Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Toxins, Volume 9, Issue 1 (January 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The food toxicologists working on natural toxins should face in the next years the challenge of [...] Read more.
View options order results:
result details:
Displaying articles 1-42
Export citation of selected articles as:
Open AccessArticle Detoxification of Aflatoxin B1 by Zygosaccharomyces rouxii with Solid State Fermentation in Peanut Meal
Received: 5 December 2016 / Revised: 17 January 2017 / Accepted: 17 January 2017 / Published: 20 January 2017
Cited by 1 | PDF Full-text (1251 KB) | HTML Full-text | XML Full-text
Abstract
Aflatoxins are highly carcinogenic, teratogenetic, and morbigenous secondary metabolites of Aspergillus flavus and A. parasiticus that can contaminate multiple staple foods, such as peanut, maize, and tree nuts. In this study, Zygosaccharomyces rouxii was screened out and identified from fermented soy paste—one kind
[...] Read more.
Aflatoxins are highly carcinogenic, teratogenetic, and morbigenous secondary metabolites of Aspergillus flavus and A. parasiticus that can contaminate multiple staple foods, such as peanut, maize, and tree nuts. In this study, Zygosaccharomyces rouxii was screened out and identified from fermented soy paste—one kind of traditional Chinese food—to detoxify aflatoxin B1 (AFB1) by aerobic solid state fermentation in peanut meal. The optimal degradation condition was chosen from single factor experiment, and the most effective detoxification rate was about 97%. As for liquid fermentation, we tested the binding ability of Z. rouxii, and the highest binding rate reached was 74.3% (nonviable cells of Z. rouxii) in phosphate-buffered saline (PBS). Moreover, the biotransformation of AFB1 through fermentation of Z. rouxii in peanut meal was further verified by liquid chromatography/mass spectrometry (LC/MS). According to TIC scan, after fermentation by Z. rouxii, the AFB1 in peanut meal was prominently degraded to the lowering peaks of AFB1. Additionally, m/s statistics demonstrated that AFB1 may be degraded to some new products whose structural properties may be different from AFB1, or the degradation products may be dissolved in the aqueous phase rather than the organic phase. As far as we know, this is the first report indicating that the safe strain of Z. rouxii has the ability to detoxify AFB1. Full article
Figures

Figure 1a

Open AccessArticle Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton–Valentine Leucocidin and γ-Hemolysin
Received: 16 November 2016 / Revised: 10 January 2017 / Accepted: 16 January 2017 / Published: 20 January 2017
PDF Full-text (6670 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize
[...] Read more.
Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize the receptor to induce intracellular Ca2+ release from internal stores, other than those activated by C5a. The two leucotoxins are internalized with the phosphorylated receptor, but it is unknown whether they divert retrograde transport of the receptor or follow another pathway. Immunolabeling and confocal microscopic techniques were used to analyze the presence of leucotoxins in endosomes, lysosomes, endoplasmic reticulum, and Golgi. The two leucotoxins apparently followed retrograde transport similar to that of the C5a peptide-activated receptor. However, HlgC/HlgB reached the Golgi network very early, whereas LukS-PV/LukF-PV followed slower kinetics. The HlgC/HlgB leucotoxin remained in neutrophils 6 h after a 10-min incubation of the cells in the presence of the toxin with no signs of apoptosis, whereas apoptosis was observed 3 h after neutrophils were incubated with LukS-PV/LukF-PV. Such retrograde transport of leucotoxins provides a novel understanding of the cellular effects initiated by sublytic concentrations of these toxins. Full article
(This article belongs to the collection Staphylococcus aureus Toxins)
Figures

