Next Article in Journal
Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions)
Next Article in Special Issue
Epidemiology of Helicobacter pylori and CagA-Positive Infections and Global Variations in Gastric Cancer
Previous Article in Journal
The Aspergillus flavus Homeobox Gene, hbx1, Is Required for Development and Aflatoxin Production
Previous Article in Special Issue
The Middle Fragment of Helicobacter pylori CagA Induces Actin Rearrangement and Triggers Its Own Uptake into Gastric Epithelial Cells
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Helicobacter pylori Vacuolating Toxin and Gastric Cancer

1
Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
2
Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
3
Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
*
Author to whom correspondence should be addressed.
Toxins 2017, 9(10), 316; https://doi.org/10.3390/toxins9100316
Submission received: 13 September 2017 / Revised: 3 October 2017 / Accepted: 5 October 2017 / Published: 12 October 2017
(This article belongs to the Special Issue H. pylori Virulence Factors in the Induction of Gastric Cancer)

Abstract

:
Helicobacter pylori VacA is a channel-forming toxin unrelated to other known bacterial toxins. Most H. pylori strains contain a vacA gene, but there is marked variation among strains in VacA toxin activity. This variation is attributable to strain-specific variations in VacA amino acid sequences, as well as variations in the levels of VacA transcription and secretion. In this review, we discuss epidemiologic studies showing an association between specific vacA allelic types and gastric cancer, as well as studies that have used animal models to investigate VacA activities relevant to gastric cancer. We also discuss the mechanisms by which VacA-induced cellular alterations may contribute to the pathogenesis of gastric cancer.

1. Description of VacA

H. pylori VacA derives its name from the protein’s ability to induce vacuolation in intoxicated cells. Vacuolation of epithelial cells was the first reported effect of VacA [1,2], but many other cellular effects have been reported subsequently, and many cell types are now known to be susceptible to the toxin [3,4,5,6]. The effects of VacA on gastric epithelial cells include cytoplasmic vacuolation [7,8], disrupted endocytic trafficking, mitochondrial perturbations, depolarization of the plasma membrane potential, efflux of various ions (including chloride, bicarbonate, and urea), activation of MAP kinases, modulation of autophagy, and potentially cell death [3,4,5,6,9]. VacA can inhibit the function and proliferation of a variety of immune cells, including T cells, B cells, eosinophils, macrophages, dendritic cells, and neutrophils [3,4,5,6,10,11].
The amino acid sequence and structure of VacA are unrelated to the sequences or structures of other known bacterial toxins [12,13,14,15]. VacA is produced as a 140 kDa precursor, which undergoes proteolytic processing to yield an 88 kDa toxin [2,16,17,18,19]. An amino-terminal signal peptide and a carboxy-terminal domain are required for export of the toxin into the extracellular space through a type V (autotransporter) secretion pathway [16,17,20,21,22]. The 88 kDa VacA toxin can undergo further proteolytic cleavage, resulting in amino-terminal 33 kDa (p33) and carboxy-terminal 55 kDa (p55) fragments [18,23,24,25], but there is no evidence that this cleavage is required for the toxin’s activities [26]. Both the p33 and p55 domains are important for toxin binding to cells and internalization of the toxin into mammalian cells [27,28]. Experiments analyzing VacA fragments expressed in transfected mammalian cells revealed that the minimum-length fragment required to induce vacuolation includes the entire p33 domain plus the amino-terminal ~110 amino acids of the p55 domain [29,30,31].
VacA binds to the surface of cells within lipid rafts, corresponding to detergent-resistant membrane fractions [32,33,34]. Multiple VacA receptors have been reported, including sphingomyelin, receptor-like protein tyrosine phosphatase alpha (RPTP-α), RPTP-β, and low density lipoprotein receptor-related protein-1 (LRP-1) on epithelial cells [35,36,37], and β2 integrin (CD18) on T cells [38]. After binding to the cell surface, VacA is subsequently internalized into endosomal compartments [39,40,41,42,43,44]. Internalized VacA associates not only with endosomal compartments, but has also been reported to associate with mitochondria [45,46,47,48], the Golgi apparatus, and endoplasmic reticulum [49]. VacA is not known to possess an enzymatic activity, but it can undergo insertion into membranes to form anion-selective channels [50,51,52,53,54,55,56,57,58]. VacA forms channels in the plasma membrane [53,55], and channels are also presumed to form within endosomal membranes of mammalian cells.
The membranes of VacA-induced vacuoles contain markers of late endosomes and lysosomes [44,49,59,60], suggesting that VacA-induced vacuoles are derived from the endosome-lysosome pathway. It has been proposed that the formation of VacA anion channels in endosomal membranes, coupled with vacuolar ATPase activity, leads to the osmotic swelling of endosomal compartments and the formation of vacuoles visible by light microscopy [40,61,62]. VacA-induced alterations in endocytic processes or intracellular trafficking result in inhibited intracellular degradation of epidermal growth factor (EGF), inhibited maturation of procathepsin D, perturbation of transferrin receptor localization, and inhibition of antigen presentation [63,64,65]. VacA’s association with mitochondria can lead to decreased mitochondrial membrane potential, the activation of BAX and BAK, cytochrome c release, and mitochondrial fragmentation [45,46,47,48,66,67,68]. Mitochondrial perturbation by VacA is dependent on VacA channel activity [46,47] and contributes to cell death through apoptosis or necrosis [48,69,70,71,72]. VacA-induced cell death may also be a consequence of the reduced expression of pro-survival factors [73].

2. Heterogeneity among vacA Alleles

All H. pylori strains contain a vacA gene, but there is substantial variation among strains in VacA toxin activity. A lack of vacuolating toxin activity occasionally results from nonsense mutations or frameshift mutations in vacA [74], but this is a relatively uncommon phenomenon; most strains contain intact vacA ORFs. Among strains containing an intact vacA ORF, differences in VacA toxin activity are attributable to variations in VacA amino acid sequences [75,76,77,78,79], as well as differences among strains in the levels of VacA transcription or secretion [80]. The vacA alleles in different H. pylori strains have been categorized into several families, based on sequence heterogeneity in specific regions. The three most extensively studied regions of heterogeneity correspond to the signal or “s” region, the intermediate or “i” region, and the middle or “m” region [75,81]. The sequences in each of these regions can be classified into two main families (e.g., s1 and s2; i1 and i2; m1 and m2) (Figure 1). vacA alleles have also been classified into two families (d1 and d2) based on the presence or absence of a segment ranging from about 60 to 100 nucleotides in length, designated the d-region [82], which encodes a region of VacA located at the junction of the p33 and p55 domains.
The “s” region of diversity corresponds to sequence differences within the amino-terminal signal peptide and the amino–terminal end of the secreted toxin. Compared with s1 VacA toxins, s2 forms of VacA contain a 12-amino-acid amino-terminal extension that alters the hydrophobicity of the amino-terminal end of the secreted protein [75,76,77,78]. In comparison to s1 VacA toxins, s2 VacA toxins are impaired in terms of their ability to form anion channels in planar-lipid bilayers and do not cause vacuolation of mammalian cells [75,76,77,78]. Type s2 forms of vacA are also transcribed at lower levels than type s1 forms, resulting in reduced levels of type s2 VacA protein production and secretion [80].
The “i” region of diversity is located within the p33 domain of VacA [81]. One study reported that the i-region is a determinant of vacuolating toxin activity in strains that produce type s1-m2 forms of VacA [81]. Type i1 VacA toxins are also more active than i2 VacA toxins in assays monitoring the inhibition of NFAT activation and IL-2 production by Jurkat T cells [83].
Finally, the “m” region of diversity is located within the p55 domain of VacA [75]. In comparison to type m2 VacA proteins, type m1 VacA proteins have greater vacuolating activity on HeLa cells, but m1 and m2 VacA proteins have similar vacuolating activity on RK13 cells [84,85,86,87]. A region responsible for cell type specificity is localized to a 148 amino-acid segment of the m region [85,86]. The difference in HeLa cell vacuolating activity when comparing m1 and m2 VacA proteins has been attributed to differences in channel-forming properties [88], as well as differences in cell-binding properties [84,86]. Type m1 VacA, but not m2 VacA, binds to the LRP1 receptor on host cells, resulting in decreased levels of intracellular glutathione, an accumulation of reactive oxygen species, autophagy, and apoptosis [89,90].
H. pylori is naturally competent for the uptake of DNA and intraspecies recombination commonly occurs. Therefore, vacA alleles with nearly all combinations of s-, i-, and m-regions (s1-i1-m1, s1-i1-m2, s1-i2-m2, s2-i2-m2, etc.) have been detected, as well as chimeric i-regions (e.g., i1-i2) and chimeric m-regions (e.g., m1-m2) [75,79,91,92,93]. Notably, vacA alleles with an s2-i1-m1 organization are uncommon [75,94], which suggests that the activity of such proteins is either detrimental or confers less benefit to the bacteria than other types of VacA proteins.

