFv 6009F were both further optimized in subsequent studies through directed evolution and further biopanning of Diabody 6009F (a dimerized version of scFv 6009F). This led to the identification of a new mutation (E43G), which provided increased functional stability and neutralization capacity for the optimized versions, Diabody D4 and scFv LER, compared to Diabody 6009F and scFv LR [170]. An additional scFv, named 202F, was derived from scFv C1 after 3 cycles of directed evolution against toxin CII1 from C. limpidus, and it neutralized one LD50 of both Cn2 and CII1 toxins [173]. With the aim of improving the neutralization capacity of scFv 202F, the same group generated a new antibody fragment, named scFv RU1, through incorporation of two different mutations. The scFv neutralized one LD50 of CII1 toxin, two LD50s of Cn2 toxin, and 3 LD50s of fresh whole C. noxius venom [174]. To expand the neutralization capacity toward additional scorpion toxins, scFv RU1 was subjected to in vitro maturation followed by phage display selection in order to identify mutations yielding cross-reactive scFvs with uncompromised affinity towards the toxins. By employing this approach and combining different identified mutations, the scFv ER-5 was obtained. scFv ER-5 recognized toxins Css2, Css4, Cn2, and CII1, and neutralized one LD50 of both Cn2 and CII1 toxins, and two LD50s of whole C. suffusus venom [45], which demonstrates the power of phage display technology coupled to semi-rational approaches for affinity optimization.



In the case of T. serrulatus, a scorpion responsible for most of the severe cases of scorpion envenomation in Brazil, a neutralizing scFv (scFv 15e) was isolated by phage display selection from a human library. The most toxic components of the venom of T. serrulatus are neurotoxins that exert their effect by binding to voltage-gated Na+ ion channels. Neurotoxins are classified into α-toxins (Ts3 and Ts5) and β-toxins (Ts1 and Ts2). scFv 15e is directed against Ts1, the main toxic component of T. serrulatus venom, and also recognizes toxins from T. cambridgei and T. packyurus, two related scorpions from the same genus [167]. The neutralization capacity of scFv 15e against Ts1 was very limited, as 12 out of 16 mice challenged with one LD50 of the toxin survived [167]. Currently, optimized variants of scFv 15e are being obtained using a directed evolution approach coupled to phage display with the aim of enhancing its neutralization capacity, but successful results have yet to be reported [167].



Another relevant example of a human scFv is Serrumab, which is directed against toxins in the venom of T. serrulatus. Serrumab was isolated after four rounds of phage display selection from a synthetic human library against whole venom of the scorpion. In vitro, Serrumab neutralized the toxins Ts1 and Ts2 (β-toxins), but undetectable or low reactivity was reported against Ts3 and Ts5 (α-toxins). In vivo, the increase in the plasma levels of urea, creatinine, and neutrophil recruitment associated to envenomation was not observed in mice treated with Serrumab, in contrast to animals that received venom alone [171]. Furthermore, Serrumab showed cross-reactivity against Css II from C. suffusus suffusus and Lqh III from L. quinquestriatus hebraeus. Nevertheless, in vivo assays using isolated toxins have not yet been performed due to the difficulty of obtaining sufficient quantities of toxins [172].



The highlighted examples above display some trends in the development effort within spider and scorpion envenomation therapies. Increasing interest and efforts exist within the generation of recombinant, human antibody fragments using phage display technology [9]. The benefits of using phage display technology include the possibility of modifying the antibodies or fragments by genetic engineering techniques or affinity maturation by directed evolution. In addition, manufacturing processes for antibodies and antibody fragments have undergone a major development in the past 30 years with production cost of antibodies having decreased significantly [184,185]. Developments in both antibody technologies and manufacturing technology may indeed be the key to enable production and distribution of antibody-based envenomation therapies to poor, rural parts of the tropical world, where the cost of medicine may be an inhibiting factor for treatment. In comparison to scorpions, the field of antibody-based antitoxins against spider toxins is less developed. Reasons for this may include the minor severity or lower prevalence of spider bites in most of the world, and the difficulty of obtaining sufficient quantities of medically important spider venoms.




5. Next Generation Immunization Strategies


A complementary approach to using recombinant antibodies or antibody fragments is the use of recombinant toxins or synthetic peptides for animal immunization procedures (Figure 7). Such approaches may provide a path to obtaining antivenoms with higher titers of antibodies against the relevant toxins and low titers against medically unimportant venom components. Within spider and scorpion antivenoms, efforts have been made with both strategies (Table 9 and Table 10). However, in contrast to the field of snakebite antivenoms, the use of DNA immunization techniques has not been explored [128].



Within scorpion antisera, the first use of a synthetic peptide for immunization was reported in 1986, where Bahraoui et al. conjugated a nine amino acid long epitope from the AaH2 toxin from A. australis to albumin. The anti-peptide serum raised in rabbits against the albumin-AaH2 epitope was able to neutralize the natural toxin, but no results against the crude venom were reported [190]. In 1999, Calderon-Aranda et al. engineered a peptide from the Centruroides noxius Cn2 toxin, containing continuous and discontinuous epitopes, by linking the N- and C-terminus of the resulting peptide by a disulfide bridge. The anti-peptide antiserum produced in rabbits could neutralize 39.5 LD50 of Cn2 per mL of serum [194].



In 2000, Guatimosim et al. reported the use of a non-toxic, recombinantly expressed version of the immunogenic protein (TsNTxP) from T. serrulatus venom for immunization of rabbits [195]. 1 mL of the raised antiserum was able to protect rabbits injected with 20 LD50 of the whole venom. The TsNTxP-derived protein was produced as a fusion protein with a maltose-binding protein, in order to avoid degradation by the molecular machinery of E. coli cells [195].



In 2004, Machado de Ávila et al. prepared an immunogen consisting of the most toxic fraction (TstFG50) of the T. serrulatus venom conjugated to bovine serum albumin (BSA). Mice immunized with TstFG50-BSA showed full protection when challenged with 2 LD50s of TstFG50 [205]. In a more recent study, a SPOT mapping method was used to identify discontinuous epitopes of TsNTxP, and the most reactive peptide sequences were combined on a linear strand (GREGYPADGGGLPDSVKI). This linear strand was used for immunization of mice, which were fully protected when challenged with 1.75 LD100s of T. serrulatus whole venom [204].



Also using the SPOT method, Alvarenga et al. mapped three antigenic regions on TsNTxP and one epitope on TsIV, the latter of which is the most lethal venom component of T. serrulatus belonging to the alpha-type toxin family. Antibodies from antiserum raised against these four peptides were conjugated to keyhole limpet hemocyanin (KLH), and 1 mL of the anti-peptide serum was able to neutralize 13.5 LD50s of whole venom from T. serrulatus in vitro. Apart from showing high reactivity against the crude venom of T. serrulatus, the anti-peptide antibodies in the serum bound moderately to the venoms of T. bahiensis, T. cambridgei, T. stigmurus, and venoms from the Centruroides genus. Therefore, this study showed that antibodies generated against peptides derived from the toxins of one scorpion can cross-react and neutralize venoms from different scorpion species, providing an alternative strategy for the preparation of polyspecific scorpion antivenoms [198].



Within spider antivenoms, the use of both recombinant and synthetic toxins for immunization has been explored. In 2003, Araujo et al. constructed a recombinant fusion protein between a protein homologous to a dermonecrotic toxin from L. intermedia and beta-galactosidase. The protein was expressed in E. coli, and subsequently used as antigen for the immunization of rabbits and mice. The immunized rabbits showed prolonged in vivo protection against the whole venom, and the mice achieved full protection against 2.5 LD50s of whole venom [186]. In 2013, Mendes et al. constructed a chimeric protein containing three epitopes of LiD1, a dermonecrotic toxin present in the venom of L. intermedia. When rabbits were immunized with the recombinant chimeric protein (rCpLi), they were able to elicit a protective immune response against whole venom from both L. intermedia and L. gaucho, comparable to rabbits immunized with the natural toxin [189].



In 2009, Comis et al. chemically synthesized the 42 amino acid long robustoxin from the venom of Atrax robustus, and used this toxin for immunization of Macaca fascicularis monkeys. The toxin was prepared without establishing the disulfide bridges that are essential for toxicity, and co-polymerizing the toxin with keyhole limpet haemocyanin. Immunized monkeys survived when challenged with a lethal dose of the crude venom, having a full recovery with only minor symptoms of envenoming [188].



Although the use of recombinant toxins or synthetic peptides for immunization of animals does not radically change the nature of antivenoms, several potential benefits may be reaped. First of all, it excludes the need for laborious venom extraction, where either large numbers of spiders need to be farmed or caught and milked under a microscope, or where electrical stimulation methods are needed for collection of scorpion venoms [12]. Independence of venoms may not only help reduce cost, but it may also yield a much less hazardous production process, remove the risk and impact of potential diseases among spiders or scorpions used for venom collection, and remove the effect of individual venom variability among specimens used for venom collection. Moreover, the possibility of only using the medically relevant toxins or peptide epitopes for immunization may yield better titers of therapeutically active antibodies which, in turn, may lead to more potent antivenoms. In addition to higher efficacy, more potent antivenoms may elicit fewer side effects, since less antivenom is needed to treat the envenomed victim [128]. However, limitations to these strategies include the inability of some heterologous expression organisms to produce recombinant toxins with correct disulphide bonding and protein structure, and the fact that linear peptides may not always yield therapeutically active antibodies when used for immunization [2].




6. Future Perspectives


The array of analytical tools for analysis of venoms and toxins may possibly lay the foundation for introducing new innovations into the field of scorpion and spider antivenoms. Given that less medically relevant toxins in scorpion and spider venoms are essential to neutralize compared to snake venoms [9], and given the more laborious venom extraction procedures required for current scorpion and spider antivenom production, introduction of recombinant production methods for oligoclonal human antibodies or fragments thereof may indeed be a promising possibility, which is likely to be both feasible, cost-competitive [185], and which may yield more efficacious serum-free antivenoms with better safety profiles [11,128]. Coupled to powerful discovery platforms, such as phage display selection or the use of humanized animals, recombinant expression technologies could revolutionize the field of antivenoms by delivering safer, more efficacious therapies that are affordable for the healthcare systems of the developing world. However, in order for such a technological breakthrough to happen, more research efforts need to be directed towards scorpion and spider venomics, antitoxin discovery, and novel expression technologies.



Hopefully, the future may generate novel therapies that can help combat the neglected area of scorpion and spider envenomings, causing much mortality and morbidity among people living the regions affected by this burden.







Acknowledgments


Supported by NNF16OC0019248 and NNF13OC0005613 from the Novo Nordisk Foundation. We thank Mikael Rørdam Andersen from the Technical University of Denmark for proofreading.




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Warrell, D.; Gutiérrez, J.M.; Padilla, A. Rabies and Envenomings: A Neglected Public Health Issue: Report of a Consultative Meeting; World Health Organization: Geneva, Spain, 2007. [Google Scholar]

	



Carmo, A.O.; Chatzaki, M.; Horta, C.C.R.; Magalhães, B.F.; Oliveira-Mendes, B.B.R.; Chávez-Olórtegui, C.; Kalapothakis, E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015, 97, 64–74. [Google Scholar] [CrossRef] [PubMed]

	



Laraba-Djebari, F.; Adi-Bessalem, S.; Hammoudi-Triki, D. Scorpion Venoms: Pathogenesis and Biotherapies. In Toxinology - Scorpion Venoms; Springer Netherlands: Berlin, Germany, 2015; Volume 4, pp. 63–85. [Google Scholar]

	



Diaz, J.H. The Global Epidemiology, Syndromic Classification, Management, and Prevention of Spider Bites. Am. J. Trop. Med. Hyg. 2004, 71, 239–250. [Google Scholar] [PubMed]

	



Bettini, S. Epidemiology of latrodectism. Toxicon 1964, 2, 93–102. [Google Scholar] [CrossRef]

	



Goyffon, M.; Tournier, J.-N. Scorpions: A Presentation. Toxins 2014, 6, 2137–2148. [Google Scholar] [CrossRef] [PubMed]

	



Medical Entomology; Eldridge, B.F.; Edman, J.D. (Eds.) Springer Netherlands: Berlin, Germany, 2004.