Graphical abstract

Open AccessArticle A Survey of Aflatoxin-Producing Aspergillus sp. from Peanut Field Soils in Four Agroecological Zones of China
Received: 25 October 2016 / Revised: 5 January 2017 / Accepted: 6 January 2017 / Published: 20 January 2017
PDF Full-text (1446 KB) | HTML Full-text | XML Full-text
Abstract
Peanut pods are easily infected by aflatoxin-producing Aspergillus sp.ecies from field soil. To assess the aflatoxin-producing Aspergillus sp. in different peanut field soils, 344 aflatoxin-producing Aspergillus strains were isolated from 600 soil samples of four agroecological zones in China (the Southeast coastal zone
[...] Read more.
Peanut pods are easily infected by aflatoxin-producing Aspergillus sp.ecies from field soil. To assess the aflatoxin-producing Aspergillus sp. in different peanut field soils, 344 aflatoxin-producing Aspergillus strains were isolated from 600 soil samples of four agroecological zones in China (the Southeast coastal zone (SEC), the Yangtze River zone (YZR), the Yellow River zone (YR) and the Northeast zone (NE)). Nearly 94.2% (324/344) of strains were A. flavus and 5.8% (20/344) of strains were A. parasiticus. YZR had the highest population density of Aspergillus sp. and positive rate of aflatoxin production in isolated strains (1039.3 cfu·g−1, 80.7%), the second was SEC (191.5 cfu·g−1, 48.7%), the third was YR (26.5 cfu·g−1, 22.7%), and the last was NE (2.4 cfu·g−1, 6.6%). The highest risk of AFB1 contamination on peanut was in YZR which had the largest number of AFB1 producing isolates in 1g soil, followed by SEC and YR, and the lowest was NE. The potential risk of AFB1 contamination in peanuts can increase with increasing population density and a positive rate of aflatoxin-producing Aspergillus sp. in field soils, suggesting that reducing aflatoxigenic Aspergillus sp. in field soils could prevent AFB1 contamination in peanuts. Full article
(This article belongs to the Special Issue Exposure and Risk Assessment for Mycotoxins)
Figures

Figure 1

Open AccessEditor’s ChoiceLetter Is the Insect World Overcoming the Efficacy of Bacillus thuringiensis?
Received: 16 November 2016 / Revised: 5 January 2017 / Accepted: 10 January 2017 / Published: 18 January 2017
Cited by 5 | PDF Full-text (534 KB) | HTML Full-text | XML Full-text
Abstract
The use of chemical pesticides revolutionized agriculture with the introduction of DDT (Dichlorodiphenyltrichloroethane) as the first modern chemical insecticide. However, the effectiveness of DDT and other synthetic pesticides, together with their low cost and ease of use, have led to the generation of
[...] Read more.
The use of chemical pesticides revolutionized agriculture with the introduction of DDT (Dichlorodiphenyltrichloroethane) as the first modern chemical insecticide. However, the effectiveness of DDT and other synthetic pesticides, together with their low cost and ease of use, have led to the generation of undesirable side effects, such as pollution of water and food sources, harm to non-target organisms and the generation of insect resistance. The alternative comes from biological control agents, which have taken an expanding share in the pesticide market over the last decades mainly promoted by the necessity to move towards more sustainable agriculture. Among such biological control agents, the bacterium Bacillus thuringiensis (Bt) and its insecticidal toxins have been the most studied and commercially used biological control agents over the last 40 years. However, some insect pests have acquired field-evolved resistance to the most commonly used Bt-based pesticides, threatening their efficacy, which necessitates the immediate search for novel strains and toxins exhibiting different modes of action and specificities in order to perpetuate the insecticidal potential of this bacterium. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Graphical abstract

Open AccessEditor’s ChoiceReview Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature
Received: 9 December 2016 / Revised: 4 January 2017 / Accepted: 7 January 2017 / Published: 18 January 2017
Cited by 27 | PDF Full-text (2110 KB) | HTML Full-text | XML Full-text
Abstract
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins.
[...] Read more.
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Figure 1

Open AccessEditorial Announcing the 2017 Toxins Travel Awards for Post-Doctoral Fellows and Ph.D. Students
Received: 13 January 2017 / Revised: 13 January 2017 / Accepted: 13 January 2017 / Published: 17 January 2017
PDF Full-text (684 KB) | HTML Full-text | XML Full-text
Abstract
As Editor-in-Chief of Toxins, I am pleased to announce the winners of the Toxins Travel Awards for 2017.[...] Full article
Figures

Figure 1

Open AccessEditorial Understanding the Snake Venom Metalloproteinases: An Interview with Jay Fox and José María Gutiérrez
Received: 3 January 2017 / Accepted: 11 January 2017 / Published: 16 January 2017
PDF Full-text (1173 KB) | HTML Full-text | XML Full-text
Abstract
Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic “Snake Venom Metalloproteinases” in Toxins. The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the
[...] Read more.
Jay W. Fox and José María Gutiérrez recently finished editing a Special Issue on the topic “Snake Venom Metalloproteinases” in Toxins. The Special Issue covers a wide range of topics, including the molecular evolution and structure of snake venom metalloproteinases (SVMPs), the mechanisms involved in the generation of diversity of SVMPs, the mechanism of action of SVMPs, and their role in the pathophysiology of envenomings, with implications for improving the therapy of envenomings. In this interview, we discussed with Jay W. Fox and José María Gutiérrez their research on the SVMPs and their perspectives on the future trends and challenges for studying snake venoms. Full article
(This article belongs to the Special Issue Snake Venom Metalloproteinases) Printed Edition available
Figures