3. vacA Allelic Types and Gastric Cancer Risk

There has been considerable interest in the possibility that the VacA toxin activity of strains might be a determinant of gastric cancer risk [95,96,97]. To test this hypothesis, H. pylori strains cultured from individuals with gastric cancer or premalignant gastric pathology (such as atrophic gastritis, intestinal metaplasia, or dysplasia) have been compared to strains cultured from individuals with non-malignant gastric histology. Collectively, these studies have shown that strains containing type s1, i1, and m1 vacA alleles are associated with a higher risk of gastric cancer or premalignant conditions, compared to strains containing type s2, i2, or m2 vacA alleles, respectively [81,98,99,100,101,102,103,104,105,106,107]. Strains containing type s1 and m1 vacA alleles have also been associated with an increased severity of gastric inflammation, epithelial damage, or ulceration, compared to strains containing type s2 or m2 vacA alleles (Table 1) [75,108,109,110]. Thus, strains encoding forms of VacA with greater activity in cell culture models are associated with an increased risk of gastric cancer and premalignant histologic changes, as well as an increased risk of peptic ulceration, compared to strains encoding forms of VacA that lack activity or have relatively low levels of activity in cell culture models.

4. Association between vacA Allelic Types and Other Strain-Specific Virulence Determinants of Virulence

In addition to allelic variation in vacA, H. pylori strains exhibit diversity in other genetic elements that are relevant for gastric cancer pathogenesis. One of the most prominent genetic variations among H. pylori strains is the presence or absence of a ~40 kb chromosomal region known as the cag pathogenicity island (PAI). The cag PAI encodes an effector protein (CagA), as well as components of a type IV secretion system that delivers CagA into host cells [111,112,113]. Upon entry into epithelial cells, CagA interacts with multiple host cell proteins and causes alterations in cell signaling [114,115]. H. pylori strains also differ in the production of outer membrane proteins (OMPs), including adhesins that mediate adhesion to gastric epithelial cells. Examples of adhesins that are produced by some H. pylori strains but not others include BabA, SabA, and HopQ [116,117].
H. pylori cagA-positive strains (corresponding to strains that contain the cag PAI) are associated with a higher risk of gastric cancer or premalignant lesions than cagA-negative strains [98,118,119]. Similarly, H. pylori strains containing specific OMP-encoding genes (babA, homB, type I hopQ, in-frame hopH/oipA, or in-frame sabA alleles) are associated with an increased risk of gastric cancer or premalignant changes compared to strains that lack these genes or that harbor out-of-frame genes [120,121,122,123,124,125,126].
vacA alleles, the cag PAI, and several genes encoding strain-specific OMPs are not distributed randomly among H. pylori strains [117]. For example, strains containing type s1 vacA harbor the cag PAI more commonly than strains containing s2 vacA alleles [75,109]. Strains containing type s1 vacA also contain the OMP-encoding genes babA, homB type I hopQ, and in-frame hopH/oipA more commonly than strains that contain type s2 vacA [75,110,116,120,127,128,129,130,131]. Several studies have reported that VacA and CagA have reciprocal antagonistic effects [71,132,133,134,135,136]. Thus, certain combinations of vacA and cagA alleles may confer a selective advantage to strains by offering an optimal balance of VacA and CagA activities.
Determining the specific contribution of VacA to gastric cancer risk is challenging, since the strains associated with gastric cancer potentially contain multiple strain-specific features relevant for gastric cancer pathogenesis. Collectively, the epidemiologic studies suggest that the risk of gastric cancer is highest in persons infected with strains producing multiple host-interactive components (type s1-i1-m1 VacA, CagA, the cag T4SS, and certain strain-specific OMPs) [98,117,120]. Strains that do not produce these components are associated with a lower level of gastric cancer risk.
Multiple vacA allelic types (s1 or s2, i1 or i2, m1 and m2) are present in H. pylori isolates in Western countries [75,81], and both cag PAI-positive strains and cag PAI-negative strains are common in Western countries [110]. In contrast, nearly all H. pylori strains cultured in several regions of East Asia, including Japan and Korea, contain s1 vacA alleles [137,138], and nearly all H. pylori strains in Japan and Korea contain the cag PAI [110,137]. Strains containing type s2 vacA alleles and lacking the cag PAI are relatively uncommon in East Asia [110,137,138]. These characteristics of East Asian strains may be an important factor contributing to the high rate of gastric cancer in East Asia compared to many other parts of the world [139].

5. Impact of VacA on H. pylori Gastric Colonization of Animal Models

Nearly all H. pylori strains contain an intact vacA ORF, which suggests that VacA has an important role in H. pylori colonization of the stomach, persistence, or transmission to new hosts. Several studies have evaluated the role of VacA in H. pylori colonization of animal models by testing vacA null mutant strains. Such mutant strains are capable of colonizing the stomach in gnotobiotic piglet, mouse, and gerbil models [107,140,141,142,143,144]. Moreover, several closely related H. pylori strains (strains B128, B8 and 7.13) capable of colonizing the Mongolian gerbil do not produce a detectable VacA protein due to the presence of a naturally occurring mutation in vacA [145,146,147]. Although VacA is not essential for H. pylori colonization of the stomach in animal models, vacA mutant strains do not colonize mice as well as VacA-producing strains, and the mutant strains exhibit a competitive disadvantage in mixed infections with VacA-producing strains [107,142,144].
H. pylori strain SS1, a strain commonly used for experiments in mouse models, contains a non-toxigenic vacA allele (s2/i2/m2). SS1 vacA null mutant strains exhibit a colonization defect when compared to the wild-type strain [107,142,144]. In one study, SS1 variants producing s1-i2 or s1-i1 forms of VacA exhibited reduced colonization rates compared to strains producing an s2-i2 form of VacA [107]. Thus, despite the lack of detectable activity in vitro, type s2 VacA proteins appear to have an important activity in vivo that contributes to colonization or persistence.
The mechanisms by which VacA contributes to H. pylori colonization are not yet well understood, but several hypotheses are plausible. VacA proteins tethered to the surface of H. pylori might act as adhesins to promote bacterial adherence to gastric cells, and thereby enhance colonization [148]. VacA-induced alterations of gastric epithelial cells could potentially modify the gastric environment to promote colonization and bacterial replication [65]. VacA-induced inhibition of parietal cell function might facilitate H. pylori colonization of the stomach [149,150]. Finally, VacA can attenuate the functions of many types of immune cells [3,4,5,10,11,151,152,153,154], so immunomodulatory actions of VacA might facilitate colonization.

6. Role of VacA in Gastric Cancer and Gastric Pathology in Animal Models

Mouse models, gnotobiotic piglets, and the Mongolian gerbil model of H. pylori infection have been used to evaluate a potential role of VacA in gastric pathology and carcinogenesis. Mice, piglets, and gerbils each develop a gastric mucosal inflammatory response in response to H. pylori. H. pylori-induced gastric inflammation is relatively mild in wild-type mice, and H. pylori-infected wild-type mice do not develop gastric cancer. H. pylori-infected gerbils develop more extensive gastric pathology than mice, including severe gastric inflammation, parietal cell loss and hypochlorhydria, dysplasia, and gastric adenocarcinoma [147,155,156]. The carcinomas in gerbils exhibit some characteristics similar to gastric adenocarcinoma in humans, such as penetration through the muscularis mucosa into the submucosa, but in contrast to gastric cancer in humans, the lesions in gerbils remain relatively small in size and are not known to metastasize. H. pylori-infected gerbils do not develop intestinal metaplasia or gastric atrophy (two common precursors of gastric cancer in humans). Thus, the gerbil model of H. pylori infection recapitulates several features of gastric carcinogenesis in humans, but some features of the gerbil model differ from features of gastric adenocarcinoma in humans.
One approach for studying the effects of VacA in vivo has been to administer the purified VacA protein or VacA-containing H. pylori extracts directly into the stomach of animal models. These studies concluded that VacA can damage the gastric mucosa of mice and stimulate the recruitment of inflammatory cells [18,157,158,159].
A more physiologic approach has entailed the infection of animals with viable H. pylori and a comparison of wild-type and vacA mutant strains. In experiments with gnotobiotic piglets, no differences in the severity of gastric inflammation were detected when comparing animals colonized with a wild-type strain or a vacA null mutant [140]. Similar results were reported in experiments with mice [142], but a subsequent study detected stronger Th1 and Th17 responses and more severe pathology in mice colonized with a vacA null mutant strain, compared to the wild-type strain [144]. To compare the activities of different forms of VacA, one study infected mice with strain SS1 variants encoding different forms of VacA [107]. At three weeks post-infection, mice infected with a strain encoding the s1/i1 form of VacA exhibited a significantly greater degree of spasmolytic polypeptide expressing metaplasia (SPEM) than mice infected with a strain encoding the s2/i2 form of VacA [107]. There was also a trend toward higher levels of gastric inflammation in mice infected with strains producing s1/i1 forms of VacA compared to s1/i2 or s2/i2 forms of VacA [107].
No differences in the severity of gastric inflammation have been detected when comparing gerbils colonized with a wild-type strain or a vacA mutant strain for time periods of three months to 62 weeks [141,143]. However, at 62 weeks post-infection, animals infected with the wild-type strain had a higher incidence of gastric ulceration compared to animals infected with the vacA mutant strain [141]. One H. pylori strain commonly used for studies of gastric cancer in the gerbil model (strain 7.13) does not produce a detectable VacA protein [145,146,147]. Therefore, VacA is not required for gastric carcinogenesis in the gerbil model.