	



Chippaux, J.-P. Emerging options for the management of scorpion stings. Drug Des. Devel. Ther. 2012, 6, 165–173. [Google Scholar] [CrossRef] [PubMed]

	



Rodríguez, E.R.R.; Umbarila, L.R.; Possani, L.D.; Becerril, B. Recombinant Neutralizing Antibodies, A New Generation of Antivenoms. In Toxinology - Scorpion Venoms; Springer: Berlin, Germany, 2015; Volume 4, pp. 139–159. [Google Scholar]

	



Pucca, M.B.; Carlos, J.; Roncolato, E.C.; Bertolini, T.B.; Fossa, C.M.; Varanda, W.A.; Arantes, E.C.; Barbosa, J.E. Monoclonal antibody (Scfv) against the venom of the scorpion Tityus serrulatus, produced by phage display technic, is capable to recognize and inhibit the action of the ts1 toxin. Epeq/Fafibe 2011, 1, 18–23. [Google Scholar]

	



Rodríguez-Rodríguez, E.R.; Olamendi-Portugal, T.; Serrano-Posada, H.; Arredondo-López, J.N.; Gómez-Ramírez, I.; Fernández-Taboada, G.; Possani, L.D.; Anguiano-Vega, G.A.; Riaño-Umbarila, L.; Becerril, B. Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions. Toxicon 2016, 119, 52–63. [Google Scholar] [CrossRef] [PubMed]

	



Meadows, P.E.; Russell, F.E. Milking of arthropods. Toxicon 1970, 8, 311–312. [Google Scholar] [CrossRef]

	



Product Information. Funnel Web Spider Antivenom. Available online: http://www.csl.com.au/docs/822/652/Funnel%20Web%20Spider%20AV%20PI%20V6%20clean%20TGA%20approved%2018%20Sept%202013.pdf (accessed on 15 July 2016).

	



Product Information. Red Back Spider Antivenom. Available online: http://www.csl.com.au/docs/1002/757/Red-Back-Spider-AV_PI_V5_Clean_TGA-Approved_8-January-2014.pdf (accessed on 15 July 2016).

	



Our Products—Aracmyn PLUS. Available online: http://www.bioclon.com.mx/bioclon/html/aracmynP_en.html (accessed on 15 July 2016).

	



Our Products—Reclusmyn. Available online: http://www.bioclon.com.mx/bioclon/html/reclusmyn_en.html (accessed on 15 July 2016).

	



Package Leaflet: Soro Antiarachnidico—Butantan. Available online: http://www.toxinfo.org/antivenoms/resources/antivenom_brasil-butantan-antiarachnidico_2011-07-28.pdf (accessed on 15 July 2016).

	



WCH Clinical Toxinology Resources—Latrodectus mactans. Available online: http://www.toxinology.com/fusebox.cfm?fuseaction=main.spiders.display&id=SP00061 (accessed on 15 July 2016).

	



Detalle del Producto. Suero Antiloxoscélico Monovalente. Available online: http://www.ins.gob.pe/insvirtual/hdetprod.aspx?1596 (accessed on 15 July 2016).

	



Instituto Vital Brazil—Soro Antilatrodéctico. Available online: http://www.ivb.rj.gov.br/soros_produzidos.html (accessed on 15 July 2016).

	



Antivenin (Latrodectus mactans). Available online: http://www.merck.com/product/usa/pi_circulars/a/antivenin/antivenin_pi.pdf (accessed on 15 July 2016).

	



NHLS SAVP | Products. Available online: http://www.savp.co.za/?page=products&id=11 (accessed on 15 July 2016).

	



BIRMEX. Nuestros Productos. Available online: http://www.birmex.gob.mx/comercializacion.html (accessed on 15 July 2016).

	



Suero Antiescorpionico—Centro de Biotecnologia de la Universidad Central de Venezuela. Available online: http://www.biotecfar.com.ve/biotecfar/pdf/suero_antiescorpionico.pdf (accessed on 15 July 2016).

	



Institut Pasteur D’Algerie. Available online: http://www.pasteur.dz/presentation.php?page=32 (accessed on 15 July 2016).

	



WCH Clinical Toxinology Resources—Buthus Occitanus. Available online: http://www.toxinology.com/fusebox.cfm?fuseaction=main.scorpions.display&mode=PrintFriendly&id=SC0038 (accessed on 15 July 2016).

	



Scorpion Antivenom Production. Turk Hij Den Biyol Derg. Available online: http://www.turkhijyen.org/eng/jvi.aspx?pdir=turkhijyen&plng=eng&un=THDBD-74046 (accessed on 15 July 2016).

	



Instructions for Use. Alacramyn®. Available online: http://www.toxinfo.org/antivenoms/resources/antivenom_mexico-bioclon-alacramyn_2011-07-28.pdf (accessed on 15 July 2016).

	



Package Leaflet: Soro Antiescorpionico—Butantan. Available online: http://www.toxinfo.org/antivenoms/resources/antivenom_brasil-butantan-scorpionico_2011-07-05.pdf (accessed on 15 July 2016).

	



Polyvalent Scorpion Antivenom | National Antivenom and Vaccine Production Center. Available online: http://www.antivenom-center.com/navpc-products/polyvalent-scorpion-antivenom/ (accessed on 15 July 2016).

	



Institut Pasteur de Tunis—Production. Available online: http://www.pasteur.tn/index.php?option=com_content&view=article&id=161&Itemid=199 (accessed on 15 July 2016).

	



Razi Vaccine & Serum Research Institute - Medical Antisera. Available online: http://www.rvsri.ac.ir/Portal/Home/Default.aspx?CategoryID=50c3cada-f4f3-424f-955f-e2b04ca488f2 (accessed on 15 July 2016).

	



MAVIN Poison Centre Munich—Scorpifav. Available online: http://www.toxinfo.org/antivenoms/productinfo/SCORPIFAV.html (accessed on 15 July 2016).

	



MAVIN Poison Centre Munich - Scorpion antivenom Twyford (North Africa). Available online: http://www.toxinfo.org/antivenoms/productinfo/SCORPION_ANTIVENOM_TWYFORD__NORTH_AFRICA_.html (accessed on 15 July 2016).

	



Vacsera—Products: Anti-Scorpion Serum. Available online: http://www.tradeegypt.com/vacsera/?ID=19730&CatalogID=3186&link=products&catname=Medical+%26+Pharmaceutical&subid=877&catid=32 (accessed on 15 July 2016).

	



Scorpion Anti Serum | VINS BioProducts Limited. Available online: http://vinsbio.in/antiscorpion/ (accessed on 15 July 2016).

	



Identificação do Medicamento—Soro Antiescorpiônico. Available online: http://www.anvisa.gov.br/datavisa/fila_bula/frmVisualizarBula.asp?pNuTransacao=1233402015&pIdAnexo=2447866 (accessed on 15 July 2016).

	



Haffkine Antitoxins & Sera - antiscorpion venom serum. Available online: http://www.vaccinehaffkine.com/products/antitoxins-sera/antiscorpion-venom-serum-detail.html (accessed on 15 July 2016).

	



Sannaningaiah, D.; Subbaiah, G.K.; Kempaiah, K. Pharmacology of spider venom toxins. Toxin Rev. 2014, 33, 206–220. [Google Scholar] [CrossRef]

	



Palagi, A.; Koh, J.M.S.; Leblanc, M.; Wilson, D.; Dutertre, S.; King, G.F.; Nicholson, G.M.; Escoubas, P. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry. J. Proteomics 2013, 80, 292–310. [Google Scholar] [CrossRef] [PubMed]

	



Cao, Z.; Yu, Y.; Wu, Y.; Hao, P.; Di, Z.; He, Y.; Chen, Z.; Yang, W.; Shen, Z.; He, X.; et al. The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [PubMed]

	



Consortium, T.U. UniProt: A hub for protein information. Nucleic Acids Res. 2015, 43, D204–D212. [Google Scholar] [CrossRef] [PubMed]

	



Lewis, R.J.; Garcia, M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef] [PubMed]

	



Wang, J.; Yarov-Yarovoy, V.; Kahn, R.; Gordon, D.; Gurevitz, M.; Scheuer, T.; Catterall, W.A. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor. Proc. Natl. Acad. Sci. USA 2011, 108, 15426–15431. [Google Scholar] [CrossRef] [PubMed]

	



Rodríguez-Rodríguez, E.R.; Olamendi-Portugal, T.; Serrano-Posada, H.; Arredondo-López, J.N.; Gómez-Ramírez, I.; Fernández-Taboada, G.; Possani, L.D.; Anguiano-Vega, G.A.; Riaño-Umbarila, L.; Becerril, B. Broadening the neutralizing capacity of a family of antibody fragments against different toxins from Mexican scorpions. Toxicon 2016, 119, 52–63. [Google Scholar] [CrossRef] [PubMed]

	



Laustsen, A.H.; Lohse, B.; Lomonte, B.; Engmark, M.; Gutiérrez, J.M. Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score. Toxicon 2015, 104, 43–45. [Google Scholar] [CrossRef] [PubMed][Green Version]

	



Abdel-Rahman, M.A.; Harrison, P.L.; Strong, P.N. Snapshots of scorpion venomics. J. Arid Environ. 2015, 112 Pt B, 170–176. [Google Scholar] [CrossRef]

	



Shlyapnikov, Y.M.; Kozlov, S.A.; Fedorov, A.A.; Grishin, E.V. A comparison of polypeptide compositions of individual Agelena orientalis spider venoms. Russ. J. Bioorganic Chem. 2010, 36, 73–80. [Google Scholar] [CrossRef]

	



Duan, Z.; Cao, R.; Jiang, L.; Liang, S. A combined de novo protein sequencing and cDNA library approach to the venomic analysis of Chinese spider Araneus ventricosus. J. Proteomics 2013, 78, 416–427. [Google Scholar] [CrossRef] [PubMed]

	



Undheim, E.A.B.; Sunagar, K.; Herzig, V.; Kely, L.; Low, D.H.W.; Jackson, T.N.W.; Jones, A.; Kurniawan, N.; King, G.F.; Ali, S.A.; et al. A Proteomics and Transcriptomics Investigation of the Venom from the Barychelid Spider Trittame loki (Brush-Foot Trapdoor). Toxins 2013, 5, 2488–2503. [Google Scholar] [CrossRef] [PubMed]

	



Trachsel, C.; Siegemund, D.; Kämpfer, U.; Kopp, L.S.; Bühr, C.; Grossmann, J.; Lüthi, C.; Cunningham, M.; Nentwig, W.; Kuhn-Nentwig, L.; et al. Multicomponent venom of the spider Cupiennius salei: A bioanalytical investigation applying different strategies. FEBS J. 2012, 279, 2683–2694. [Google Scholar] [CrossRef] [PubMed]

	



Estrada-Gomez, S.; Muñoz, L.J.V.; Lanchero, P.; Latorre, C.S. Partial Characterization of Venom from the Colombian Spider Phoneutria Boliviensis (Aranae: Ctenidae). Toxins 2015, 7, 2872–2887. [Google Scholar] [CrossRef] [PubMed]

	



Diniz, M.R.V.; Machado, C.R.L.; Mudado, M.A.; Paiva, A.L.B. 257. Comparative Analysis of Transcriptomes of Phoneutria pertyi and P. nigriventer Venom Glands. Toxicon 2012, 60, 127–128. [Google Scholar] [CrossRef]

	



Liberato, T.; Troncone, L.R.P.; Yamashiro, E.T.; Serrano, S.M.T.; Zelanis, A. High-resolution proteomic profiling of spider venom: Expanding the toxin diversity of Phoneutria nigriventer venom. Amino Acids 2016, 48, 901–906. [Google Scholar] [CrossRef] [PubMed]

	



Richardson, M.; Pimenta, A.M.C.; Bemquerer, M.P.; Santoro, M.M.; Beirao, P.S.L.; Lima, M.E.; Figueiredo, S.G.; Bloch, C., Jr.; Vasconcelos, E.A.R.; Campos, F.A.P.; et al. Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2006, 142, 173–187. [Google Scholar] [CrossRef] [PubMed]

	



Pineda, S.S.; Jones, A.; Nicholson, G.M.; Escoubas, P.; Mattick, J.S.; King, G.F. Understanding the Chemical Diversity of Spider Venoms Using a Combined Genomic, Transcriptomic and Proteomic Approach. Toxicon 2012, 60. [Google Scholar] [CrossRef]

	



Zhang, Y.; Chen, J.; Tang, X.; Wang, F.; Jiang, L.; Xiong, X.; Wang, M.; Rong, M.; Liu, Z.; Liang, S. Transcriptome analysis of the venom glands of the Chinese wolf spider Lycosa singoriensis. Zoology 2010, 113, 10–18. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, F.; Liu, C.; Tan, H.; Wang, H.; Jiang, Y.; Liang, S.; Zhang, F.; Liu, Z. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses. Toxicon 2015, 107 Pt B, 335–343. [Google Scholar] [CrossRef] [PubMed]

	



Kozlov, S.A.; Lazarev, V.N.; Kostryukova, E.S.; Selezneva, O.V.; Ospanova, E.A.; Alexeev, D.G.; Govorun, V.M.; Grishin, E.V. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Sci. Data 2014, 1, 1–12. [Google Scholar] [CrossRef] [PubMed]

	



Jiang, L.; Liu, C.; Duan, Z.; Deng, M.; Tang, X.; Liang, S. Transcriptome analysis of venom glands from a single fishing spider Dolomedes mizhoanus. Toxicon 2013, 73, 23–32. [Google Scholar] [CrossRef] [PubMed]

	



Xu, X.; Wang, H.; Zhang, F.; Hu, Z.; Liang, S.; Liu, Z. A Comparative Analysis of the Venom Gland Transcriptomes of the Fishing Spiders Dolomedes mizhoanus and Dolomedes sulfurous. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]