Figure 1

Open AccessEditor’s ChoiceArticle Novel Aflatoxin-Degrading Enzyme from Bacillus shackletonii L7
Received: 22 September 2016 / Revised: 10 January 2017 / Accepted: 11 January 2017 / Published: 14 January 2017
Cited by 2 | PDF Full-text (3161 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Food and feed contamination by aflatoxin (AF)B1 has adverse economic and health consequences. AFB1 degradation by microorganisms or microbial enzymes provides a promising preventive measure. To this end, the present study tested 43 bacterial isolates collected from maize, rice, and soil
[...] Read more.
Food and feed contamination by aflatoxin (AF)B1 has adverse economic and health consequences. AFB1 degradation by microorganisms or microbial enzymes provides a promising preventive measure. To this end, the present study tested 43 bacterial isolates collected from maize, rice, and soil samples for AFB1-reducing activity. The higher activity was detected in isolate L7, which was identified as Bacillus shackletonii. L7 reduced AFB1, AFB2, and AFM1 levels by 92.1%, 84.1%, and 90.4%, respectively, after 72 h at 37 °C. The L7 culture supernatant degraded more AFB1 than viable cells and cell extracts; and the degradation activity was reduced from 77.9% to 15.3% in the presence of proteinase K and sodium dodecyl sulphate. A thermostable enzyme purified from the boiled supernatant was designated as Bacillus aflatoxin-degrading enzyme (BADE). An overall 9.55-fold purification of BADE with a recovery of 39.92% and an activity of 3.85 × 103 U·mg−1 was obtained using chromatography on DEAE-Sepharose. BADE had an estimated molecular mass of 22 kDa and exhibited the highest activity at 70 °C and pH 8.0, which was enhanced by Cu2+ and inhibited by Zn2+, Mn2+, Mg2+, and Li+. BADE is the major protein involved in AFB1 detoxification. This is the first report of a BADE isolated from B. shackletonii, which has potential applications in the detoxification of aflatoxins during food and feed processing. Full article
Figures

Figure 1

Open AccessArticle Unravelling the Diversity of the Cyclopiazonic Acid Family of Mycotoxins in Aspergillus flavus by UHPLC Triple-TOF HRMS
Received: 9 November 2016 / Revised: 20 December 2016 / Accepted: 10 January 2017 / Published: 13 January 2017
Cited by 4 | PDF Full-text (2863 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cyclopiazonic acid (α-cyclopiazonic acid, α-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures approximately 40 years ago, its contribution to the A. flavus mycotoxin
[...] Read more.
Cyclopiazonic acid (α-cyclopiazonic acid, α-CPA) is an indole-hydrindane-tetramic acid neurotoxin produced by various fungal species, including the notorious food and feed contaminant Aspergillus flavus. Despite its discovery in A. flavus cultures approximately 40 years ago, its contribution to the A. flavus mycotoxin burden is consistently minimized by our focus on the more potent carcinogenic aflatoxins also produced by this fungus. Here, we report the screening and identification of several CPA-type alkaloids not previously found in A. flavus cultures. Our identifications of these CPA-type alkaloids are based on a dereplication strategy involving accurate mass high resolution mass spectrometry data and a careful study of the α-CPA fragmentation pattern. In total, 22 CPA-type alkaloids were identified in extracts from the A. flavus strains examined. Of these metabolites, 13 have been previously reported in other fungi, though this is the first report of their existence in A. flavus. Two of our metabolite discoveries, 11,12-dehydro α-CPA and 3-hydroxy-2-oxo CPA, have never been reported for any organism. The conspicuous presence of CPA and its numerous derivatives in A. flavus cultures raises concerns about the long-term and cumulative toxicological effects of these fungal secondary metabolites and their contributions to the entire A. flavus mycotoxin problem. Full article
Figures