7. Integrating Results of Human Epidemiologic Studies with Results of Experiments in Animal Models

Many human epidemiologic studies have detected an association between H. pylori strains containing certain types of vacA alleles (encoding forms of VacA that are active in cell culture models) and an increased risk of gastric cancer or premalignant gastric lesions. In contrast, VacA is not required for the development of gastric cancer in the gerbil model. There are multiple possible explanations for this apparent discrepancy.
One interpretation is that the human epidemiologic results simply reflect the association between certain vacA allelic variants and other strain-specific genetic elements that contribute to gastric cancer pathogenesis (e.g., the cag PAI or strain-specific genes encoding certain OMPs), and VacA has no direct role in the pathogenesis of gastric cancer. An alternate interpretation is that the rodent models used thus far do not accurately reproduce pathologic events leading to the development of gastric cancer in humans. In support of this latter interpretation, there are known differences in the susceptibility of human CD4+ T-cells and mouse CD4+ T-cells to VacA [38,160]. VacA binds to human CD4+ T-cells and inhibits the activation-induced proliferation of these cells; in contrast, VacA binds at significantly lower levels to murine CD4+ T-cells than human CD4+ T-cells, and does not inhibit the activation-induced proliferation of murine T-cells [38,160]. This difference in susceptibility has been attributed to differences in the β2 integrin receptors present on human and mouse T cells [38]. Limitations of rodent models have also been encountered when studying interactions of H. pylori outer membrane adhesins with host cell receptors. For example, the outer membrane protein HopQ binds to CEACAM1 on the surface of human cells, but not to a mouse CEACAM1 orthologue or to any CEACAM receptors produced in gastric tissue from Mongolian gerbils [161,162].

8. Mechanisms by which VacA may Influence Gastric Cancer Risk

There are multiple biologically plausible mechanisms by which specific forms of VacA could enhance gastric cancer risk (Figure 2). Since H. pylori binds to gastric epithelial cells in vivo, these cells probably encounter relatively high concentrations of VacA in vivo. Type s1-m1 forms of VacA promote the death of gastric epithelial cells in vitro [48,69,70,71,72], and the toxin might have similar effects in vivo. VacA-induced death of gastric epithelial cells would be expected to result in increased cellular proliferation, which could be associated with increased cancer risk. VacA has been reported to disrupt the integrity of epithelial monolayers, either by causing cell death or by the loosening of cell-cell junctions [163,164]. Consequently, VacA might also enhance the entry of carcinogens into the gastric mucosa, or may enhance the invasiveness and spread of malignant cells.
Connexin 43 (Cx43) is required for VacA-induced necrosis of the AZ-521 cell line (recently reported to be a misidentified cell line of HuTu-80, human duodenum carcinoma) [165,166]. Cx43 is a tumor suppressor in multiple cell types, and gastric cancers frequently exhibit a loss of Cx43 expression [167]. Therefore, in individuals infected with H. pylori strains producing high levels of s1-i1-m1 VacA, there may be a selective pressure for the emergence of Cx43-deficient cells (resistant to VacA-induced cell death), which could contribute to gastric cancer pathogenesis.
Most H. pylori localize within the mucus layer overlying foveolar surface mucous epithelial cells, but H. pylori can also enter the gastric glands [168,169]. Within gastric glands, H. pylori localizes in close proximity to gastric stem cells, and within the oxyntic glands of the gastric corpus, H. pylori localizes in close proximity to parietal cells. VacA intoxication of gastric stem cells and parietal cells could potentially have deleterious effects relevant to gastric cancer. In vitro experiments indicate that VacA inhibits the acid-producing capacity of parietal cells [149,150]. The inhibition of parietal cell function by VacA would be expected to result in hypochlorhydria, which could increase gastric cancer risk by allowing the proliferation of nitrate-producing bacterial populations that do not normally grow in the acidic gastric environment.
VacA inhibits the activities of multiple types of immune cells in vitro, including T cells, B cells, dendritic cells, eosinophils, mast cells, macrophages, and neutrophils [3,4,5,10,11,151,152,153], and VacA immunomodulatory activity has been detected in vivo [144,170,171]. VacA-induced alterations in immune function could potentially result in impaired tumor surveillance. VacA is also reported to have pro-inflammatory activity [18,153,158,159,172]. Inflammation is a well-known promoter of carcinogenesis [173], so VacA pro-inflammatory activity could contribute to gastric cancer pathogenesis.

9. Summary

In summary, numerous epidemiologic studies have shown that H. pylori strains containing specific vacA allelic types (encoding forms of VacA that are active in cell culture models) are associated with increased gastric cancer risk, and there are multiple biologically plausible mechanisms by which VacA may contribute to gastric carcinogenesis. Conversely, there is relatively little direct evidence in animal models demonstrating a role of VacA in the pathogenesis of gastric cancer. In future studies, it will be important to investigate the actions of VacA in vivo using animal models that are optimized to express cell types susceptible to VacA and that closely replicate the cascade of events leading to gastric adenocarcinoma in humans.