	



Zobel-Thropp, P.A.; Thomas, E.Z.; David, C.L.; Breci, L.A.; Binford, G.J. Plectreurys tristis venome: A proteomic and transcriptomic analysis. J. Venom Res. 2014, 5, 33–47. [Google Scholar] [PubMed]

	



Machado, L.F.; Laugesen, S.; Botelho, E.D.; Ricart, C.A.O.; Fontes, W.; Barbaro, K.C.; Roepstorff, P.; Sousa, M.V. Proteome analysis of brown spider venom: identification of loxnecrogin isoforms in Loxosceles gaucho venom. Proteomics 2005, 5, 2167–2176. [Google Scholar] [CrossRef] [PubMed]

	



dos Santos, L.D.; Dias, N.B.; Roberto, J.; Pinto, A.S.; Palma, M.S. Brown recluse spider venom: proteomic analysis and proposal of a putative mechanism of action. Protein Pept. Lett. 2009, 16, 933–943. [Google Scholar] [CrossRef] [PubMed]

	



Gremski, L.H.; da Silveira, R.B.; Chaim, O.M.; Probst, C.M.; Ferrer, V.P.; Nowatzki, J.; Weinschutz, H.C.; Madeira, H.M.; Gremski, W.; Nader, H.B.; et al. A novel expression profile of the Loxosceles intermedia spider venomous gland revealed by transcriptome analysis. Mol. Biosyst. 2010, 6, 2403–2416. [Google Scholar] [CrossRef] [PubMed]

	



Fernandes-Pedrosa, M. de F.; Junqueira-de-Azevedo, I. de L.; Gonçalves-de-Andrade, R.M.; Kobashi, L.S.; Almeida, D.D.; Ho, P.L.; Tambourgi, D.V. Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genomics 2008, 9. [Google Scholar] [CrossRef] [PubMed]

	



Zobel-Thropp, P.A.; Correa, S.M.; Garb, J.E.; Binford, G.J. Spit and Venom from Scytodes Spiders: A Diverse and Distinct Cocktail. J. Proteome Res. 2014, 13, 817–835. [Google Scholar] [CrossRef] [PubMed]

	



Mourão, C.B.F.; Oliveira, F.N.; e Carvalho, A.C.; Arenas, C.J.; Duque, H.M.; Gonçalves, J.C.; Macêdo, J.K.A.; Galante, P.; Schwartz, C.A.; Mortari, M.R.; et al. Venomic and pharmacological activity of Acanthoscurria paulensis (Theraphosidae) spider venom. Toxicon 2013, 61, 129–138. [Google Scholar]

	



Liao, Z.; Cao, J.; Li, S.; Yan, X.; Hu, W.; He, Q.; Chen, J.; Tang, J.; Xie, J.; Liang, S. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics 2007, 7, 1892–1907. [Google Scholar] [CrossRef] [PubMed]

	



Chen, J.; Zhao, L.; Jiang, L.; Meng, E.; Zhang, Y.; Xiong, X.; Liang, S. Transcriptome analysis revealed novel possible venom components and cellular processes of the tarantula Chilobrachys jingzhao venom gland. Toxicon 2008, 52, 794–806. [Google Scholar] [CrossRef] [PubMed]

	



Diego-García, E.; Peigneur, S.; Waelkens, E.; Debaveye, S.; Tytgat, J. Venom components from Citharischius crawshayi spider (Family Theraphosidae): Exploring transcriptome, venomics, and function. Cell. Mol. Life Sci. 2010, 67, 2799–2813. [Google Scholar] [CrossRef] [PubMed]

	



Borges, M.H.; Figueiredo, S.G.; Leprevost, F.V.; De Lima, M.E.; Cordeiro, M. do N.; Diniz, M.R.V.; Moresco, J.; Carvalho, P.C.; Yates, J.R. Venomous extract protein profile of Brazilian tarantula Grammostola iheringi: Searching for potential biotechnological applications. J. Proteomics 2016, 136, 35–47. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, Y.-Y.; Huang, Y.; He, Q.-Z.; Luo, J.; Zhu, L.; Lu, S.-S.; Liu, J.-Y.; Huang, P.-F.; Zeng, X.-Z.; Liang, S.-P. Structural and Functional Diversity of Peptide Toxins from Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Revealed by Transcriptomic, Peptidomic, and Patch Clamp Approaches. J. Biol. Chem. 2015, 290, 14192–14207. [Google Scholar] [CrossRef] [PubMed]

	



Tang, X.; Zhang, Y.; Hu, W.; Xu, D.; Tao, H.; Yang, X.; Li, Y.; Jiang, L.; Liang, S. Molecular Diversification of Peptide Toxins from the Tarantula Haplopelma hainanum (Ornithoctonus hainana) Venom Based on Transcriptomic, Peptidomic, and Genomic Analyses. J. Proteome Res. 2010, 9, 2550–2564. [Google Scholar] [CrossRef] [PubMed]

	



Cheng, T.-C.; Long, R.-W.; Wu, Y.-Q.; Guo, Y.-B.; Liu, D.-L.; Peng, L.; Li, D.-Q.; Yang, D.-W.; Xu, X.; Liu, F.-X.; Xia, Q.-Y. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis. Insect Sci. 2016, 23, 487–499. [Google Scholar] [CrossRef] [PubMed]

	



Jiang, L.; Zhang, D.; Zhang, Y.; Peng, L.; Chen, J.; Liang, S. Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Comp. Biochem. Physiol. Part D Genomics Proteomics 2010, 5, 81–88. [Google Scholar] [CrossRef] [PubMed]

	



Yuan, C.; Jin, Q.; Tang, X.; Hu, W.; Cao, R.; Yang, S.; Xiong, J.; Xie, C.; Xie, J.; Liang, S. Proteomic and Peptidomic Characterization of the Venom from the Chinese Bird Spider, Ornithoctonus huwena Wang. J. Proteome Res. 2007, 6, 2792–2801. [Google Scholar] [CrossRef] [PubMed]

	



Liang, S.; Li, X.; Cao, M.; Xie, J.; Chen, P.; Huang, R. Indentification of venom proteins of spider S. huwena on two-dimensional electrophoresis gel by N-terminal microsequencing and mass spectrometric peptide mapping. J. Protein Chem. 2000, 19, 225–229. [Google Scholar] [CrossRef] [PubMed]

	



Zhou, T.; Zhou, J.; Xiong, J.; Wang, X. A preliminary analysis of the toxinome of spider O. huwena based on isoelectric focusing-RP HPLC. Chin. J. Biochem. Mol. Biol. 2006, 22, 823–831. [Google Scholar]

	



Zhang, Y.; Huang, Y.; He, Q.; Liu, J.; Luo, J.; Zhu, L.; Lu, S.; Huang, P.; Chen, X.; Zeng, X.; et al. Toxin Diversity Revealed by a Transcriptomic Study of Ornithoctonus huwena. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]

	



Haney, R.A.; Clarke, T.H.; Gadgil, R.; Fitzpatrick, R.; Hayashi, C.Y.; Ayoub, N.A.; Garb, J.E. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders. Genome Biol. Evol. 2016, 8, 228–242. [Google Scholar] [CrossRef] [PubMed]

	



Haney, R.A.; Ayoub, N.A.; Clarke, T.H.; Hayashi, C.Y.; Garb, J.E. Dramatic expansion of the black widow toxin arsenal uncovered by multi-tissue transcriptomics and venom proteomics. BMC Genomics 2014, 15. [Google Scholar] [CrossRef] [PubMed]

	



Duan, Z.; Yan, X.; Cao, R.; Liu, Z.; Wang, X.; Liang, S. Proteomic analysis of Latrodectus tredecimguttatus venom for uncovering potential latrodectism-related proteins. J. Biochem. Mol. Toxicol. 2008, 22, 328–336. [Google Scholar] [CrossRef] [PubMed]

	



Duan, Z.G.; Yan, X.J.; He, X.Z.; Zhou, H.; Chen, P.; Cao, R.; Xiong, J.X.; Hu, W.J.; Wang, X.C.; Liang, S.P. Extraction and protein component analysis of venom from the dissected venom glands of Latrodectus tredecimguttatus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 145, 350–357. [Google Scholar] [CrossRef] [PubMed]

	



He, Q.; Duan, Z.; Yu, Y.; Liu, Z.; Liu, Z.; Liang, S. The Venom Gland Transcriptome of Latrodectus tredecimguttatus Revealed by Deep Sequencing and cDNA Library Analysis. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]

	



Zhang, L.; Shi, W.; Zeng, X.-C.; Ge, F.; Yang, M.; Nie, Y.; Bao, A.; Wu, S.; E, G. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. J. Proteomics 2015, 128, 231–250. [Google Scholar] [CrossRef] [PubMed]

	



Oukkache, N.; Rosso, J.P.; Alami, M.; Ghalim, N.; Saïle, R.; Hassar, M.; Bougis, P.E.; Martin-Eauclaire, M.F. New analysis of the toxic compounds from the Androctonus mauretanicus mauretanicus scorpion venom. Toxicon 2008, 51, 835–852. [Google Scholar] [CrossRef] [PubMed]

	



Caliskan, F.; Quintero-Hernández, V.; Restano-Cassulini, R.; Batista, C.V.F.; Zamudio, F.Z.; Coronas, F.I.; Possani, L.D. Turkish scorpion Buthacus macrocentrus: General characterization of the venom and description of Bu1, a potent mammalian Na+-channelα-toxin. Toxicon 2012, 59, 408–415. [Google Scholar] [CrossRef] [PubMed]

	



Xu, J.; Zhang, X.; Guo, Z.; Yan, J.; Yu, L.; Li, X.; Xue, X.; Liang, X. Short-chain peptides identification of scorpion Buthus martensi Karsch venom by employing high orthogonal 2D-HPLC system and tandem mass spectrometry. Proteomics 2012, 12, 3076–3084. [Google Scholar] [CrossRef] [PubMed]

	



Valdez-Velázquez, L.L.; Quintero-Hernández, V.; Romero-Gutiérrez, M.T.; Coronas, F.I.V.; Possani, L.D. Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]

	



Mille, B.G.; Peigneur, S.; Predel, R.; Tytgat, J. Trancriptomic approach reveals the molecular diversity of Hottentotta conspersus (Buthidae) venom. Toxicon 2015, 99, 73–79. [Google Scholar] [CrossRef] [PubMed]

	



Morgenstern, D.; Rohde, B.H.; King, G.F.; Tal, T.; Sher, D.; Zlotkin, E. The tale of a resting gland: Transcriptome of a replete venom gland from the scorpion Hottentotta judaicus. Toxicon 2011, 57, 695–703. [Google Scholar] [CrossRef] [PubMed]

	



Ma, Y.; He, Y.; Zhao, R.; Wu, Y.; Li, W.; Cao, Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: Implication for proteome evolution of scorpion venom arsenal. J. Proteomics 2012, 75, 1563–1576. [Google Scholar] [CrossRef] [PubMed]

	



Nascimento, D.G.; Rates, B.; Santos, D.M.; Verano-Braga, T.; Barbosa-Silva, A.; Dutra, A.A.A.; Biondi, I.; Martin-Eauclaire, M.F.; De Lima, M.E.; Pimenta, A.M.C. Moving pieces in a taxonomic puzzle: Venom 2D-LC/MS and data clustering analyses to infer phylogenetic relationships in some scorpions from the Buthidae family (Scorpiones). Toxicon 2006, 47, 628–639. [Google Scholar] [CrossRef] [PubMed]

	



Kuzmenkov, A.I.; Vassilevski, A.A.; Kudryashova, K.S.; Nekrasova, O.V.; Peigneur, S.; Tytgat, J.; Feofanov, A.V.; Kirpichnikov, M.P.; Grishin, E.V. Variability of potassium channel blockers in Mesobuthus eupeus scorpion venom with focus on Kv1.1: An integrated transcriptomic and proteomic study. J. Biol. Chem. 2015, 290, 12195–12209. [Google Scholar] [CrossRef] [PubMed]

	



Rodríguez-Ravelo, R.; Batista, C.V.F.; Coronas, F.I.V.; Zamudio, F.Z.; Hernández-Orihuela, L.; Espinosa-López, G.; Ruiz-Urquiola, A.; Possani, L.D. Comparative proteomic analysis of male and female venoms from the Cuban scorpion Rhopalurus junceus. Toxicon 2015, 107, 327–334. [Google Scholar]

	



Rodríguez-Ravelo, R.; Coronas, F.I.V.; Zamudio, F.Z.; González-Morales, L.; López, G.E.; Urquiola, A.R.; Possani, L.D. The Cuban scorpion Rhopalurus junceus (Scorpiones, Buthidae): Component variations in venom samples collected in different geographical areas. J. Venom. Anim. Toxins Trop. Dis. 2013, 19. [Google Scholar] [CrossRef] [PubMed]

	