Figure 1a

Open AccessArticle Distinct Neurotoxicity Profile of Listeriolysin O from Listeria monocytogenes
Received: 22 November 2016 / Revised: 9 January 2017 / Accepted: 10 January 2017 / Published: 13 January 2017
PDF Full-text (2950 KB) | HTML Full-text | XML Full-text
Abstract
Cholesterol-dependent cytolysins (CDCs) are protein toxins that originate from Gram-positive bacteria and contribute substantially to their pathogenicity. CDCs bind membrane cholesterol and build prepores and lytic pores. Some effects of the toxins are observed in non-lytic concentrations. Two pathogens, Streptococcus pneumoniae and Listeria
[...] Read more.
Cholesterol-dependent cytolysins (CDCs) are protein toxins that originate from Gram-positive bacteria and contribute substantially to their pathogenicity. CDCs bind membrane cholesterol and build prepores and lytic pores. Some effects of the toxins are observed in non-lytic concentrations. Two pathogens, Streptococcus pneumoniae and Listeria monocytogenes, cause fatal bacterial meningitis, and both produce toxins of the CDC family—pneumolysin and listeriolysin O, respectively. It has been demonstrated that pneumolysin produces dendritic varicosities (dendrite swellings) and dendritic spine collapse in the mouse neocortex, followed by synaptic loss and astrocyte cell shape remodeling without elevated cell death. We utilized primary glial cultures and acute mouse brain slices to examine the neuropathological effects of listeriolysin O and to compare it to pneumolysin with identical hemolytic activity. In cultures, listeriolysin O permeabilized cells slower than pneumolysin did but still initiated non-lytic astrocytic cell shape changes, just as pneumolysin did. In an acute brain slice culture system, listeriolysin O produced dendritic varicosities in an NMDA-dependent manner but failed to cause dendritic spine collapse and cortical astrocyte reorganization. Thus, listeriolysin O demonstrated slower cell permeabilization and milder glial cell remodeling ability than did pneumolysin and lacked dendritic spine collapse capacity but exhibited equivalent dendritic pathology. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Figure 1

Open AccessArticle Auranofin Inhibits the Enzyme Activity of Pasteurella multocida Toxin PMT in Human Cells and Protects Cells from Intoxication
Received: 16 November 2016 / Revised: 23 December 2016 / Accepted: 10 January 2017 / Published: 13 January 2017
PDF Full-text (1251 KB) | HTML Full-text | XML Full-text
Abstract
The AB-type protein toxin from Pasteurella multocida (PMT) contains a functionally important disulfide bond within its catalytic domain, which must be cleaved in the host cell cytosol to render the catalytic domain of PMT into its active conformation. Here, we found that the
[...] Read more.
The AB-type protein toxin from Pasteurella multocida (PMT) contains a functionally important disulfide bond within its catalytic domain, which must be cleaved in the host cell cytosol to render the catalytic domain of PMT into its active conformation. Here, we found that the reductive potential of the cytosol of target cells, and more specifically, the activity of the thioredoxin reductase (TrxR) is crucial for this process. This was demonstrated by the strong inhibitory effect of the pharmacological TrxR inhibitor auranofin, which inhibited the intoxication of target cells with PMT, as determined by analyzing the PMT-catalyzed deamidation of GTP-binding proteins (G-proteins) in the cytosol of cells. The amount of endogenous substrate levels modified by PMT in cells pretreated with auranofin was reduced compared to cells treated with PMT alone. Auranofin had no inhibitory effect on the activity of the catalytic domain of constitutively active PMT in vitro, demonstrating that auranofin did not directly inhibit PMT activity, but interferes with the mode of action of PMT in cells. In conclusion, the results show that TrxR is crucial for the mode of action of PMT in mammalian cells, and that the drug auranofin can serve as an efficient inhibitor, which might be a starting point for novel therapeutic options against toxin-associated diseases. Full article
(This article belongs to the Special Issue Pasteurella multocida and Its Virulence Factors)
Figures

Figure 1

Open AccessArticle The Influence of the Toxin/Antitoxin mazEF on Growth and Survival of Listeria monocytogenes under Stress
Received: 21 October 2016 / Revised: 31 December 2016 / Accepted: 7 January 2017 / Published: 13 January 2017
Cited by 1 | PDF Full-text (1568 KB) | HTML Full-text | XML Full-text
Abstract
A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (σB). Type II Toxin/Antitoxin (TA) systems are also known to have a role in the bacterial stress response upon activation via the ClpP or Lon proteases.
[...] Read more.
A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (σB). Type II Toxin/Antitoxin (TA) systems are also known to have a role in the bacterial stress response upon activation via the ClpP or Lon proteases. Directly upstream of the σB operon in L. monocytogenes is the TA system mazEF, which can cleave mRNA at UACMU sites. In this study, we showed that the mazEF TA locus does not affect the level of persister formation during treatment with antibiotics in lethal doses, but exerts different effects according to the sub-inhibitory stress added. Growth of a ΔmazEF mutant was enhanced relative to the wildtype in the presence of sub-inhibitory norfloxacin and at 42 °C, but was decreased when challenged with ampicillin and gentamicin. In contrast to studies in Staphylococcus aureus, we found that the mazEF locus did not affect transcription of genes within the σB operon, but MazEF effected the expression of the σB-dependent genes opuCA and lmo0880, with a 0.22 and 0.05 fold change, respectively, compared to the wildtype under sub-inhibitory norfloxacin conditions. How exactly this system operates remains an open question, however, our data indicates it is not analogous to the system of S. aureus, suggesting a novel mode of action for MazEF in L. monocytogenes. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Figure 1