Acknowledgments

We thank all members of the Cover lab for helpful discussions. Funding sources: National Institutes of Health AI039657, AI118932, CA116087; Department of Veterans Affairs Merit Review grant BX000627.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Leunk, R.D.; Johnson, P.T.; David, B.C.; Kraft, W.G.; Morgan, D.R. Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J. Med. Microbiol. 1988, 26, 93–99. [Google Scholar] [CrossRef] [PubMed]
  2. Cover, T.L.; Blaser, M.J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem. 1992, 267, 10570–10575. [Google Scholar] [PubMed]
  3. Cover, T.L.; Blanke, S.R. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat. Rev. Microbiol. 2005, 3, 320–332. [Google Scholar] [CrossRef] [PubMed]
  4. Boquet, P.; Ricci, V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol. 2012, 20, 165–174. [Google Scholar] [CrossRef] [PubMed]
  5. Kim, I.J.; Blanke, S.R. Remodeling the host environment: Modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front. Cell. Infect. Microbiol. 2012, 2, 37. [Google Scholar] [CrossRef] [PubMed]
  6. Foegeding, N.J.; Caston, R.R.; McClain, M.S.; Ohi, M.D.; Cover, T.L. An overview of Helicobacter pylori VacA toxin biology. Toxins 2016, 8, 173. [Google Scholar] [CrossRef] [PubMed]
  7. Smoot, D.T.; Resau, J.H.; Earlington, M.H.; Simpson, M.; Cover, T.L. Effects of Helicobacter pylori vacuolating cytotoxin on primary cultures of human gastric epithelial cells. Gut 1996, 39, 795–799. [Google Scholar] [CrossRef] [PubMed]
  8. Harris, P.R.; Cover, T.L.; Crowe, D.R.; Orenstein, J.M.; Graham, M.F.; Blaser, M.J.; Smith, P.D. Helicobacter pylori cytotoxin induces vacuolation of primary human mucosal epithelial cells. Infect. Immun. 1996, 64, 4867–4871. [Google Scholar] [PubMed]
  9. Ricci, V. Relationship between VacA Toxin and Host Cell Autophagy in Helicobacter pylori Infection of the Human Stomach: A Few Answers, Many Questions. Toxins (Basel) 2016, 8, 203. [Google Scholar] [CrossRef] [PubMed]
  10. Utsch, C.; Haas, R. VacA’s Induction of VacA-Containing Vacuoles (VCVs) and Their Immunomodulatory Activities on Human T Cells. Toxins (Basel) 2016, 8, 190. [Google Scholar] [CrossRef] [PubMed]
  11. Djekic, A.; Muller, A. The Immunomodulator VacA Promotes Immune Tolerance and Persistent Helicobacter pylori Infection through Its Activities on T-Cells and Antigen-Presenting Cells. Toxins (Basel) 2016, 8, 187. [Google Scholar] [CrossRef] [PubMed]
  12. Gangwer, K.A.; Mushrush, D.J.; Stauff, D.L.; Spiller, B.; McClain, M.S.; Cover, T.L.; Lacy, D.B. Crystal structure of the Helicobacter pylori vacuolating toxin p55 domain. Proc. Natl. Acad. Sci. USA 2007, 104, 16293–16298. [Google Scholar] [CrossRef] [PubMed]
  13. Gonzalez-Rivera, C.; Campbell, A.M.; Rutherford, S.A.; Pyburn, T.M.; Foegeding, N.J.; Barke, T.L.; Spiller, B.W.; McClain, M.S.; Ohi, M.D.; Lacy, D.B.; et al. A Nonoligomerizing Mutant Form of Helicobacter pylori VacA Allows Structural Analysis of the p33 Domain. Infect. Immun. 2016, 84, 2662–2670. [Google Scholar] [CrossRef] [PubMed]
  14. El-Bez, C.; Adrian, M.; Dubochet, J.; Cover, T.L. High resolution structural analysis of Helicobacter pylori VacA toxin oligomers by cryo-negative staining electron microscopy. J. Struct. Biol. 2005, 151, 215–228. [Google Scholar] [CrossRef] [PubMed]
  15. Chambers, M.G.; Pyburn, T.M.; Gonzalez-Rivera, C.; Collier, S.E.; Eli, I.; Yip, C.K.; Takizawa, Y.; Lacy, D.B.; Cover, T.L.; Ohi, M.D. Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin. J. Mol. Biol. 2013, 425, 524–535. [Google Scholar] [CrossRef] [PubMed]
  16. Cover, T.L.; Tummuru, M.K.R.; Cao, P.; Thompson, S.A.; Blaser, M.J. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 1994, 269, 10566–10573. [Google Scholar] [PubMed]
  17. Schmitt, W.; Haas, R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: Structural similarities with the IgA protease type of exported protein. Mol. Microbiol. 1994, 12, 307–319. [Google Scholar] [CrossRef] [PubMed]
  18. Telford, J.L.; Ghiara, P.; Dell’Orco, M.; Comanducci, M.; Burroni, D.; Bugnoli, M.; Tecce, M.F.; Censini, S.; Covacci, A.; Xiang, Z.; et al. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J. Exp. Med. 1994, 179, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
  19. Phadnis, S.H.; Ilver, D.; Janzon, L.; Normark, S.; Westblom, T.U. Pathological significance and molecular characterization of the vacuolating toxin gene of Helicobacter pylori. Infect. Immun. 1994, 62, 1557–1565. [Google Scholar] [PubMed]
  20. Fischer, W.; Buhrdorf, R.; Gerland, E.; Haas, R. Outer membrane targeting of passenger proteins by the vacuolating cytotoxin autotransporter of Helicobacter pylori. Infect. Immun. 2001, 69, 6769–6775. [Google Scholar] [CrossRef] [PubMed]
  21. Voss, B.J.; Gaddy, J.A.; McDonald, W.H.; Cover, T.L. Analysis of Surface-Exposed Outer Membrane Proteins in Helicobacter pylori. J. Bacteriol. 2014, 196, 2455–2471. [Google Scholar] [CrossRef] [PubMed]
  22. Snider, C.A.; Voss, B.J.; McDonald, W.H.; Cover, T.L. Growth phase-dependent composition of the Helicobacter pylori exoproteome. J. Proteom. 2016, 130, 94–107. [Google Scholar] [CrossRef] [PubMed]
  23. Lupetti, P.; Heuser, J.E.; Manetti, R.; Massari, P.; Lanzavecchia, S.; Bellon, P.L.; Dallai, R.; Rappuoli, R.; Telford, J.L. Oligomeric and subunit structure of the Helicobacter pylori vacuolating cytotoxin. J. Cell Biol. 1996, 133, 801–807. [Google Scholar] [CrossRef] [PubMed]
  24. Nguyen, V.Q.; Caprioli, R.M.; Cover, T.L. Carboxy-terminal proteolytic processing of Helicobacter pylori vacuolating toxin. Infect. Immun. 2001, 69, 543–546. [Google Scholar] [CrossRef] [PubMed]
  25. Cover, T.L.; Hanson, P.I.; Heuser, J.E. Acid-induced dissociation of VacA, the Helicobacter pylori vacuolating cytotoxin, reveals its pattern of assembly. J. Cell Biol. 1997, 138, 759–769. [Google Scholar] [CrossRef] [PubMed]
  26. Torres, V.J.; McClain, M.S.; Cover, T.L. Interactions between p-33 and p-55 domains of the Helicobacter pylori vacuolating cytotoxin (VacA). J. Biol. Chem. 2004, 279, 2324–2331. [Google Scholar] [CrossRef] [PubMed]
  27. Torres, V.J.; Ivie, S.E.; McClain, M.S.; Cover, T.L. Functional properties of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin. J. Biol. Chem. 2005, 280, 21107–21114. [Google Scholar] [CrossRef] [PubMed]
  28. Gonzalez-Rivera, C.; Gangwer, K.A.; McClain, M.S.; Eli, I.M.; Chambers, M.G.; Ohi, M.D.; Lacy, D.B.; Cover, T.L. Reconstitution of Helicobacter pylori VacA toxin from purified components. Biochemistry 2010, 49, 5743–5752. [Google Scholar] [CrossRef] [PubMed]
  29. Ye, D.; Willhite, D.C.; Blanke, S.R. Identification of the minimal intracellular vacuolating domain of the Helicobacter pylori vacuolating toxin. J. Biol. Chem. 1999, 274, 9277–9282. [Google Scholar] [CrossRef] [PubMed]
  30. De Bernard, M.; Arico, B.; Papini, E.; Rizzuto, R.; Grandi, G.; Rappuoli, R.; Montecucco, C. Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol. Microbiol. 1997, 26, 665–674. [Google Scholar] [CrossRef] [PubMed]
  31. De Bernard, M.; Burroni, D.; Papini, E.; Rappuoli, R.; Telford, J.; Montecucco, C. Identification of the Helicobacter pylori VacA toxin domain active in the cell cytosol. Infect. Immun. 1998, 66, 6014–6016. [Google Scholar] [PubMed]
  32. Schraw, W.; Li, Y.; McClain, M.S.; van der Goot, F.G.; Cover, T.L. Association of Helicobacter pylori vacuolating toxin (VacA) with lipid rafts. J. Biol. Chem. 2002, 277, 34642–34650. [Google Scholar] [CrossRef] [PubMed]
  33. Patel, H.K.; Willhite, D.C.; Patel, R.M.; Ye, D.; Williams, C.L.; Torres, E.M.; Marty, K.B.; MacDonald, R.A.; Blanke, S.R. Plasma membrane cholesterol modulates cellular vacuolation induced by the Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 2002, 70, 4112–4123. [Google Scholar] [CrossRef] [PubMed]