García-Gómez, B.I.; Coronas, F.I.V.; Restano-Cassulini, R.; Rodríguez, R.R.; Possani, L.D. Biochemical and molecular characterization of the venom from the Cuban scorpion Rhopalurus junceus. Toxicon 2011, 58, 18–27. [Google Scholar] [CrossRef] [PubMed]

	



de Oliveira, U.C.; Candido, D.M.; Coronado Dorce, V.A.; Junqueira-de-Azevedo, I. de L.M. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon 2015, 95, 52–61. [Google Scholar] [CrossRef] [PubMed]

	



Batista, C.V.F.; Del Pozo, L.; Zamudio, F.Z.; Contreras, S.; Becerril, B.; Wanke, E.; Possani, L.D. Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 2004, 803, 55–66. [Google Scholar] [CrossRef] [PubMed]

	



Diego-García, E.; Batista, C.V.F.; García-Gómez, B.I.; Lucas, S.; Candido, D.M.; Gómez-Lagunas, F.; Possani, L.D. The Brazilian scorpion Tityus costatus Karsch: Genes, peptides and function. Toxicon 2005, 45, 273–283. [Google Scholar] [CrossRef] [PubMed]

	



Batista, C.V.F.; D’Suze, G.; Gómez-Lagunas, F.; Zamudio, F.Z.; Encarnación, S.; Sevcik, C.; Possani, L.D. Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics 2006, 6, 3718–3727. [Google Scholar] [CrossRef] [PubMed]

	



Barona, J.; Batista, C.V.F.; Zamudio, F.Z.; Gomez-Lagunas, F.; Wanke, E.; Otero, R.; Possani, L.D. Proteomic analysis of the venom and characterization of toxins specific for Na+- and K+-channels from the Colombian scorpion Tityus pachyurus. Biochim. Biophys. Acta Proteins Proteomics 2006, 1764, 76–84. [Google Scholar] [CrossRef] [PubMed]

	



Arantes, E.C.; Cologna, C.T.; Cardoso, I.A.; De Pauw, E. Identification and characterization of peptides and proteins from Tityus serrulatus venom by mass spectrometry. Amino Acids 2015, 47, 1608–1609. [Google Scholar]

	



Alvarenga, E.R.; Mendes, T.M.; Magalhaes, B.F.; Siqueira, F.F.; Dantas, A.E.; Barroca, T.M.; Horta, C.C.; Kalapothakis, E. Transcriptome analysis of the Tityus serrulatus scorpion venom gland. Open J. Genet. 2012, 2, 210–220. [Google Scholar] [CrossRef]

	



Fuzita, F.J.; Pinkse, M.W.H.; Patane, J.S.L.; Juliano, M.A.; Verhaert, P.D.E.M.; Lopes, A.R. Biochemical, Transcriptomic and Proteomic Analyses of Digestion in the Scorpion Tityus serrulatus : Insights into Function and Evolution of Digestion in an Ancient Arthropod. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed]

	



Nascimento, D.G.; Rates, B.; Santos, D.M.; Verano-Braga, T.; Barbosa-Silva, A.; Dutra, A.A.A.; Biondi, I.; Martin-Eauclaire, M.F.; Lima, M.E.D.; Pimenta, A.M.C. Moving pieces in a taxonomic puzzle: Venom 2D-LC/MS and data clustering analyses to infer phylogenetic relationships in some scorpions from the Buthidae family (Scorpiones). Toxicon 2006, 47, 628–639. [Google Scholar] [CrossRef] [PubMed]

	



Pimenta, A.M.C.; Almeida, F.D.M.; de Lima, M.E.; Martin-Eauclaire, M.F.; Bougis, P.E. Individual variability in Tityus serrulatus (Scorpiones, Buthidae) venom elicited by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 413–418. [Google Scholar] [CrossRef] [PubMed]

	



Pimenta, A.M.C.; Stcklin, R.; Favreau, P.; Bougis, P.E.; Martin-Eauclaire, M.F. Moving pieces in a proteomic puzzle: Mass fingerprinting of toxic fractions from the venom of Tityus serrulatus (Scorpiones, buthidae). Rapid Commun. Mass Spectrom. 2001, 15, 1562–1572. [Google Scholar] [CrossRef] [PubMed]

	



Rates, B.; Ferraz, K.K.F.; Borges, M.H.; Richardson, M.; De Lima, M.E.; Pimenta, A.M.C. Tityus serrulatus venom peptidomics: Assessing venom peptide diversity. Toxicon 2008, 52, 611–618. [Google Scholar] [CrossRef] [PubMed]

	



Verano-Braga, T.; Dutra, A.A.A.; León, I.R.; Melo-Braga, M.N.; Roepstorff, P.; Pimenta, A.M.C.; Kjeldsen, F. Moving Pieces in a Venomic Puzzle: Unveiling Post-translationally Modified Toxins from Tityus serrulatus. J. Proteome Res. 2013, 12, 3460–3470. [Google Scholar] [CrossRef] [PubMed]

	



Verano-Braga, T.; Rocha-Resende, C.; Silva, D.M.; Ianzer, D.; Martin-Eauclaire, M.F.; Bougis, P.E.; de Lima, M.E.; Santos, R.A.S.; Pimenta, A.M.C. Tityus serrulatus Hypotensins: A new family of peptides from scorpion venom. Biochem. Biophys. Res. Commun. 2008, 371, 515–520. [Google Scholar] [CrossRef] [PubMed]

	



Almeida, D.D.; Scortecci, K.C.; Kobashi, L.S.; Agnez-Lima, L.F.; Medeiros, S.R.B.; Silva-Junior, A.A.; Junqueira-de-Azevedo, I. de L.M.; Fernandes-Pedrosa, M. de F. Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. BMC Genomics 2012, 13. [Google Scholar] [CrossRef] [PubMed]

	



Batista, C.V.F.; Román-González, S.A.; Salas-Castillo, S.P.; Zamudio, F.Z.; Gómez-Lagunas, F.; Possani, L.D. Proteomic analysis of the venom from the scorpion Tityus stigmurus: Biochemical and physiological comparison with other Tityus species. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 146, 147–157. [Google Scholar] [CrossRef] [PubMed]

	



Schwartz, E.F.; Diego-García, E.; Rodríguez de la Vega, R.C.; Possani, L.D. Transcriptome analysis of the venom gland of the Mexican scorpion Hadrurus gertschi (Arachnida: Scorpiones). BMC Genomics 2007, 8, 865–879. [Google Scholar] [CrossRef] [PubMed]

	



He, Y.; Zhao, R.; Di, Z.; Li, Z.; Xu, X.; Hong, W.; Wu, Y.; Zhao, H.; Li, W.; Cao, Z. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J. Proteomics 2013, 89, 1–14. [Google Scholar] [CrossRef] [PubMed]

	



Ma, Y.; Zhao, R.; He, Y.; Li, S.; Liu, J.; Wu, Y.; Cao, Z.; Li, W. Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: Implication for the evolution of the scorpion venom arsenal. BMC Genomics 2009, 10. [Google Scholar] [CrossRef] [PubMed]

	



Taghavi Moghadam, A. The comparison of the proteinic pattern of the venoms of scorpion Hemiscorpius lepturus and Hemiscorpius persicus. Clin. Biochem. 2011, 44. [Google Scholar] [CrossRef]

	



Schwartz, E.F.; Camargos, T.S.; Zamudio, F.Z.; Silva, L.P.; Bloch, C.; Caixeta, F.; Schwartz, C.A.; Possani, L.D. Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum. Toxicon 2008, 51, 1499–1508. [Google Scholar] [CrossRef] [PubMed]

	



Estrada-Gómez, S.; Vargas Muñoz, L.J.; Saldarriaga-Córdoba, M.; Quintana Castillo, J.C. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta Trop. 2016, 153, 70–78. [Google Scholar] [CrossRef] [PubMed]

	



Bringans, S.; Eriksen, S.; Kendrick, T.; Gopalakrishnakone, P.; Livk, A.; Lock, R.; Lipscombe, R. Proteomic analysis of the venom of Heterometrus longimanus (Asian black scorpion). Proteomics 2008, 8, 1081–1096. [Google Scholar] [CrossRef] [PubMed]

	



Ma, Y.; Zhao, Y.; Zhao, R.; Zhang, W.; He, Y.; Wu, Y.; Cao, Z.; Guo, L.; Li, W. Molecular diversity of toxic components from the scorpion Heterometrus petersii venom revealed by proteomic and transcriptome analysis. Proteomics 2010, 10, 2471–2485. [Google Scholar] [CrossRef] [PubMed]

	



Diego-García, E.; Peigneur, S.; Clynen, E.; Marien, T.; Czech, L.; Schoofs, L.; Tytgat, J. Molecular diversity of the telson and venom components from Pandinus cavimanus (Scorpionidae Latreille 1802): Transcriptome, venomics and function. Proteomics 2012, 12, 313–328. [Google Scholar] [CrossRef] [PubMed]

	



Abdel-Rahman, M.A.; Quintero-Hernandez, V.; Possani, L.D. Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon 2013, 74, 193–207. [Google Scholar] [CrossRef] [PubMed]

	



Ramirez, K.L.; Hernandez, V.Q.; Romero, E.M.; Winkel, K.; Batista, C.F.; Possani, L.D. 173. Characterisation of the Venom of an Australian Scorpion, Urodacus yaschenkoi: Proteome and Transcriptome Analysis. Toxicon 2012, 60, 184–185. [Google Scholar] [CrossRef]

	



Luna-Ramírez, K.; Quintero-Hernández, V.; Juárez-González, V.R.; Possani, L.D. Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]

	



Luna-Ramírez, K.; Quintero-Hernández, V.; Vargas-Jaimes, L.; Batista, C.V.F.; Winkel, K.D.; Possani, L.D. Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon 2013, 63, 44–54. [Google Scholar] [CrossRef] [PubMed]

	



Laustsen, A.H.; Engmark, M.; Milbo, C.; Johannesen, J.; Lomonte, B.; Gutiérrez, J.M.; Lohse, B. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Curr. Pharm. Des. 2016, 22. [Google Scholar]

	



Feng, L.; Gao, R.; Gopalakrishnakone, P. Isolation and characterization of a hyaluronidase from the venom of Chinese red scorpion Buthus martensi. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 148, 250–257. [Google Scholar] [CrossRef] [PubMed]

	



Morey, S.S.; Kiran, K.M.; Gadag, J.R. Purification and properties of hyaluronidase from Palamneus gravimanus (Indian black scorpion) venom. Toxicon 2006, 47, 188–195. [Google Scholar] [CrossRef] [PubMed]

	



Parthasarathy, P.; Venkaiah, B.; Ramanaiah, M. Isolation and characterization of hyaluronidase from scorpion (heterometrus-fulvipes) venom. Biochem. Int. 1990, 20, 301–310. [Google Scholar]

	



Horta, C.C.R.; Magalhães, B. de F.; Oliveira-Mendes, B.B.R.; do Carmo, A.O.; Duarte, C.G.; Felicori, L.F.; Machado-de-Ávila, R.A.; Chávez-Olórtegui, C.; Kalapothakis, E. Molecular, Immunological, and Biological Characterization of Tityus serrulatus Venom Hyaluronidase: New Insights into Its Role in Envenomation. PLoS Negl. Trop. Dis. 2014, 8. [Google Scholar] [CrossRef] [PubMed]

	



Borchani, L.; Sassi, A.; Ben Gharsa, H.; Safra, I.; Shahbazzadeh, D.; Ben Lasfar, Z.; El Ayeb, M. The pathological effects of Heminecrolysin, a dermonecrotic toxin from Hemiscorpius lepturus scorpion venom are mediated through its lysophospholipase D activity. Toxicon 2013, 68, 30–39. [Google Scholar] [CrossRef] [PubMed]

	



Feitosa, L.; Gremski, W.; Veiga, S.S.; Elias, M.C.Q.B.; Graner, E.; Mangili, O.C.; Brentani, R.R. Detection and characterization of metalloproteinases with gelatinolytic, fibronectinolytic and fibrinogenolytic activities in Brown spider (Loxosceles intermedia) venom. Toxicon 1998, 36, 1039–1051. [Google Scholar] [CrossRef]

	



Amir, R.; Alam, J.M.; Khan, M.A. Isolation and biological properties of scorpionvenom proteins: IV-comparative study on four proteinases isolated from the venom of isometrus vittatus. Pak. J. Pharm. Sci. 1994, 7, 21–32. [Google Scholar] [PubMed]

	



Carmo, A.O.; Oliveira-Mendes, B.B.R.; Horta, C.C.R.; Magalhães, B.F.; Dantas, A.E.; Chaves, L.M.; Chávez-Olórtegui, C.; Kalapothakis, E. Molecular and functional characterization of metalloserrulases, new metalloproteases from the Tityus serrulatus venom gland. Toxicon 2014, 90, 45–55. [Google Scholar] [CrossRef] [PubMed]

	