Open AccessEditorial Acknowledgement to Reviewers of Toxins in 2016
Received: 11 January 2017 / Revised: 11 January 2017 / Accepted: 11 January 2017 / Published: 11 January 2017
PDF Full-text (202 KB) | HTML Full-text | XML Full-text
Abstract
The editors of Toxins would like to express their sincere gratitude to the following reviewers for assessing manuscripts in 2016.[...] Full article
Open AccessArticle RnlB Antitoxin of the Escherichia coli RnlA-RnlB Toxin–Antitoxin Module Requires RNase HI for Inhibition of RnlA Toxin Activity
Received: 28 November 2016 / Revised: 28 December 2016 / Accepted: 5 January 2017 / Published: 11 January 2017
Cited by 1 | PDF Full-text (2233 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Escherichia coli RnlA-RnlB toxin–antitoxin system is related to the anti-phage mechanism. Under normal growth conditions, an RnlA toxin with endoribonuclease activity is inhibited by binding of its cognate RnlB antitoxin. After bacteriophage T4 infection, RnlA is activated by the disappearance of RnlB,
[...] Read more.
The Escherichia coli RnlA-RnlB toxin–antitoxin system is related to the anti-phage mechanism. Under normal growth conditions, an RnlA toxin with endoribonuclease activity is inhibited by binding of its cognate RnlB antitoxin. After bacteriophage T4 infection, RnlA is activated by the disappearance of RnlB, resulting in the rapid degradation of T4 mRNAs and consequently no T4 propagation when T4 dmd encoding a phage antitoxin against RnlA is defective. Intriguingly, E. coli RNase HI, which plays a key role in DNA replication, is required for the activation of RnlA and stimulates the RNA cleavage activity of RnlA. Here, we report an additional role of RNase HI in the regulation of RnlA-RnlB system. Both RNase HI and RnlB are associated with NRD (one of three domains of RnlA). The interaction between RnlB and NRD depends on RNase HI. Exogenous expression of RnlA in wild-type cells has no effect on cell growth because of endogenous RnlB and this inhibition of RnlA toxicity requires RNase HI and NRD. These results suggest that RNase HI recruits RnlB to RnlA through NRD for inhibiting RnlA toxicity and thus plays two contrary roles in the regulation of RnlA-RnlB system. Full article
(This article belongs to the Section Bacterial Toxins)
Figures

Figure 1

Open AccessArticle The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice
Received: 18 November 2016 / Revised: 26 December 2016 / Accepted: 4 January 2017 / Published: 10 January 2017
Cited by 3 | PDF Full-text (3463 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg
[...] Read more.
Metabolic profiling in liver and serum of mice was studied for the combined toxic effects of deoxynivalenol (DON) and zearalenone (ZEN), through gas chromatography mass spectrum. The spectrum of serum and liver sample of mice, treated with individual 2 mg/kg DON, 20 mg/kg ZEN, and the combined DON + ZEN with final concentration 2 mg/kg DON and 20 mg/kg ZEN for 21 days, were deconvoluted, aligned and identified with MS DIAL. The data matrix was processed with univariate analysis and multivariate analysis for selection of metabolites with variable importance for the projection (VIP) > 1, t-test p value < 0.05. The metabolic pathway analysis was performed with MetaMapp and drawn by CytoScape. Results show that the combined DON and ZEN treatment has an obvious “antagonistic effect” in serum and liver tissue metabolic profiling of mice. The blood biochemical indexes, like alkaline phosphatase, alanine transaminase, and albumin (ALB)/globulin (GLO), reveal a moderated trend in the combined DON + ZEN treatment group, which is consistent with histopathological examination. The metabolic pathway analysis demonstrated that the combined DON and ZEN treatment could down-regulate the valine, leucine and isoleucine biosynthesis, glycine, serine and threonine metabolism, and O-glycosyl compounds related glucose metabolism in liver tissue. The metabolic profiling in serum confirmed the finding that the combined DON and ZEN treatment has an “antagonistic effect” on liver metabolism of mice. Full article
Figures

Figure 1

Back to Top