  34. Geisse, N.A.; Cover, T.L.; Henderson, R.M.; Edwardson, J.M. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy. Biochem. J. 2004, 381, 911–917. [Google Scholar] [CrossRef] [PubMed]
  35. Gupta, V.R.; Patel, H.K.; Kostolansky, S.S.; Ballivian, R.A.; Eichberg, J.; Blanke, S.R. Sphingomyelin functions as a novel receptor for Helicobacter pylori VacA. PLoS Pathog. 2008, 4, e1000073. [Google Scholar] [CrossRef] [PubMed]
  36. Gupta, V.R.; Wilson, B.A.; Blanke, S.R. Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA. Cell. Microbiol. 2010, 12, 1517–1533. [Google Scholar] [CrossRef] [PubMed]
  37. Yahiro, K.; Hirayama, T.; Moss, J.; Noda, M. New Insights into VacA Intoxication Mediated through Its Cell Surface Receptors. Toxins (Basel) 2016, 8. [Google Scholar] [CrossRef] [PubMed]
  38. Sewald, X.; Gebert-Vogal, B.; Prassl, S.; Barwig, I.; Weiss, E.; Fabbri, M.; Osicka, R.; Schiemann, M.; Busch, D.H.; Semmrich, M.; et al. CD18 is the T-lymphocyte receptor of the Helicobacter pylori vacuolating cytotoxin. Cell Host Microbe 2008, 3, 20–29. [Google Scholar] [CrossRef] [PubMed]
  39. Garner, J.A.; Cover, T.L. Binding and internalization of the Helicobacter pylori vacuolating cytotoxin by epithelial cells. Infect. Immun. 1996, 64, 4197–4203. [Google Scholar] [PubMed]
  40. Ricci, V.; Sommi, P.; Fiocca, R.; Romano, M.; Solcia, E.; Ventura, U. Helicobacter pylori vacuolating toxin accumulates within the endosomal- vacuolar compartment of cultured gastric cells and potentiates the vacuolating activity of ammonia. J. Pathol. 1997, 183, 453–459. [Google Scholar] [CrossRef]
  41. McClain, M.S.; Schraw, W.; Ricci, V.; Boquet, P.; Cover, T.L. Acid-activation of Helicobacter pylori vacuolating cytotoxin (VacA) results in toxin internalization by eukaryotic cells. Mol. Microbiol. 2000, 37, 433–442. [Google Scholar] [CrossRef] [PubMed]
  42. Gauthier, N.C.; Monzo, P.; Gonzalez, T.; Doye, A.; Oldani, A.; Gounon, P.; Ricci, V.; Cormont, M.; Boquet, P. Early endosomes associated with dynamic F-actin structures are required for late trafficking of H. pylori VacA toxin. J. Cell Biol. 2007, 177, 343–354. [Google Scholar] [CrossRef] [PubMed]
  43. Gauthier, N.C.; Monzo, P.; Kaddai, V.; Doye, A.; Ricci, V.; Boquet, P. Helicobacter pylori VacA cytotoxin: A probe for a clathrin-independent and Cdc42-dependent pinocytic pathway routed to late endosomes. Mol. Biol. Cell. 2005, 16, 4852–4866. [Google Scholar] [CrossRef] [PubMed]
  44. Li, Y.; Wandinger-Ness, A.; Goldenring, J.R.; Cover, T.L. Clustering and redistribution of late endocytic compartments in response to Helicobacter pylori vacuolating toxin. Mol. Biol. Cell 2004, 15, 1946–1959. [Google Scholar] [CrossRef] [PubMed]
  45. Galmiche, A.; Rassow, J.; Doye, A.; Cagnol, S.; Chambard, J.C.; Contamin, S.; de Thillot, V.; Just, I.; Ricci, V.; Solcia, E.; et al. The N-terminal 34 kDa fragment of helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J. 2000, 19, 6361–6370. [Google Scholar] [CrossRef] [PubMed]
  46. Willhite, D.C.; Cover, T.L.; Blanke, S.R. Cellular vacuolation and mitochondrial cytochrome c release are independent outcomes of Helicobacter pylori vacuolating cytotoxin activity that are each dependent on membrane channel formation. J. Biol. Chem. 2003, 278, 48204–48209. [Google Scholar] [CrossRef] [PubMed]
  47. Willhite, D.C.; Blanke, S.R. Helicobacter pylori vacuolating cytotoxin enters cells, localizes to the mitochondria, and induces mitochondrial membrane permeability changes correlated to toxin channel activity. Cell. Microbiol. 2004, 6, 143–154. [Google Scholar] [CrossRef] [PubMed]
  48. Calore, F.; Genisset, C.; Casellato, A.; Rossato, M.; Codolo, G.; Esposti, M.D.; Scorrano, L.; de Bernard, M. Endosome-mitochondria juxtaposition during apoptosis induced by H. pylori VacA. Cell Death Differ. 2010, 17, 1707–1716. [Google Scholar] [CrossRef] [PubMed]
  49. Kern, B.; Jain, U.; Utsch, C.; Otto, A.; Busch, B.; Jimenez-Soto, L.; Becher, D.; Haas, R. Characterization of Helicobacter pylori VacA-containing vacuoles (VCVs), VacA intracellular trafficking and interference with calcium signalling in T lymphocytes. Cell. Microbiol. 2015, 17, 1811–1832. [Google Scholar] [CrossRef] [PubMed]
  50. Czajkowsky, D.M.; Iwamoto, H.; Cover, T.L.; Shao, Z. The vacuolating toxin from Helicobacter pylori forms hexameric pores in lipid bilayers at low pH. Proc. Natl. Acad. Sci. USA 1999, 96, 2001–2006. [Google Scholar] [CrossRef] [PubMed]
  51. Iwamoto, H.; Czajkowsky, D.M.; Cover, T.L.; Szabo, G.; Shao, Z. VacA from Helicobacter pylori: A hexameric chloride channel. FEBS Lett. 1999, 450, 101–104. [Google Scholar] [CrossRef]
  52. Tombola, F.; Carlesso, C.; Szabo, I.; de Bernard, M.; Reyrat, J.M.; Telford, J.L.; Rappuoli, R.; Montecucco, C.; Papini, E.; Zoratti, M. Helicobacter pylori vacuolating toxin forms anion-selective channels in planar lipid bilayers: Possible implications for the mechanism of cellular vacuolation. Biophys. J. 1999, 76, 1401–1409. [Google Scholar] [CrossRef]
  53. Szabo, I.; Brutsche, S.; Tombola, F.; Moschioni, M.; Satin, B.; Telford, J.L.; Rappuoli, R.; Montecucco, C.; Papini, E.; Zoratti, M. Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J. 1999, 18, 5517–5527. [Google Scholar] [CrossRef] [PubMed]
  54. Vinion-Dubiel, A.D.; McClain, M.S.; Czajkowsky, D.M.; Iwamoto, H.; Ye, D.; Cao, P.; Schraw, W.; Szabo, G.; Blanke, S.R.; Shao, Z.; et al. A dominant negative mutant of Helicobacter pylori vacuolating toxin (VacA) inhibits VacA-induced cell vacuolation. J. Biol. Chem. 1999, 274, 37736–37742. [Google Scholar] [CrossRef] [PubMed]
  55. McClain, M.S.; Iwamoto, H.; Cao, P.; Vinion-Dubiel, A.D.; Li, Y.; Szabo, G.; Shao, Z.; Cover, T.L. Essential role of a GXXXG motif for membrane channel formation by Helicobacter pylori vacuolating toxin. J. Biol. Chem. 2003, 278, 12101–12108. [Google Scholar] [CrossRef] [PubMed]
  56. Adrian, M.; Cover, T.L.; Dubochet, J.; Heuser, J.E. Multiple oligomeric states of the Helicobacter pylori vacuolating toxin demonstrated by cryo-electron microscopy. J. Mol. Biol. 2002, 318, 121–133. [Google Scholar] [CrossRef]
  57. Czajkowsky, D.M.; Iwamoto, H.; Szabo, G.; Cover, T.L.; Shao, Z. Mimicry of a host anion channel by a Helicobacter pylori pore-forming toxin. Biophys. J. 2005, 89, 3093–3101. [Google Scholar] [CrossRef] [PubMed]
  58. Pyburn, T.M.; Foegeding, N.J.; Gonzalez-Rivera, C.; McDonald, N.A.; Gould, K.L.; Cover, T.L.; Ohi, M.D. Structural organization of membrane-inserted hexamers formed by Helicobacter pylori VacA toxin. Mol. Microbiol. 2016, 102, 22–36. [Google Scholar] [CrossRef] [PubMed]
  59. Papini, E.; de Bernard, M.; Milia, E.; Bugnoli, M.; Zerial, M.; Rappuoli, R.; Montecucco, C. Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc. Natl. Acad. Sci. USA 1994, 91, 9720–9724. [Google Scholar] [CrossRef] [PubMed]
  60. Molinari, M.; Galli, C.; Norais, N.; Telford, J.L.; Rappuoli, R.; Luzio, J.P.; Montecucco, C. Vacuoles induced by Helicobacter pylori toxin contain both late endosomal and lysosomal markers. J. Biol. Chem. 1997, 272, 25339–25344. [Google Scholar] [CrossRef] [PubMed]
  61. Morbiato, L.; Tombola, F.; Campello, S.; Del Giudice, G.; Rappuoli, R.; Zoratti, M.; Papini, E. Vacuolation induced by VacA toxin of Helicobacter pylori requires the intracellular accumulation of membrane permeant bases, Cl(-) and water. FEBS Lett. 2001, 508, 479–483. [Google Scholar] [CrossRef]
  62. Genisset, C.; Puhar, A.; Calore, F.; de Bernard, M.; Dell’Antone, P.; Montecucco, C. The concerted action of the Helicobacter pylori cytotoxin VacA and of the v-ATPase proton pump induces swelling of isolated endosomes. Cell. Microbiol. 2007, 9, 1481–1490. [Google Scholar] [CrossRef] [PubMed]
  63. Satin, B.; Norais, N.; Telford, J.; Rappuoli, R.; Murgia, M.; Montecucco, C.; Papini, E. Effect of Helicobacter pylori vacuolating toxin on maturation and extracellular release of procathepsin D and on epidermal growth factor degradation. J. Biol. Chem. 1997, 272, 25022–25028. [Google Scholar] [CrossRef] [PubMed]