Gimenez, G.S.; Coutinho-Neto, A.; Kayano, A.M.; Simões-Silva, R.; Trindade, F.; de Almeida e Silva, A.; Marcussi, S.; da Silva, S.L.; Fernandes, C.F.C.; Zuliani, J.P.; et al. Biochemical and Functional Characterization of Parawixia bistriata Spider Venom with Potential Proteolytic and Larvicidal Activities, Biochemical and Functional Characterization of Parawixia bistriata Spider Venom with Potential Proteolytic and Larvicidal Activities. Biomed. Res. Int. 2014, 2014. [Google Scholar] [CrossRef]

	



Nagaraju, S.; Girish, K.S.; Fox, J.W.; Kemparaju, K. “Partitagin” a hemorrhagic metalloprotease from Hippasa partita spider venom: Role in tissue necrosis. Biochimie 2007, 89, 1322–1331. [Google Scholar] [CrossRef] [PubMed]

	



Fletcher, P.L.; Fletcher, M.D.; Weninger, K.; Anderson, T.E.; Martin, B.M. Vesicle-associated Membrane Protein (VAMP) Cleavage by a New Metalloprotease from the Brazilian Scorpion Tityus serrulatus. J. Biol. Chem. 2010, 285, 7405–7416. [Google Scholar] [CrossRef] [PubMed]

	



Ramanaiah, M.; Parthasarathy, Pr.; Venkaiah, B. Isolation and characterization of hyaluronidase from scorpion (Heterometrus fulvipes) venom. Biochem. Int. 1989, 20, 301–310. [Google Scholar]

	



Atkinson, R.K.; Wright, L.G. A study of the necrotic actions of the venom of the wolf spider, Lycosa godeffroyi, on mouse skin. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1990, 95, 319–325. [Google Scholar] [CrossRef]

	



Rees, R.; Shack, R.B.; Withers, E.; Madden, J.; Franklin, J.; Lynch, J.B. Management of the brown recluse spider bite. Plast. Reconstr. Surg. 1981, 68, 768–773. [Google Scholar] [CrossRef] [PubMed]

	



Farace, F.; Lissia, M.; Mele, A.; Masia, D.R.; Rubino, C. Local cutaneous arachnidism: A report of three cases and their management. J. Plast. Reconstr. Aesthet. Surg. 2006, 59, 197–201. [Google Scholar] [CrossRef] [PubMed]

	



El-Kik, C.Z.; Fernandes, F.F.A.; Tomaz, M.A.; Gaban, G.A.; Fonseca, T.F.; Calil-Elias, S.; Oliveira, S.D.S.; Silva, C.L.M.; Martinez, A.M.B.; Melo, P.A. Neutralization of Apis mellifera bee venom activities by suramin. Toxicon 2010, 67, 55–62. [Google Scholar]

	



Petricevich, V.L. Scorpion venom and the inflammatory response. Mediators Inflamm. 2010, 2010, 903295. [Google Scholar] [CrossRef] [PubMed]

	



Bahraoui, E.; Pichon, J.; Muller, J.M.; Darbon, H.; Elayeb, M.; Granier, C.; Marvaldi, J.; Rochat, H. Monoclonal antibodies to scorpion toxins. Characterization and molecular mechanisms of neutralization. J. Immunol. 1988, 141, 214–220. [Google Scholar] [PubMed]

	



Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef] [PubMed]

	



Clot-Faybesse, O.; Juin, M.; Rochat, H.; Devaux, C. Monoclonal antibodies against the Androctonus australis hector scorpion neurotoxin I: Characterisation and use for venom neutralisation. FEBS Lett. 1999, 458, 313–318. [Google Scholar] [CrossRef]

	



Alvarenga, L.M.; Martins, M.S.; Moura, J.F.; Kalapothakis, E.; Oliveira, J.C.; Mangili, O.C.; Granier, C.; Chávez-Olórtegui, C. Production of monoclonal antibodies capable of neutralizing dermonecrotic activity of Loxosceles intermedia spider venom and their use in a specific immunometric assay. Toxicon 2003, 42, 725–731. [Google Scholar] [CrossRef] [PubMed]

	



Bugli, F.; Graffeo, R.; Sterbini, F.P.; Torelli, R.; Masucci, L.; Sali, M.; Grasso, A.; Rufini, S.; Ricci, E.; Fadda, G.; Pescatori, M. Monoclonal antibody fragment from combinatorial phage display library neutralizes alpha-latrotoxin activity and abolishes black widow spider venom lethality, in mice. Toxicon 2008, 51, 547–554. [Google Scholar] [CrossRef] [PubMed]

	



Dias-Lopes, C.; Felicori, L.; Rubrecht, L.; Cobo, S.; Molina, L.; Nguyen, C.; Galéa, P.; Granier, C.; Molina, F.; Chávez-Olortegui, C. Generation and molecular characterization of a monoclonal antibody reactive with conserved epitope in sphingomyelinases D from Loxosceles spider venoms. Vaccine 2014, 32, 2086–2092. [Google Scholar] [CrossRef] [PubMed]

	



Zamudio, F.; Saavedra, R.; Martin, B.M.; Gurrola-Briones, G.; Hérion, P.; Possani, L.D. Amino acid sequence and immunological characterization with monoclonal antibodies of two toxins from the venom of the scorpion Centruroides noxius Hoffmann. Eur. J. Biochem. 1992, 204, 281–292. [Google Scholar] [CrossRef] [PubMed]

	



Licea, A.F.; Becerril, B.; Possani, L.D. Fab fragments of the monoclonal antibody BCF2 are capable of neutralizing the whole soluble venom from the scorpion Centruroides noxius Hoffmann. Toxicon 1996, 34, 843–847. [Google Scholar] [CrossRef]

	



Mousli, M.; Devaux, C.; Rochat, H.; Goyffon, M.; Billiald, P. A recombinant single-chain antibody fragment that neutralizes toxin II from the venom of the scorpion Androctonus australis hector. FEBS Lett. 1999, 442, 183–188. [Google Scholar] [CrossRef]

	



Jia, L.-Y.; Xie, H.-F.; Ji, Y.-H. Characterization of four distinct monoclonal antibodies specific to BmK AS-1, a novel scorpion bioactive polypeptide. Toxicon 2000, 38, 605–617. [Google Scholar] [CrossRef]

	



Devaux, C.; Moreau, E.; Goyffon, M.; Rochat, H.; Billiald, P. Construction and functional evaluation of a single-chain antibody fragment that neutralizes toxin AahI from the venom of the scorpion Androctonus australis hector. Eur. J. Biochem. 2001, 268, 694–702. [Google Scholar] [CrossRef] [PubMed]

	



Selisko, B.; Cosı́o, G.; Garcı́a, C.; Becerril, B.; Possani, L.D.; Horjales, E. Bacterial expression, purification and functional characterization of a recombinant chimeric Fab derived from murine mAb BCF2 that neutralizes the venom of the scorpion Centruroides noxius hoffmann. Toxicon 2004, 43, 43–51. [Google Scholar] [CrossRef] [PubMed]

	



Aubrey, N.; Muzard, J.; Christophe Peter, J.; Rochat, H.; Goyffon, M.; Devaux, C.; Billiald, P. Engineering of a recombinant Fab from a neutralizing IgG directed against scorpion neurotoxin AahI, and functional evaluation versus other antibody fragments. Toxicon 2004, 43, 233–241. [Google Scholar] [CrossRef] [PubMed]

	



Juárez-González, V.R.; Riaño-Umbarila, L.; Quintero-Hernández, V.; Olamendi-Portugal, T.; Ortiz-León, M.; Ortíz, E.; Possani, L.D.; Becerril, B. Directed Evolution, Phage Display and Combination of Evolved Mutants: A Strategy to Recover the Neutralization Properties of the scFv Version of BCF2 a Neutralizing Monoclonal Antibody Specific to Scorpion Toxin Cn2. J. Mol. Biol. 2005, 346, 1287–1297. [Google Scholar] [CrossRef] [PubMed]

	



Alvarenga, L.M.; Machado de Avila, R.A.; Amim, P.R.; Martins, M.S.; Kalapothakis, E.; de Lima, M.E.; Santos, R.G.; Granier, C.; Chávez-Olórtegui, C. Molecular characterization of a neutralizing murine monoclonal antibody against Tityus serrulatus scorpion venom. Toxicon 2005, 46, 664–671. [Google Scholar] [CrossRef] [PubMed]

	



Juste, M.; Martin-Eauclaire, M.F.; Devaux, C.; Billiald, P.; Aubrey, N. Using a recombinant bispecific antibody to block Na+ -channel toxins protects against experimental scorpion envenoming. Cell. Mol. Life Sci. CMLS 2007, 64, 206–218. [Google Scholar] [CrossRef] [PubMed]

	



Riaño-Umbarila, L.; Juárez-González, V.R.; Olamendi-Portugal, T.; Ortíz-León, M.; Possani, L.D.; Becerril, B. A strategy for the generation of specific human antibodies by directed evolution and phage display. FEBS J. 2005, 272, 2591–2601. [Google Scholar] [CrossRef] [PubMed]

	



Hmila, I.; Abdallah R, B.A.-B.; Saerens, D.; Benlasfar, Z.; Conrath, K.; Ayeb, M.E.; Muyldermans, S.; Bouhaouala-Zahar, B. VHH, bivalent domains and chimeric Heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI′. Mol. Immunol. 2008, 45, 3847–3856. [Google Scholar] [CrossRef] [PubMed]

	



Abderrazek, R.B.; Hmila, I.; Vincke, C.; Benlasfar, Z.; Pellis, M.; Dabbek, H.; Saerens, D.; El Ayeb, M.; Muyldermans, S.; Bouhaouala-Zahar, B. Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. Biochem. J. 2009, 424, 263–272. [Google Scholar] [CrossRef] [PubMed]

	



Hmila, I.; Saerens, D.; Abderrazek, R.B.; Vincke, C.; Abidi, N.; Benlasfar, Z.; Govaert, J.; Ayeb, M.E.; Bouhaouala-Zahar, B.; Muyldermans, S. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J. 2010, 24, 3479–3489. [Google Scholar] [CrossRef] [PubMed]

	



Riaño-Umbarila, L.; Contreras-Ferrat, G.; Olamendi-Portugal, T.; Morelos-Juárez, C.; Corzo, G.; Possani, L.D.; Becerril, B. Exploiting Cross-reactivity to Neutralize Two Different Scorpion Venoms with One Single Chain Antibody Fragment. J. Biol. Chem. 2011, 286, 6143–6151. [Google Scholar] [CrossRef] [PubMed]

	



Amaro, I.; Riaño-Umbarila, L.; Becerril, B.; Possani, L.D. Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion. Immunol. Lett. 2011, 139, 73–79. [Google Scholar] [CrossRef] [PubMed]

	



Hmila, I.; Cosyns, B.; Tounsi, H.; Roosens, B.; Caveliers, V.; Abderrazek, R.B.; Boubaker, S.; Muyldermans, S.; El Ayeb, M.; Bouhaouala-Zahar, B.; et al. Pre-clinical studies of toxin-specific Nanobodies: Evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. Toxicol. Appl. Pharmacol. 2012, 264, 222–231. [Google Scholar] [CrossRef] [PubMed]

	



Di Tommaso, A.; Juste, M.O.; Martin-Eauclaire, M.-F.; Dimier-Poisson, I.; Billiald, P.; Aubrey, N. Diabody Mixture Providing Full Protection against Experimental Scorpion Envenoming with Crude Androctonus australis Venom. J. Biol. Chem. 2012, 287, 14149–14156. [Google Scholar] [CrossRef] [PubMed]

	



Rodríguez-Rodríguez, E.R.; Ledezma-Candanoza, L.M.; Contreras-Ferrat, L.G.; Olamendi-Portugal, T.; Possani, L.D.; Becerril, B.; Riaño-Umbarila, L. A Single Mutation in Framework 2 of the Heavy Variable Domain Improves the Properties of a Diabody and a Related Single-Chain Antibody. J. Mol. Biol. 2012, 423, 337–350. [Google Scholar] [CrossRef] [PubMed]

	



Pucca, M.B.; Zoccal, K.F.; Roncolato, E.C.; Bertolini, T.B.; Campos, L.B.; Cologna, C.T.; Faccioli, L.H.; Arantes, E.C.; Barbosa, J.E. Serrumab: A human monoclonal antibody that counters the biochemical and immunological effects of Tityus serrulatus venom. J. Immunotoxicol. 2012, 9, 173–183. [Google Scholar] [CrossRef] [PubMed]

	



Pucca, M.B.; Cerni, F.A.; Peigneur, S.; Arantes, E.C.; Tytgat, J.; Barbosa, J.E. Serrumab: A novel human single chain-fragment antibody with multiple scorpion toxin-neutralizing capacities. J. Immunotoxicol. 2014, 11, 133–140. [Google Scholar] [CrossRef] [PubMed]

	



Riaño-Umbarila, L.; Olamendi-Portugal, T.; Morelos-Juárez, C.; Gurrola, G.B.; Possani, L.D.; Becerril, B. A novel human recombinant antibody fragment capable of neutralizing Mexican scorpion toxins. Toxicon 2013, 76, 370–376. [Google Scholar] [CrossRef] [PubMed]

	



Riaño-Umbarila, L.; Ledezma-Candanoza, L.M.; Serrano-Posada, H.; Fernández-Taboada, G.; Olamendi-Portugal, T.; Rojas-Trejo, S.; Gómez-Ramírez, I.V.; Rudiño-Piñera, E.; Possani, L.D.; Becerril, B. Optimal Neutralization of Centruroides noxius Venom Is Understood through a Structural Complex between Two Antibody Fragments and the Cn2 Toxin. J. Biol. Chem. 2016, 291, 1619–1630. [Google Scholar] [CrossRef] [PubMed]

	



Wörn, A.; Plückthun, A. Different Equilibrium Stability Behavior of ScFv Fragments:  Identification, Classification, and Improvement by Protein Engineering. Biochemistry (Mosc.) 1999, 38, 8739–8750. [Google Scholar] [CrossRef] [PubMed]

	



McCafferty, J.; Griffiths, A.D.; Winter, G.; Chiswell, D.J. Phage antibodies: Filamentous phage displaying antibody variable domains. Nature 1990, 348, 552–554. [Google Scholar] [CrossRef] [PubMed]

	



Muyldermans, S. Nanobodies: Natural Single-Domain Antibodies. Annu. Rev. Biochem. 2013, 82, 775–797. [Google Scholar] [CrossRef] [PubMed]

	



Cook, D.A.N.; Samarasekara, C.L.; Wagstaff, S.C.; Kinne, J.; Wernery, U.; Harrison, R.A. Analysis of camelid IgG for antivenom development: Immunoreactivity and preclinical neutralisation of venom-induced pathology by IgG subclasses, and the effect of heat treatment. Toxicon 2010, 56, 596–603. [Google Scholar] [CrossRef] [PubMed]

	



Eyer, L.; Hruska, K. Single-domain antibody fragments derived from heavy-chain antibodies: a review. Vet. Med. (Praha) 2012, 57, 439–513. [Google Scholar]

	



Richard, G.; Meyers, A.J.; McLean, M.D.; Arbabi-Ghahroudi, M.; MacKenzie, R.; Hall, J.C. In Vivo Neutralization of α-Cobratoxin with High-Affinity Llama Single-Domain Antibodies (VHHs) and a VHH-Fc Antibody. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed]

	



Morrison, S.L.; Johnson, M.J.; Herzenberg, L.A.; Oi, V.T. Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains. Proc. Natl. Acad. Sci. USA. 1984, 81, 6851–6855. [Google Scholar] [CrossRef] [PubMed]

	



Vaswani, S.K.; Hamilton, R.G. Humanized Antibodies as Potential Therapeutic Drugs. Ann. Allergy Asthma Immunol. 1998, 81, 105–119. [Google Scholar] [CrossRef]

	



Vincke, C.; Loris, R.; Saerens, D.; Martinez-Rodriguez, S.; Muyldermans, S.; Conrath, K. General Strategy to Humanize a Camelid Single-domain Antibody and Identification of a Universal Humanized Nanobody Scaffold. J. Biol. Chem. 2009, 284, 3273–3284. [Google Scholar] [CrossRef] [PubMed]

	



Birch, J.R.; Racher, A.J. Antibody production. Adv. Drug Deliv. Rev. 2006, 58, 671–685. [Google Scholar] [CrossRef] [PubMed]

	



Kelley, B. Industrialization of mAb production technology: The bioprocessing industry at a crossroads. mAbs 2009, 1, 443–452. [Google Scholar] [CrossRef] [PubMed]

	



Araujo, S.C.; Castanheira, P.; Alvarenga, L.M.; Mangili, O.C.; Kalapothakis, E.; Chávez-Olórtegui, C. Protection against dermonecrotic and lethal activities of Loxosceles intermedia spider venom by immunization with a fused recombinant protein. Toxicon 2003, 41, 261–267. [Google Scholar] [CrossRef]

	



Felicori, L.; Fernandes, P.B.; Giusta, M.S.; Duarte, C.G.; Kalapothakis, E.; Nguyen, C.; Molina, F.; Granier, C.; Chávez-Olórtegui, C. An in vivo protective response against toxic effects of the dermonecrotic protein from Loxoscelesintermedia spider venom elicited by synthetic epitopes. Vaccine 2009, 27, 4201–4208. [Google Scholar] [CrossRef] [PubMed]

	



Comis, A.; Tyler, M.; Mylecharane, E.; Spence, I.; Howden, M. Immunization with a synthetic robustoxin derivative lacking disulphide bridges protects against a potentially lethal challenge with funnel-web spider (Atrax robustus) venom. J. Biosci. 2009, 34, 35–44. [Google Scholar] [CrossRef] [PubMed]

	



Mendes, T.M.; Oliveira, D.; Figueiredo, L.F.M.; Machado-de-Avila, R.A.; Duarte, C.G.; Dias-Lopes, C.; Guimarães, G.; Felicori, L.; Minozzo, J.C.; Chávez-Olortegui, C. Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom. Vaccine 2013, 31, 2749–2755. [Google Scholar] [CrossRef] [PubMed]

	



Bahraoui, E.M.; Granier, C.; Rietschoten, J.V.; Rochat, H.; El Ayeb, M. Specificity and neutralizing capacity of antibodies elicited by a synthetic peptide of scorpion toxin. J. Immunol. 1986, 136, 3371–3377. [Google Scholar] [PubMed]

	



Calderon-Aranda, E.S.; Olamendi-Portugal, T.; Possani, L.D. The use of synthetic peptides can be a misleading approach to generate vaccines against scorpion toxins. Vaccine 1995, 13, 1198–1206. [Google Scholar] [CrossRef]

	



Bouhaouala-Zahar, B.; Ducancel, F.; Zenouaki, I.; Ben Khalifa, R.; Borchani, L.; Pelhate, M.; Boulain, J.-C.; El Ayeb, M.; Ménez, A.; Karoui, H. A Recombinant Insect-Specific α-Toxin of Buthus occitanus tunetanus Scorpion Confers Protection Against Homologous Mammal Toxins. Eur. J. Biochem. 1996, 238, 653–660. [Google Scholar] [CrossRef] [PubMed]

	



Devaux, C.; Clot-Faybesse, O.; Juin, M.; Mabrouk, K.; Sabatier, J.-M.; Rochat, H. Monoclonal antibodies neutralizing the toxin II from Androctonus australis hector scorpion venom: Usefulness of a synthetic, non-toxic analog. FEBS Lett. 1997, 412, 456–460. [Google Scholar] [CrossRef]

	



Calderon-Aranda, E.S.; Selisko, B.; York, E.J.; Gurrola, G.B.; Stewart, J.M.; Possani, L.D. Mapping of an epitope recognized by a neutralizing monoclonal antibody specific to toxin Cn2 from the scorpion Centruroides noxius, using discontinuous synthetic peptides. Eur. J. Biochem. 1999, 264, 746–755. [Google Scholar] [CrossRef] [PubMed]

	



Guatimosim, S.C.F.; Kalapothakis, E.; Diniz, C.R.; Chávez-Olórtegui, C. Induction of neutralizing antibodies against Tityus serrulatus toxins by immunization with a recombinant nontoxic protein. Toxicon 2000, 38, 113–121. [Google Scholar] [CrossRef]

	



Legros, C.; Kaabi, H.; El Ayeb, M.; Céard, B.; Vacher, H.; Bougis, P.E.; Martin-Eauclaire, M.-F. Use of fusion protein constructs to generate potent immunotherapy and protection against scorpion toxins. Vaccine 2001, 20, 934–942. [Google Scholar] [CrossRef]

	



Benkhadir, K.; Mejri, T.; Bel Haj Rhouma, R.; EI Ayeb, M.; Karoui, H. In vivo and in vitro protection against lethal activity of Buthus occitanus tunetanus venom with a recombinant protein. Arch. Inst. Pasteur Tunis 2002, 79, 19–26. [Google Scholar] [PubMed]

	



Alvarenga, L.M.; Diniz, C.R.; Granier, C.; Chávez-Olórtegui, C. Induction of neutralizing antibodies against Tityus serrulatus scorpion toxins by immunization with a mixture of defined synthetic epitopes. Toxicon 2002, 40, 89–95. [Google Scholar] [CrossRef]

	



Garcia, C.; Calderón-Aranda, E.S.; Anguiano, G.A.V.; Becerril, B.; Possani, L.D. Analysis of the immune response induced by a scorpion venom sub-fraction, a pure peptide and a recombinant peptide, against toxin Cn2 of Centruroides noxius Hoffmann. Toxicon 2003, 41, 417–427. [Google Scholar] [CrossRef]

	



Inceoglu, B.; Lango, J.; Rabinovich, A.; Whetstone, P.; Hammock, B.D. The neutralizing effect of a polyclonal antibody raised against the N-terminal eighteen-aminoacid residues of birtoxin towards the whole venom of Parabuthus transvaalicus. Toxicon 2006, 47, 144–149. [Google Scholar] [CrossRef] [PubMed]

	



Mendes, T.M.; Dias, F.; Horta, C.C.R.; Pena, I.F.; Arantes, E.C.; Kalapothakis, E. Effective Tityus serrulatus anti-venom produced using the Ts1 component. Toxicon 2008, 52, 787–793. [Google Scholar] [CrossRef] [PubMed]

	



García-Gómez, B.I.; Olamendi-Portugal, T.C.; Paniagua, J.; van der Walt, J.; Dyason, K.; Possani, L.D. Heterologous expression of a gene that codes for Pg8, a scorpion toxin of Parabuthus granulatus, capable of generating protecting antibodies in mice. Toxicon 2009, 53, 770–778. [Google Scholar] [CrossRef] [PubMed]

	



Hernández-Salgado, K.; Estrada, G.; Olvera, A.; Coronas, F.I.; Possani, L.D.; Corzo, G. Heterologous expressed toxic and non-toxic peptide variants of toxin CssII are capable to produce neutralizing antibodies against the venom of the scorpion Centruroides suffusus suffusus. Immunol. Lett. 2009, 125, 93–99. [Google Scholar] [CrossRef] [PubMed]

	



Duarte, C.G.; Alvarenga, L.M.; Dias-Lopes, C.; Machado-de-Ávila, R.A.; Nguyen, C.; Molina, F.; Granier, C.; Chávez-Olórtegui, C. In vivo protection against Tityus serrulatus scorpion venom by antibodies raised against a discontinuous synthetic epitope. Vaccine 2010, 28, 1168–1176. [Google Scholar] [CrossRef] [PubMed]

	



Machado de Avila, R.A.; Alvarenga, L.M.; Tavares, C.A.P.; Molina, F.; Granier, C.; Chávez-Olórtegui, C. Molecular characterization of protective antibodies raised in mice by Tityus serrulatus scorpion venom toxins conjugated to bovine serum albumin. Toxicon 2004, 44, 233–241. [Google Scholar] [CrossRef] [PubMed]








[image: Toxins 08 00226 g001 1024] 





Figure 1. The ten protein families with the highest number of entries among the annotated (A) spider and (B) scorpion toxins in the UniProtKB database [42]. For spiders 543 toxins do not belong to any of the top ten protein families, while this number is 129 for scorpions. The bars are colored according to the taxonomic family affiliation of each toxin entry. 
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Figure 2. Number of toxins in each taxonomic family for which LD50s and/or three three-dimensional structures have been reported in the UniProtKB database [42]. (A) Spider toxins; (B) Scorpion toxins. 
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Figure 3. Number of toxins in each protein family for which LD50s and/or three three-dimensional structures have been reported in the UniProtKB database [42]. (A) Spider toxins; (B) Scorpion toxins. 
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Figure 4. Mechanism of inactivation of metalloproteases. The chelation agent EDTA chelates metal ions and scavenges these from active metalloproteases leaving behind the inactive metalloprotease apoprotein. 
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Figure 5. Schematic representation of the antibody formats mentioned in the text. (A) Whole mAb and mAb fragments obtained after enzymatic cleavage, usually derived from hybridoma cell lines; (B) Recombinant antibody molecules of human or murine origin, usually selected from synthetic libraries by phage display selection; (C) Camelid heavy chain antibody (HCAb) and derived formats. 
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Figure 6. Schematic representation of a directed evolution approach by phage display selection coupled to mutagenesis for discovery of high affinity antibody variants. (A) Representation of a phage particle encoding and displaying scFv molecules on its surface. (B) Phage particles displaying a library of antibody fragments are panned against the target toxin (1). Strongly binding phages remain bound to the target, while non-binding phages are washed away (2). Binding phages are eluted and (3) submitted to mutagenesis, usually by error prone PCR or chain shuffling, with the intention of obtaining phage particles with enhanced affinities towards the target (4). The obtained mutants are amplified in E. coli and submitted to new panning rounds (5). After a few iterative cycles, the most strongly binding phages are eluted, and their DNA is sequenced to reveal which antibody fragments bound most strongly to the target. 
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Figure 7. Schematic representation of the use of peptidic epitopes for immunization. A peptide containing the most reactive epitope sequence(s) from selected toxin(s) is constructed and used for immunization of mice. In a successful immunization, the antibodies raised will not only target the peptide, but also the parent toxin(s). 
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Table 1. Antivenoms on the market for treatment of spider bite envenomings.
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Product Name

	
Producer

	
Country

	
Type

	
Spiders

	
Link Reference






	
Funnel web spider antivenom

	
CSL Ltd.