  64. Molinari, M.; Salio, M.; Galli, C.; Norais, N.; Rappuoli, R.; Lanzavecchia, A.; Montecucco, C. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med. 1998, 187, 135–140. [Google Scholar] [CrossRef] [PubMed]
  65. Tan, S.; Noto, J.M.; Romero-Gallo, J.; Peek, R.M., Jr.; Amieva, M.R. Helicobacter pylori perturbs iron trafficking in the epithelium to grow on the cell surface. PLoS Pathog. 2011, 7, e1002050. [Google Scholar] [CrossRef] [PubMed]
  66. Kimura, M.; Goto, S.; Wada, A.; Yahiro, K.; Niidome, T.; Hatakeyama, T.; Aoyagi, H.; Hirayama, T.; Kondo, T. Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb. Pathog. 1999, 26, 45–52. [Google Scholar] [CrossRef] [PubMed]
  67. Yamasaki, E.; Wada, A.; Kumatori, A.; Nakagawa, I.; Funao, J.; Nakayama, M.; Hisatsune, J.; Kimura, M.; Moss, J.; Hirayama, T. Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic protein Bax and Bak, leading to cytochrome c release and cell death, independent of vacuolation. J. Biol. Chem. 2006, 281, 11250–11259. [Google Scholar] [CrossRef] [PubMed]
  68. Jain, P.; Luo, Z.Q.; Blanke, S.R. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death. Proc. Natl. Acad. Sci. USA 2011, 108, 16032–16037. [Google Scholar] [CrossRef] [PubMed]
  69. Kuck, D.; Kolmerer, B.; Iking-Konert, C.; Krammer, P.H.; Stremmel, W.; Rudi, J. Vacuolating cytotoxin of Helicobacter pylori induces apoptosis in the human gastric epithelial cell line AGS. Infect. Immun. 2001, 69, 5080–5087. [Google Scholar] [CrossRef] [PubMed]
  70. Cover, T.L.; Krishna, U.S.; Israel, D.A.; Peek, R.M., Jr. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res. 2003, 63, 951–957. [Google Scholar] [PubMed]
  71. Oldani, A.; Cormont, M.; Hofman, V.; Chiozzi, V.; Oregioni, O.; Canonici, A.; Sciullo, A.; Sommi, P.; Fabbri, A.; Ricci, V.; et al. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog. 2009, 5, e1000603. [Google Scholar] [CrossRef] [PubMed]
  72. Radin, J.N.; Gonzalez-Rivera, C.; Ivie, S.E.; McClain, M.S.; Cover, T.L. Helicobacter pylori VacA induces programmed necrosis in gastric epithelial cells. Infect. Immun. 2011, 79, 2535–2543. [Google Scholar] [CrossRef] [PubMed]
  73. Matsumoto, A.; Isomoto, H.; Nakayama, M.; Hisatsune, J.; Nishi, Y.; Nakashima, Y.; Matsushima, K.; Kurazono, H.; Nakao, K.; Hirayama, T.; et al. Helicobacter pylori VacA reduces the cellular expression of STAT3 and pro-survival Bcl-2 family proteins, Bcl-2 and Bcl-XL, leading to apoptosis in gastric epithelial cells. Dig. Dis. Sci. 2011, 56, 999–1006. [Google Scholar] [CrossRef] [PubMed]
  74. Ito, Y.; Azuma, T.; Ito, S.; Suto, H.; Miyaji, H.; Yamazaki, Y.; Kohli, Y.; Kuriyama, M. Full-length sequence analysis of the vacA gene from cytotoxic and noncytotoxic Helicobacter pylori. J. Infect. Dis. 1998, 178, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
  75. Atherton, J.C.; Cao, P.; Peek, R.M., Jr.; Tummuru, M.K.; Blaser, M.J.; Cover, T.L. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 1995, 270, 17771–17777. [Google Scholar] [CrossRef] [PubMed]
  76. Letley, D.P.; Atherton, J.C. Natural diversity in the N terminus of the mature vacuolating cytotoxin of Helicobacter pylori determines cytotoxin activity. J. Bacteriol. 2000, 182, 3278–3280. [Google Scholar] [CrossRef] [PubMed]
  77. McClain, M.S.; Cao, P.; Iwamoto, H.; Vinion-Dubiel, A.D.; Szabo, G.; Shao, Z.; Cover, T.L. A 12-Amino-Acid Segment, Present in Type s2 but Not Type s1 Helicobacter pylori VacA Proteins, Abolishes Cytotoxin Activity and Alters Membrane Channel Formation. J. Bacteriol. 2001, 183, 6499–6508. [Google Scholar] [CrossRef] [PubMed]
  78. Letley, D.P.; Rhead, J.L.; Twells, R.J.; Dove, B.; Atherton, J.C. Determinants of non-toxicity in the gastric pathogen Helicobacter pylori. J. Biol. Chem. 2003, 278, 26734–26741. [Google Scholar] [CrossRef] [PubMed]
  79. Gangwer, K.A.; Shaffer, C.L.; Suerbaum, S.; Lacy, D.B.; Cover, T.L.; Bordenstein, S.R. Molecular evolution of the Helicobacter pylori vacuolating toxin gene vacA. J. Bacteriol. 2010, 192, 6126–6135. [Google Scholar] [CrossRef] [PubMed]
  80. Forsyth, M.H.; Atherton, J.C.; Blaser, M.J.; Cover, T.L. Heterogeneity in levels of vacuolating cytotoxin gene (vacA) transcription among Helicobacter pylori strains. Infect. Immun. 1998, 66, 3088–3094. [Google Scholar] [PubMed]
  81. Rhead, J.L.; Letley, D.P.; Mohammadi, M.; Hussein, N.; Mohagheghi, M.A.; Eshagh Hosseini, M.; Atherton, J.C. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology 2007, 133, 926–936. [Google Scholar] [CrossRef] [PubMed]
  82. Ogiwara, H.; Sugimoto, M.; Ohno, T.; Vilaichone, R.K.; Mahachai, V.; Graham, D.Y.; Yamaoka, Y. Role of deletion located between the intermediate and middle regions of the Helicobacter pylori vacA gene in cases of gastroduodenal diseases. J. Clin. Microbiol. 2009, 47, 3493–3500. [Google Scholar] [CrossRef] [PubMed]
  83. Gonzalez-Rivera, C.; Algood, H.M.; Radin, J.N.; McClain, M.S.; Cover, T.L. The intermediate region of Helicobacter pylori VacA is a determinant of toxin potency in a Jurkat T cell assay. Infect. Immun. 2012, 80, 2578–2588. [Google Scholar] [CrossRef] [PubMed]
  84. Pagliaccia, C.; de Bernard, M.; Lupetti, P.; Ji, X.; Burroni, D.; Cover, T.L.; Papini, E.; Rappuoli, R.; Telford, J.L.; Reyrat, J.M. The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proc. Natl. Acad. Sci. USA 1998, 95, 10212–10217. [Google Scholar] [CrossRef] [PubMed]
  85. Ji, X.; Fernandez, T.; Burroni, D.; Pagliaccia, C.; Atherton, J.C.; Reyrat, J.M.; Rappuoli, R.; Telford, J.L. Cell specificity of helicobacter pylori cytotoxin is determined by a short region in the polymorphic midregion. Infect. Immun. 2000, 68, 3754–3757. [Google Scholar] [CrossRef] [PubMed]
  86. Wang, W.-C.; Wang, H.-J.; Kuo, C.-H. Two distinctive cell binding patterns by vacuolating toxin fused with glutathione S-transferase: One high-affinity m1-specific binding and the other lower-affinity binding for variant m forms. Biochemistry 2001, 40, 11887–11896. [Google Scholar] [CrossRef] [PubMed]
  87. Skibinski, D.A.; Genisset, C.; Barone, S.; Telford, J.L. The cell-specific phenotype of the polymorphic vacA midregion is independent of the appearance of the cell surface receptor protein tyrosine phosphatase beta. Infect. Immun. 2006, 74, 49–55. [Google Scholar] [CrossRef] [PubMed]
  88. Tombola, F.; Pagliaccia, C.; Campello, S.; Telford, J.L.; Montecucco, C.; Papini, E.; Zoratti, M. How the loop and middle regions influence the properties of Helicobacter pylori VacA channels. Biophys. J. 2001, 81, 3204–3215. [Google Scholar] [CrossRef]
  89. Yahiro, K.; Satoh, M.; Nakano, M.; Hisatsune, J.; Isomoto, H.; Sap, J.; Suzuki, H.; Nomura, F.; Noda, M.; Moss, J.; et al. Low-density lipoprotein receptor-related protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA. J. Biol. Chem. 2012, 287, 31104–31115. [Google Scholar] [CrossRef] [PubMed]
  90. Tsugawa, H.; Suzuki, H.; Saya, H.; Hatakeyama, M.; Hirayama, T.; Hirata, K.; Nagano, O.; Matsuzaki, J.; Hibi, T. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe 2012, 12, 764–777. [Google Scholar] [CrossRef] [PubMed]
  91. Atherton, J.C.; Sharp, P.M.; Cover, T.L.; Gonzalez-Valencia, G.; Peek, R.M., Jr.; Thompson, S.A.; Hawkey, C.J.; Blaser, M.J. Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori comprise two geographically widespread types, m1 and m2, and have evolved through limited recombination. Curr. Microbiol. 1999, 39, 211–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  92. Pan, Z.J.; Berg, D.E.; van der Hulst, R.W.; Su, W.W.; Raudonikiene, A.; Xiao, S.D.; Dankert, J.; Tytgat, G.N.; van der Ende, A. Prevalence of vacuolating cytotoxin production and distribution of distinct vacA alleles in Helicobacter pylori from China. J. Infect. Dis. 1998, 178, 220–226. [Google Scholar] [CrossRef] [PubMed]
  93. Chung, C.; Olivares, A.; Torres, E.; Yilmaz, O.; Cohen, H.; Perez-Perez, G. Diversity of VacA intermediate region among Helicobacter pylori strains from several regions of the world. J. Clin. Microbiol. 2010, 48, 690–696. [Google Scholar] [CrossRef] [PubMed]
  94. Letley, D.P.; Lastovica, A.; Louw, J.A.; Hawkey, C.J.; Atherton, J.C. Allelic diversity of the Helicobacter pylori vacuolating cytotoxin gene in South Africa: Rarity of the vacA s1a genotype and natural occurrence of an s2/m1 allele. J. Clin. Microbiol. 1999, 37, 1203–1205. [Google Scholar] [PubMed]
  95. Bridge, D.R.; Merrell, D.S. Polymorphism in the Helicobacter pylori CagA and VacA toxins and disease. Gut Microbes 2013, 4, 101–117. [Google Scholar] [CrossRef] [PubMed]
  96. Ferreira, R.M.; Machado, J.C.; Figueiredo, C. Clinical relevance of Helicobacter pylori vacA and cagA genotypes in gastric carcinoma. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
  97. Thi Huyen Trang, T.; Thanh Binh, T.; Yamaoka, Y. Relationship between vacA Types and Development of Gastroduodenal Diseases. Toxins (Basel) 2016, 8, 182. [Google Scholar] [CrossRef] [PubMed]
  98. Figueiredo, C.; Machado, J.C.; Pharoah, P.; Seruca, R.; Sousa, S.; Carvalho, R.; Capelinha, A.F.; Quint, W.; Caldas, C.; van Doorn, L.J.; et al. Helicobacter pylori and interleukin 1 genotyping: An opportunity to identify high-risk individuals for gastric carcinoma. J. Natl. Cancer Inst. 2002, 94, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
  99. Basso, D.; Zambon, C.F.; Letley, D.P.; Stranges, A.; Marchet, A.; Rhead, J.L.; Schiavon, S.; Guariso, G.; Ceroti, M.; Nitti, D.; et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 2008, 135, 91–99. [Google Scholar] [CrossRef] [PubMed]
  100. Miehlke, S.; Kirsch, C.; Agha-Amiri, K.; Gunther, T.; Lehn, N.; Malfertheiner, P.; Stolte, M.; Ehninger, G.; Bayerdorffer, E. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int. J. Cancer 2000, 87, 322–327. [Google Scholar] [CrossRef]
  101. Nogueira, C.; Figueiredo, C.; Carneiro, F.; Gomes, A.T.; Barreira, R.; Figueira, P.; Salgado, C.; Belo, L.; Peixoto, A.; Bravo, J.C.; et al. Helicobacter pylori genotypes may determine gastric histopathology. Am. J. Pathol. 2001, 158, 647–654. [Google Scholar] [CrossRef]
  102. Ashour, A.A.; Magalhaes, P.P.; Mendes, E.N.; Collares, G.B.; de Gusmao, V.R.; Queiroz, D.M.; Nogueira, A.M.; Rocha, G.A.; de Oliveira, C.A. Distribution of vacA genotypes in Helicobacter pylori strains isolated from Brazilian adult patients with gastritis, duodenal ulcer or gastric carcinoma. FEMS Immunol. Med. Microbiol. 2002, 33, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Gonzalez, C.A.; Figueiredo, C.; Lic, C.B.; Ferreira, R.M.; Pardo, M.L.; Ruiz Liso, J.M.; Alonso, P.; Sala, N.; Capella, G.; Sanz-Anquela, J.M. Helicobacter pylori cagA and vacA genotypes as predictors of progression of gastric preneoplastic lesions: A long-term follow-up in a high-risk area in Spain. Am. J. Gastroenterol. 2011, 106, 867–874. [Google Scholar] [CrossRef] [PubMed]
  104. Matos, J.I.; de Sousa, H.A.; Marcos-Pinto, R.; Dinis-Ribeiro, M. Helicobacter pylori CagA and VacA genotypes and gastric phenotype: A meta-analysis. Eur. J. Gastroenterol. Hepatol. 2013, 25, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
  105. Ferreira, R.M.; Machado, J.C.; Letley, D.; Atherton, J.C.; Pardo, M.L.; Gonzalez, C.A.; Carneiro, F.; Figueiredo, C. A novel method for genotyping the Helicobacter pylori vacA intermediate region directly in gastric biopsy specimens. J. Clin. Microbiol. 2012, 50, 3983–3989. [Google Scholar] [CrossRef] [PubMed]
  106. Memon, A.A.; Hussein, N.R.; Miendje Deyi, V.Y.; Burette, A.; Atherton, J.C. Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: A matched case-control study. J. Clin. Microbiol. 2014, 52, 2984–2989. [Google Scholar] [CrossRef] [PubMed]
  107. Winter, J.A.; Letley, D.P.; Cook, K.W.; Rhead, J.L.; Zaitoun, A.A.; Ingram, R.J.; Amilon, K.R.; Croxall, N.J.; Kaye, P.V.; Robinson, K.; et al. A role for the vacuolating cytotoxin, VacA, in colonization and Helicobacter pylori-induced metaplasia in the stomach. J. Infect. Dis. 2014, 210, 954–963. [Google Scholar] [CrossRef] [PubMed]
  108. Atherton, J.C.; Peek, R.M., Jr.; Tham, K.T.; Cover, T.L.; Blaser, M.J. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 1997, 112, 92–99. [Google Scholar] [CrossRef]
  109. Van Doorn, L.J.; Figueiredo, C.; Sanna, R.; Plaisier, A.; Schneeberger, P.; de Boer, W.; Quint, W. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology 1998, 115, 58–66. [Google Scholar] [CrossRef]
  110. Van Doorn, L.J.; Figueiredo, C.; Megraud, F.; Pena, S.; Midolo, P.; Queiroz, D.M.; Carneiro, F.; Vanderborght, B.; Pegado, M.D.; Sanna, R.; et al. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology 1999, 116, 823–830. [Google Scholar] [CrossRef]
  111. Fischer, W. Assembly and molecular mode of action of the Helicobacter pylori Cag type IV secretion apparatus. FEBS J. 2011, 278, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
  112. Terradot, L.; Waksman, G. Architecture of the Helicobacter pylori Cag-type IV secretion system. FEBS J. 2011, 278, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
  113. Frick-Cheng, A.E.; Pyburn, T.M.; Voss, B.J.; McDonald, W.H.; Ohi, M.D.; Cover, T.L. Molecular and Structural Analysis of the Helicobacter pylori cag Type IV Secretion System Core Complex. MBio 2016, 7, e02001-15. [Google Scholar] [CrossRef] [PubMed]
  114. Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: A paradigm for hit-and-run carcinogenesis. Cell Host Microbe 2014, 15, 306–316. [Google Scholar] [CrossRef] [PubMed]
  115. Tegtmeyer, N.; Neddermann, M.; Asche, C.I.; Backert, S. Subversion of host kinases: A key network in cellular signaling hijacked by Helicobacter pylori CagA. Mol. Microbiol. 2017, 105, 358–372. [Google Scholar] [CrossRef] [PubMed]
  116. Odenbreit, S.; Swoboda, K.; Barwig, I.; Ruhl, S.; Boren, T.; Koletzko, S.; Haas, R. Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect. Immun. 2009, 77, 3782–3790. [Google Scholar] [CrossRef] [PubMed]
  117. Cover, T.L. Helicobacter pylori Diversity and Gastric Cancer Risk. MBio 2016, 7, e01869-15. [Google Scholar] [CrossRef] [PubMed]
  118. Blaser, M.J.; Perez-Perez, G.I.; Kleanthous, H.; Cover, T.L.; Peek, R.M.; Chyou, P.H.; Stemmermann, G.N.; Nomura, A. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 1995, 55, 2111–2115. [Google Scholar] [PubMed]
  119. Plummer, M.; van Doorn, L.J.; Franceschi, S.; Kleter, B.; Canzian, F.; Vivas, J.; Lopez, G.; Colin, D.; Munoz, N.; Kato, I. Helicobacter pylori cytotoxin-associated genotype and gastric precancerous lesions. J. Natl. Cancer Inst. 2007, 99, 1328–1334. [Google Scholar] [CrossRef] [PubMed]
  120. Gerhard, M.; Lehn, N.; Neumayer, N.; Boren, T.; Rad, R.; Schepp, W.; Miehlke, S.; Classen, M.; Prinz, C. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl. Acad. Sci. USA 1999, 96, 12778–12783. [Google Scholar] [CrossRef] [PubMed]
  121. Prinz, C.; Schoniger, M.; Rad, R.; Becker, I.; Keiditsch, E.; Wagenpfeil, S.; Classen, M.; Rosch, T.; Schepp, W.; Gerhard, M. Key importance of the Helicobacter pylori adherence factor blood group antigen binding adhesin during chronic gastric inflammation. Cancer Res. 2001, 61, 1903–1909. [Google Scholar] [PubMed]
  122. Yu, J.; Leung, W.K.; Go, M.Y.; Chan, M.C.; To, K.F.; Ng, E.K.; Chan, F.K.; Ling, T.K.; Chung, S.C.; Sung, J.J. Relationship between Helicobacter pylori babA2 status with gastric epithelial cell turnover and premalignant gastric lesions. Gut 2002, 51, 480–484. [Google Scholar] [CrossRef] [PubMed]
  123. Yamaoka, Y.; Ojo, O.; Fujimoto, S.; Odenbreit, S.; Haas, R.; Gutierrez, O.; El-Zimaity, H.M.; Reddy, R.; Arnqvist, A.; Graham, D.Y. Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut 2006, 55, 775–781. [Google Scholar] [CrossRef] [PubMed]