	
Australia

	
Equine F(ab’)2

	
Hexathelidae family (funnel-web spiders)

	
[13]




	
Red Back Spider antivenom

	
CSL Ltd.

	
Australia

	
Equine F(ab’)2

	
Latrodectus hasselti (redback spider)

	
[14]




	
Aracmyn

	
Instituto Bioclon

	
Mexico

	
Equine F(ab’)2

	
Latrodectus mactans (black widow spider), Loxosceles spp. (recluse spiders)

	
[15]




	
Reclusmyn

	
Instituto Bioclon

	
Mexico

	
Equine F(ab’)2

	
Loxosceles spp. (recluse spiders)

	
[16]




	
Soro antiarachnidico

	
Instituto Butantan

	
Brazil

	
Equine F(ab’)2

	
Loxosceles spp. (recluse spiders), Phoneutria spp. (Brazilian wandering spiders)

	
[17]




	
Anti Latrodectus antivenom

	
Instituto Nacional de Biologics A.N.L.I.S.

	
Argentina

	
N/A

	
Latrodectus mactans (black widow spider)

	
[18]




	
Suero antiloxoscélico monovalente

	
Instituto Nacional de Salud, Perú

	
Perú

	
Equine IgG

	
Loxosceles spp. (recluse spiders)

	
[19]




	
Soro Antilatrodéctico

	
Instituto Vital Brazil

	
Brazil

	
Equine F(ab’)2

	
Latrodectus mactans (black widow spider)

	
[20]




	
Antivenin (Latrodectus mactans)

	
Merck Sharp and Dohme International

	
USA

	
Equine IgG

	
Latrodectus mactans (black widow spider)

	
[21]




	
SAIMR Spider Antivenom

	
South African Vaccine Producers

	
South Africa

	
N/A

	
Latrodectus indistinctus (black button spider)

	
[22]
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Table 2. Antivenoms on the market for treatment of scorpion sting envenomings.
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Product Name

	
Producer

	
Country

	
Type

	
Scorpions

	
Link Reference






	
Suero antialacran

	
BIRMEX

	
Mexico

	
N/A

	
Centruroides spp. (bark scorpions)

	
[23]




	
Suero antiescorpiónico

	
Centro de Biotecnologia de la Universidad central de Venezuela

	
Venezuela

	
Equine F(ab’)2

	
Tityus spp. (thin-tailed scorpions)

	
[24]




	
Le sérum antiscorpionique (monovalent)

	
Institut Pasteur d’Algerie

	
Algeria

	
N/A

	
Androctonus australis (fat-tailed scorpion), Buthus occitanus (common yellow scorpion), Androctonus crasicauda (Arabian fat-tailed scorpion)

	
[25]




	
Scorpion antivenom

	
Institut Pasteur du Maroc

	
Morocco

	
Equine F(ab’)2

	
Buthus occitanus (common yellow scorpion), Androctonus mauritanicus (Moroccan fat-tailed scorpion)

	
[26]




	
Le sérum antiscorpionique

	
Refik Saydam Hygiene Center

	
Turkey

	
Equine

	
Androctonus crassicauda (Arabian fat-tailed scorpion), Leiurus quinquestriatus (Israeli yellow scorpion)

	
[27]




	
Alacramyn

	
Instituto Bioclon

	
Mexico

	
Equine Fab

	
Centruroides spp. (bark scorpions)

	
[28]




	
Soro antiarachnidico

	
Instituto Butantan

	
Brazil

	
Equine F(ab’)2

	
Tityus spp. (thin-tailed scorpions)

	
[17]




	
Soro antiescorpionico

	
Instituto Butantan

	
Brazil

	
Equine F(ab’)2

	
Tityus bahiensis (black scorpion), Tityus serrulatus (Brazilian yellow scorpion)

	
[29]




	
Soro antiescorpiônico

	
Instituto Vital Brazil

	
Brazil

	
Equine F(ab’)2

	
Buthus occitanus (common yellow scorpion)

	
[20]




	
Polyvalent Scorpion Antivenom

	
National Antivenom and Vaccine Production Center

	
Saudi Arabia

	
Equine F(ab’)2

	
Leiurus quinquestriatus (Israeli yellow scorpion), Androctonus crassicauda (Arabian fat-tailed scorpion), Buthus arenicola, Buthus mimax, Buthus occitanus (common yellow scorpion), Androctonus amoreuxi (fat-tailed scorpion)

	
[30]




	
Le sérum antiscorpionique

	
Pasteur Tunis

	
North Africa

	
Equine F(ab’)2

	
Androctonus australis (fat-tailed scorpion), Buthus occitanus (common yellow scorpion)

	
[31]




	
Monovalent Scorpion Antivenom

	
Razi Vaccine and Serum Research Institute

	
Iran

	
Equine

	
N/A

	
[32]




	
Polyvalent Scorpion Antivenom

	
Razi Vaccine and Serum Research Institute

	
Iran

	
Equine

	
Androctonus crasicauda (Arabian fat-tailed scorpion), Hemiscorpius lepturus, Hottentotta saulcyi, Hottentotta schach, Mesobuthus eupeus, Odontobuthus doriae

	
[32]




	
Scorpifav

	
Sanofi Pasteur

	
North Africa and Middle East

	
Equine F(ab’)2

	
Androctonus australis (fat-tailed scorpion), Leiurus quinquestriatus (Israeli yellow scorpion), Buthus occitanus (common yellow scorpion)

	
[33]




	
SAIMR Scorpion Antivenom

	
South African Vaccine Producer

	
South Africa

	
Equine

	
Parabuthus transvaalicus (dark scorpion)

	
[22]




	
Scorpion antivenom Twyford

	
Twyford Pharmaceuticals

	
North Africa

	
N/A

	
Androctonus australis (fat-tailed scorpion), Buthus occitanus (common yellow scorpion), Leiurus quinquestriatus (Israeli yellow scorpion)

	
[34]




	
Purified Polyvalent anti-scorpion serum

	
VACSERA

	
Egypt

	
Equine F(ab’)2

	
Leiurus quinquestriatus (Israeli yellow scorpion), Scorpio maurus (large-clawed scorpion), Androctonus crasicauda (Arabian fat-tailed scorpion), Buthus occitanus (common yellow scorpion)

	
[35]




	
Scorpion Venom Antiserum

	
Vins Bioproducts Ltd.

	
India

	
Equine IgG

	
Leiurus quinquestraitus (Israeli yellow scorpion), Androctonus amoreuxi (fat-tailed scorpion)

	
[36]




	
Soro Antiescorpiônico (FUNED)

	
Fundação Ezequiel Dias

	
Brazil

	
Equine F(ab’)2

	
Tityus serrulatus, (Brazilian yellow scorpion)

	
[37]




	
Anti-scorpion Venom Serum

	
Haffkine Bio-Pharmaceutical Corporation Ltd.

	
India

	
Equine IgG

	
Buthus tamulus (red scorpion)

	
[38]
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Table 3. Proteomics and transcriptomics studies performed on spider venoms.
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Family

	
Genus

	
Species

	
Prot.

	
Tran.

	
Reference






	
Agelenidae

	
Agelena

	
A. orientalis (funnel weaver spider)

	
√

	
-

	
[48]




	
Araneidae

	
Araneus

	
A. ventricosus (Chinese orb-weaving spider)

	
√

	
√

	
[49]




	
Barychelidae

	
Trittame

	
T. loki (brush-foot trapdoor)

	
√

	
√

	
[50]




	
Ctenidae

	
Cupiennius

	
C. salei (tiger wandering spider)

	
√

	
-

	
[51]




	
Phoneutria

	
P. boliviensis (male) (Brazilian wandering spider)

	
√

	
-

	
[52]




	
P. boliviensis (female)

	
√

	
-

	
[52]




	
P. nigriventer (Brazilian wandering spider)

	
√

	
√

	
[53,54]




	
P. nigriventer (Minas Gerais, Brazil)

	
√

	
-

	
[55]




	
P. pertyi

	

	
√

	
[53]




	
P. keyserlingi (Minas Gerais, Brazil)

	
√

	
-

	
[55]




	
P. reidyi (Amazonas, Brazil) (Brazilian wandering spider)

	
√

	
-

	
[55]




	
P. reidyi (Para, Brazil)

	
√

	
-

	
[55]




	
P. reidyi (Roraima, Brazil)

	
√

	
-

	
[55]




	
Hexathelidae

	
Hadronyche

	
H. cerberea (male and female) (Australian funnel-web spider)

	
√

	
-

	
[40]




	
H. infensa (Australian funnel-web spider)

	
√

	
√

	
[40,56]




	
Illawarra

	
I. wisharti (male) (Australian funnel-web spider)

	
√

	
-

	
[40]




	
Lycosidae

	
Lycosa

	
L. singoriensis (Chinese wolf spider)

	
-

	
√

	
[57]




	
L. vittata (wolf spider)

	
-

	
√

	
[58]




	
Pisauridae

	
Dolomedes

	
D. fimbriatus (raft spider)

	
-

	
√

	
[59]




	
D. mizhoanus (fishing spider)

	
-

	
√

	
[60,61]




	
D. sulfurous (fishing spider)

	
-

	
√

	
[61]




	
Plectreuridae

	
Plectreurys

	
P. tristis (primitive hunting spiders)

	
√

	
√

	
[62]




	
Sicariidae

	
Loxosceles

	
L. gaucho (Brown spider)

	
√

	
-

	
[63]




	
L. intermedia (brown recluse spider)

	
√

	
√

	
[64,65]




	
L. laeta (Chilean recluse spider)

	
-

	
√

	
[66]




	
Scytodidae

	
Scytodes

	
S. thoracica (spitting spider)

	
√

	
√

	
[67]




	
Theraphosidae

	
Acanthoscurria

	
A. paulensis (Brazilian giant black tarantula)

	
√

	
-

	
[68]




	
Chilobrachys

	
C. jingzhao (Chinese earth tiger tarantula)

	
√

	
√

	
[69,70]




	
Citharischius

	
C. crawshayi (king baboon spider)

	
√

	
√

	
[71]




	
Grammostola

	
G. iheringi (Argentinean black tarantula)

	
√

	
-

	
[72]




	
Haplopelma

	
H. hainanum (Chinese bird spider)

	
√

	
√

	
[73,74,75]




	
H. schmidti (Chinese bird spider)

	
√

	
√

	
[76,77,78,79,80]




	
Theridiidae

	
Latrodectus

	
L. geometricus (brown widow spider)

	
-

	
√

	
[81]




	
L. hesperus (Western black widow spider)

	
√

	
√

	
[81,82]




	
L. tredecimguttatus (Mediterranean black widow)

	
√

	
√

	
[83,84,85]




	
Steatoda

	
S. grossa (cupboard spider)

	
-

	
√

	
[81]
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Table 4. Proteomics and transcriptomics studies performed on scorpion venoms.
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Family

	
Genus

	
Species

	
Prot.

	
Tran.

	
Reference






	
Buthidae

	
Androctonus

	
A. bicolor (black fat-tailed scorpion)

	
√

	
√

	
[86]




	
A. mauretanicus mauretanicus (fat-tailed scorpion)

	
√

	
-

	
[87]




	
Buthacus

	
B. macrocentrus (Turkish scorpion)

	
√

	
-

	
[88]




	
Buthus

	
B martensi (Chinese Scorpion)

	
√

	
-

	
[89]




	
Centruroides

	
C. tecomanus

	
√

	
√

	
[90]




	
Hottentotta

	
H. conspersus (Sesriem scorpion)

	
-

	
√

	
[91]




	
H. judaicus (black scorpion)

	
-

	
√

	
[92]




	
Isometrus

	
I. maculatus (lesser brown scorpion)

	
-

	
√

	
[93]




	
Leiurus

	
L. quinquestriatus hebraeus (yellow scorpion)

	
√

	
-

	
[94]




	
Leiurus

	
L. quinquestriatus quinquestriatus (deathstalker scorpion)

	
√

	
-

	
[94]




	
Lychas

	
L. mucronatus (Chinese Swimming Scorpion)

	
-

	
√

	
[93]




	
Mesobuthus

	
M. eupeus (lesser Asian scorpion)

	
√

	
√

	
[95]




	
Rhoplaurus

	
R. junceus (Caribbean blue scorpion)

	
√

	
-

	
[96,97,98]




	
Tityus

	
T. bahiensis (Brazilian scorpion)

	
√

	
√

	
[94,99]




	
T. cambridgei (Amazonian scorpion)

	
√

	
-

	
[100]




	
T. costatus (Brazilian scorpion)

	
√

	
-

	
[101]




	
T. discrepans (Venezuelan scorpion)

	
√

	
-

	
[102]




	
T. pachyurus (Colombian scorpion)

	
√

	
-

	
[103]




	
T. serrulatus (Brazilian scorpion)

	
√

	
√

	
[104,105,106,107,108,109,110,111,112]




	
T. stigmurus (Brazilian scorpion)

	
√

	
-

	
[94,113,114]




	
Caraboctonidae

	
Hadrurus

	
H. gertschi

	
-

	
√

	
[115]




	
Chaerilidae

	
Chaerilus

	
C. tricostatus

	
-

	
√

	
[116]




	
C. tryznai

	
-

	
√

	
[116]




	
Euscorpiidae

	
Scorpiops

	
S. jendeki

	
-

	
√

	
[117]




	
S. margerisonae

	
-

	
√

	
[93]




	
Hemiscorpiidae

	
Hemiscorpius

	
H. lepturus

	
√

	
-

	
[118]




	
H. persicus

	
√

	
-

	
[118]




	
Opisthacanthus

	
O. cayaporum (Brazilian scorpion)

	
√

	
-

	
[119]




	
O. elatus

	
√

	
-

	
[120]




	
Scorpionidae

	
Heterometrus

	
H. longimanus (black emperor scorpion)

	
√

	
-

	
[121]




	
H. petersii (Asian forest scorpion)

	
√

	
√

	
[122]




	
Pandinus

	
P. cavimanus (Tanzanian red clawed scorpion)

	
-

	
√

	
[123]




	
Scorpio

	
S. maurus palmatus (chactoid scorpion)

	
√

	
√

	
[124]




	
Urodacus

	
U. yaschenkoi (inland robust scorpion)

	
√

	
√

	
[125,126,127]
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Table 5. Reported small molecules with inhibitory effect against scorpion and spider toxins.
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Antitoxin

	
Chemical class

	
Molecular Formula

	
Structure

	
MW (Da)

	
Target

	
Target

	
Ref.




	
Species

	
Toxin Family






	
Heparin

	
Sulfated glyco-aminglycan

	
C12H19NO20S3

	
 [image: Toxins 08 00226 i001]

	
12–15 kDa

	
Buthus martensi (Chinese red scorpion), Palamneus gravimanus (Indian black scorpion), Heterometrus fulvipes (giant forrest scorpion)

	
Hyaluronidase

	
[129,130,131]




	
Aristolochic acid

	
Alkaloid

	
C17H11NO7

	
 [image: Toxins 08 00226 i002]

	
341.27

	
Tityus serrulatus (Brazilian yellow scorpion)

	
Hyaluronidase

PLA2

	
[132]




	
EDTA

	
Acyclic

	
C10H16N2O8

	
 [image: Toxins 08 00226 i003]

	
292.24

	
Buthus martensi (Chinese red scorpion), Heterometrus fulvipes (giant forrest scorpion), Isonietrus vittatus (scorpion), Hemiscorpius lepturus (scorpion), Tityus serrulatus (Brazilian yellow scorpion)

Loxosceles intermedia (brown spider), Hippasa partita (spider), Parawixia bistriata (spider)

	
Metalloprotease Hyaluronidase

PLA2

	
[129,131,133,134,135,136,137,138,139]




	
1,10-phenanthroline

	
Heterocyclic, 3-ring

	
C12H8N2

	
 [image: Toxins 08 00226 i004]

	
180.21

	
Hemiscorpius lepturus (scorpion)

Loxosceles intermedia (brown spider), Hippasa partita (spider)

	
Metalloprotease Hyaluronidase

PLA2

	
[133,134,138]
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Table 6. Reported work on murine monoclonal antibodies and antibody fragments against spider toxins.
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Name

	
Target

	
Type

	
Author

	
Year

	
Ref.






	
LiMAb(7)

	
Loxoscelesintermedia (recluse spider).

	
mAb

	
Alvarenga et al.

	
2003

	
[149]




	
FM1

	
Alpha-latrotoxin from Latrodectus sp. (black widow spiders).

	
Fab

	
Bugli et al.

	
2008

	
[150]




	
LiD1mAb16

	
Sphingomyelinases D from Loxosceles intermedia, L. laeta and L. gaucho (brown or recluse spiders).

	
mAb

	
Dias-Lopes et al.

	
2014

	
[151]
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Table 7. Reported work on murine monoclonal antibodies and antibody fragments against scorpion toxins.
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Name

	
Target

	
Type

	
Author

	
Year

	
Ref.






	
mAb 4C1

	
Aah I from Androctonus australis (fat-tailed scorpion)

	
mAb

	
Bahraoui et al.

	
1988

	
[146]




	
mAb BCF2

	
Cn2 from Centruroides noxius (Mexican bark scorpion)

	
mAb

	
Zamudio et al.

	
1992

	
[152,153]




	
Licea et al.

	
1996




	
mAb 9C2

	
Aah II from Androctonus australis (fat-tailed scorpion)

	
mAb

	
Clot-Faybesse et al.

	
1999

	
[148]




	
scFv 4C1

	
Aah I from Androctonus australis (fat-tailed scorpion)

	
scFv

	
Mousli et al.

	
1999

	
[154]




	
mAbs BmK AS-1

	
BmK AS-1 from Buthus martensii karsch (Chinese scorpion)

	
mAb

	
Jia et al.

	
2000

	
[155]




	
scFv 9C2

	
Aah II from Androctonus australis (fat-tailed scorpion)

	
scFv

	
Devaux et al.

	
2001

	
[156]




	
chFab-BCF2

	
Cn2 from Centruroides noxius (Mexican bark scorpion)

	
chFab

	
Selisko et al.

	
2004

	
[157]




	
rFab 9C2

	
Aah I from Androctonus australis (fat-tailed scorpion)

	
rFab

	
Aubrey et al.

	
2004

	
[158]




	
Triple mutant (G5 + B7)

	
Cn2 from Centruroides noxius hoffmann (Mexican bark scorpion)

	
scFvs

	
Juárez-González et al.

	
2005

	
[159]




	
mAbTs1

	
TsVII, TsIV and TsNTxP from Tityus serrulatus (brazilian yellow scorpion)

	
mAb

	
Alvarenga et al.

	
2005

	
[160]




	
T94H6

	
Aah I and Aah II from Androctonus australis (fat-tailed scorpion)

	
Tandem-scFv

	
Juste et al.

	
2007

	
[161]
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Table 8. Reported work on non-murine recombinant antibodies and antibody fragments against scorpion toxins.
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Name

	
Target

	
Type

	
Author

	
Year

	
Ref.






	
scFv 3F, scFv 6009F

	
Cn2 from Centruroides noxiushoffmann (Mexican bark scorpion)

	
Human scFv

	
Riaño-Umbarila et al.

	
2005

	
[162]




	
NbAahI’22

	
AahI’ from Androctonus australis (Sahara scorpion)

	
Camelid Nb

	
Hmila et al.

	
2008

	
[163]




	
NbAahII10

	
AahII from Androctonus australis hector (Sahara scorpion)

	
Camelid Nb

	
Abderrazek et al.

	
2009

	
[164]




	
NbAah’F12

	
AahI from Androctonus australis (Sahara scorpion)

	
Camelid Nb

	
Hmila et al

	
2010

	
[165]




	
scFv 9004G

	
Cn2 from Centruroides noxius hoffmann and Css2 from Centruroides suffusus suffusus (Mexican bark scorpions)

	
Human scFv

	
Riaño-Umbarila et al.

	
2011

	
[166]




	
scFv LR

	
-

	
-

	
-




	
scFv 15e

	
Ts1 or gamma-toxin from Tityus serrulatus (Brazilian yellow scorpion)

	
Human scFv

	
Amaro et al.

	
2011

	
[167]




	
NbF12-10

	
AahI and AahII from Androctonus australis (Sahara scorpion)

	
Bispecific Nb

	
Hmila et al.

	
2012

	
[168]




	
Db 9C2 + Db4 C1

	
AahI and AahII from Androctonus australis (Sahara scorpion)

	
Diabody mixture

	
Di Tommaso et al.

	
2012

	
[169]




	
Diabody D4, scFv LER

	
Cn2 from Centruroides noxiushoffmann (Mexican bark scorpion)

	
Diabody

	
Rodríguez-Rodríguez et al.

	
2012

	
[170]




	
Serrumab

	
Ts1 and Ts2 from Tityus serrulatus (Brazilian yellow scorpion)

	
Human scFv

	
Pucca et al.

	
2012, 2014

	
[171,172]




	
scFv C1

	
Cn2 from Centruroides noxius hoffmann (Mexican bark scorpion)

	
Human scFv

	
Riaño-Umbarila et al.

	
2013

	
[173]




	
scFv 202F

	
CII1 from Centruroides limpidus limpidus (Mexican bark scorpion)

	
-

	
-

	
-




	
scFv RU1

	
Cn2 from Centruroides noxius hoffmann (Mexican bark scorpion), and CII1 from Centruroides limpidus limpidus (Mexican bark scorpion)

	
Human scFv

	
Riaño-Umbarila et al.

	
2016

	
[174]




	
scFv ER-5

	
Cn2 from Centruroides noxius Hoffmann (Mexican bark scorpion), CII1 from Centruroides limpidus limpidus (Mexican bark scorpion), and Css2 from Centruroides suffuses suffuses (Mexican bark scorpion)

	
Human scFv

	
Rodríguez-Rodrígues et al.

	
2016

	
[45]
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Table 9. Reported work on next generation immunization strategies for spider antivenoms.
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Immunization Strategy

	
Target

	
Author

	
Year

	
Ref.






	
Recombinant toxin

	
A dermonecrotic toxin from Loxoscelesintermedia (recluse spider)

	
Araujo et al.

	
2003

	
[186]




	
Synthetic epitope

	
A dermonecrotic toxin from Loxoscelesintermedia (recluse spider)

	
Felicori et al.

	
2009

	
[187]




	
Synthetic toxin

	
Robustoxin from Atrax robustus (Sydney funnel-web spider)

	
Comis et al.

	
2009

	
[188]




	
Recombinant toxin

	
A dermonecrotic toxin from Loxoscelesintermedia (recluse spider)

	
Mendes et al.

	
2013

	
[189]
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Table 10. Reported work on next generation immunization strategies for scorpion antivenoms.
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Immunization Strategy

	
Target

	
Author

	
Year

	
Ref.






	
Synthetic epitope

	
AaH2 from Androctonus australis (Sahara scorpion)

	
Bahroui et al.

	
1986

	
[163]




	
Synthetic epitope

	
Cn2 from Centruroides noxius (Mexican bark scorpion)

	
Calderon-Aranda et al.

	
1995

	
[191]




	
Recombinant toxin

	
BotXIV from Buthus occitanus tunetanus (common European scorpion)

	
Bouhaouala-Zahar et al.

	
1996

	
[192]




	
Synthetic epitope

	
AaH2 from Androctonus australis hector (Sahara scorpion)

	
Devaux et al.

	
1997

	
[193]




	
Synthetic epitope

	
Cn2 from Centruroides noxius Hoffmann (Mexican bark scorpion)

	
Calderon-Aranda et al.

	
1999

	
[194]




	
Recombinant toxin

	
TsNTxP from Tityus serrulatus (Brazilian yellow scorpion)

	
Guatimosim et al.

	
2000

	
[195]




	
Recombinant toxin

	
AaH1, AaH2 and AaH3 from Androctonus australis (Sahara scorpion)

	
Legros et al.

	
2001

	
[196]




	
Recombinant toxin

	
Bot III from Buthus occitanus tunetanus (common European scorpion)

	
Benkhadir et al.

	
2001

	
[197]




	
Synthetic epitope

	
TsNTxP and TsIV from Tityus serrulatus (Brazilian yellow scorpion)

	
Alvarenga et al.

	
2002

	
[198]




	
Recombinant toxin

	
Cn5 from Centruroides noxius Hoffmann (Mexican bark scorpion)

	
Garcia et al.

	
2003

	
[199]




	
Synthetic epitope

	
Birtoxin from Parabuthus transvaalicus (South African fat-tail Scorpion)

	
Inceoglu et al.

	
2006

	
[200]




	
Recombinant toxin

	
Ts1 from Tityus serrulatus (Brazilian yellow scorpion)

	
Mendes et al.

	
2008

	
[201]




	
Recombinant toxin

	
PG8 from Parabuthus granulatus (granulated thick-tailed scorpion)

	
García-Gómez et al.

	
2009

	
[202]




	
Recombinant toxin

	
Css2 from Centruroides suffusus suffusus (Mexican bark scorpion)

	
Hernández-Salgado et al.

	
2009

	
[203]




	
Synthetic epitope

	
TsNTxP from Tityus serrulatus (Brazilian yellow scorpion)

	
Duarte et al.

	
2010

	
[204]










© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
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