  124. Jung, S.W.; Sugimoto, M.; Graham, D.Y.; Yamaoka, Y. homB status of Helicobacter pylori as a novel marker to distinguish gastric cancer from duodenal ulcer. J. Clin. Microbiol. 2009, 47, 3241–3245. [Google Scholar] [CrossRef] [PubMed]
  125. Talebi Bezmin Abadi, A.; Rafiei, A.; Ajami, A.; Hosseini, V.; Taghvaei, T.; Jones, K.R.; Merrell, D.S. Helicobacter pylori homB, but not cagA, is associated with gastric cancer in Iran. J. Clin. Microbiol. 2011, 49, 3191–3197. [Google Scholar] [CrossRef] [PubMed]
  126. Yakoob, J.; Abbas, Z.; Khan, R.; Salim, S.A.; Awan, S.; Abrar, A.; Jafri, W. Helicobacter pylori outer membrane protein Q allele distribution is associated with distinct pathologies in Pakistan. Infect. Genet. Evol. 2015. [Google Scholar] [CrossRef] [PubMed]
  127. Cao, P.; Cover, T.L. Two different families of hopQ alleles in Helicobacter pylori. J. Clin. Microbiol. 2002, 40, 4504–4511. [Google Scholar] [CrossRef] [PubMed]
  128. Dossumbekova, A.; Prinz, C.; Mages, J.; Lang, R.; Kusters, J.G.; van Vliet, A.H.M.; Reindl, W.; Backert, S.; Saur, D.; Schmid, R.M.; et al. Helicobacter pylori HopH (OipA) and bacterial pathogenicity: Genetic and functional genomic analysis of hopH gene polymorphisms. J. Infect. Dis. 2006, 194, 1346–1355. [Google Scholar] [CrossRef] [PubMed]
  129. Hennig, E.E.; Allen, J.M.; Cover, T.L. Multiple chromosomal loci for the babA gene in Helicobacter pylori. Infect. Immun. 2006, 74, 3046–3051. [Google Scholar] [CrossRef] [PubMed]
  130. Oleastro, M.; Cordeiro, R.; Ferrand, J.; Nunes, B.; Lehours, P.; Carvalho-Oliveira, I.; Mendes, A.I.; Penque, D.; Monteiro, L.; Megraud, F.; et al. Evaluation of the clinical significance of homB, a novel candidate marker of Helicobacter pylori strains associated with peptic ulcer disease. J. Infect. Dis. 2008, 198, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
  131. Oleastro, M.; Cordeiro, R.; Yamaoka, Y.; Queiroz, D.; Megraud, F.; Monteiro, L.; Menard, A. Disease association with two Helicobacter pylori duplicate outer membrane protein genes, homB and homA. Gut Pathog. 2009, 1, 12. [Google Scholar] [CrossRef] [PubMed]
  132. Asahi, M.; Tanaka, Y.; Izumi, T.; Ito, Y.; Naiki, H.; Kersulyte, D.; Tsujikawa, K.; Saito, M.; Sada, K.; Yanagi, S.; et al. Helicobacter pylori CagA containing ITAM-like sequences localized to lipid rafts negatively regulates VacA-induced signaling in vivo. Helicobacter 2003, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
  133. Argent, R.H.; Thomas, R.J.; Letley, D.P.; Rittig, M.G.; Hardie, K.R.; Atherton, J.C. Functional association between the Helicobacter pylori virulence factors VacA and CagA. J. Med. Microbiol. 2008, 57, 145–150. [Google Scholar] [CrossRef] [PubMed]
  134. Yokoyama, K.; Higashi, H.; Ishikawa, S.; Fujii, Y.; Kondo, S.; Kato, H.; Azuma, T.; Wada, A.; Hirayama, T.; Aburatani, H.; et al. Functional antagonism between Helicobacter pylori CagA and vacuolating toxin VacA in control of the NFAT signaling pathway in gastric epithelial cells. Proc. Natl. Acad. Sci. USA 2005, 102, 9661–9666. [Google Scholar] [CrossRef] [PubMed]
  135. Tegtmeyer, N.; Zabler, D.; Schmidt, D.; Hartig, R.; Brandt, S.; Backert, S. Importance of EGF receptor, HER2/Neu and Erk1/2 kinase signalling for host cell elongation and scattering induced by the Helicobacter pylori CagA protein: Antagonistic effects of the vacuolating cytotoxin VacA. Cell. Microbiol. 2009, 11, 488–505. [Google Scholar] [CrossRef] [PubMed]
  136. Akada, J.K.; Aoki, H.; Torigoe, Y.; Kitagawa, T.; Kurazono, H.; Hoshida, H.; Nishikawa, J.; Terai, S.; Matsuzaki, M.; Hirayama, T.; et al. Helicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells. Dis. Models Mech. 2010, 3, 605–617. [Google Scholar] [CrossRef] [PubMed]
  137. Ito, Y.; Azuma, T.; Ito, S.; Miyaji, H.; Hirai, M.; Yamazaki, Y.; Sato, F.; Kato, T.; Kohli, Y.; Kuriyama, M. Analysis and typing of the vacA gene from cagA-positive strains of Helicobacter pylori isolated in Japan. J. Clin. Microbiol. 1997, 35, 1710–1714. [Google Scholar] [PubMed]
  138. Jang, S.; Jones, K.R.; Olsen, C.H.; Joo, Y.M.; Yoo, Y.J.; Chung, I.S.; Cha, J.H.; Merrell, D.S. Epidemiological link between gastric disease and polymorphisms in VacA and CagA. J. Clin. Microbiol. 2010, 48, 559–567. [Google Scholar] [CrossRef] [PubMed]
  139. De Martel, C.; Forman, D.; Plummer, M. Gastric cancer: Epidemiology and risk factors. Gastroenterol. Clin. N. Am. 2013, 42, 219–240. [Google Scholar] [CrossRef] [PubMed]
  140. Eaton, K.A.; Cover, T.L.; Tummuru, M.K.; Blaser, M.J.; Krakowka, S. Role of vacuolating cytotoxin in gastritis due to Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 1997, 65, 3462–3464. [Google Scholar] [PubMed]
  141. Ogura, K.; Maeda, S.; Nakao, M.; Watanabe, T.; Tada, M.; Kyutoku, T.; Yoshida, H.; Shiratori, Y.; Omata, M. Virulence factors of Helicobacter pylori responsible for gastric diseases in mongolian gerbil. J. Exp. Med. 2000, 192, 1601–1610. [Google Scholar] [CrossRef] [PubMed]
  142. Salama, N.R.; Otto, G.; Tompkins, L.; Falkow, S. Vacuolating cytotoxin of Helicobacter pylori plays a role during colonization in a mouse model of infection. Infect. Immun. 2001, 69, 730–736. [Google Scholar] [CrossRef] [PubMed]
  143. Wirth, H.P.; Beins, M.H.; Yang, M.; Tham, K.T.; Blaser, M.J. Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun. 1998, 66, 4856–4866. [Google Scholar] [PubMed]
  144. Oertli, M.; Noben, M.; Engler, D.B.; Semper, R.P.; Reuter, S.; Maxeiner, J.; Gerhard, M.; Taube, C.; Muller, A. Helicobacter pylori gamma-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc. Natl. Acad. Sci. USA 2013, 110, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
  145. McClain, M.S.; Shaffer, C.L.; Israel, D.A.; Peek, R.M., Jr.; Cover, T.L. Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer. BMC Genom. 2009, 10, 3. [Google Scholar] [CrossRef] [PubMed]
  146. Loh, J.T.; Gaddy, J.A.; Algood, H.M.; Gaudieri, S.; Mallal, S.; Cover, T.L. Helicobacter pylori adaptation in vivo in response to a high-salt diet. Infect. Immun. 2015, 83, 4871–4883. [Google Scholar] [CrossRef] [PubMed]
  147. Beckett, A.C.; Piazuelo, M.B.; Noto, J.M.; Peek, R.M., Jr.; Washington, M.K.; Algood, H.M.; Cover, T.L. Dietary Composition Influences Incidence of Helicobacter pylori-Induced Iron Deficiency Anemia and Gastric Ulceration. Infect. Immun. 2016, 84, 3338–3349. [Google Scholar] [CrossRef] [PubMed]
  148. Ilver, D.; Barone, S.; Mercati, D.; Lupetti, P.; Telford, J.L. Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell. Microbiol. 2004, 6, 167–174. [Google Scholar] [CrossRef] [PubMed]
  149. Wang, F.; Xia, P.; Wu, F.; Wang, D.; Wang, W.; Ward, T.; Liu, Y.; Aikhionbare, F.; Guo, Z.; Powell, M.; et al. Helicobacter pylori VacA disrupts apical membrane-cytoskeletal interactions in gastric parietal cells. J. Biol. Chem. 2008, 283, 26714–26725. [Google Scholar] [CrossRef] [PubMed]
  150. Kobayashi, H.; Kamiya, S.; Suzuki, T.; Kohda, K.; Muramatsu, S.; Kurumada, T.; Ohta, U.; Miyazawa, M.; Kimura, N.; Mutoh, N.; et al. The effect of Helicobacter pylori on gastric acid secretion by isolated parietal cells from a guinea pig. Association with production of vacuolating toxin by H. pylori. Scand. J. Gastroenterol. 1996, 31, 428–433. [Google Scholar] [CrossRef] [PubMed]
  151. Gebert, B.; Fischer, W.; Weiss, E.; Hoffman, R.; Haas, R. Helicobacter pylori vacuolating cytotoxin inhibits T lymphocyte activation. Science 2003, 301, 1099–1102. [Google Scholar] [CrossRef] [PubMed]
  152. Sundrud, M.S.; Torres, V.J.; Unutmaz, D.; Cover, T.L. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc. Natl. Acad. Sci. USA 2004, 101, 7727–7732. [Google Scholar] [CrossRef] [PubMed]
  153. Boncristiano, M.; Paccani, S.R.; Barone, S.; Ulivieri, C.; Patrussi, L.; Ilver, D.; Amedei, A.; D’Elios, M.M.; Telford, J.L.; Baldari, C.T. The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms. J. Exp. Med. 2003, 198, 1887–1897. [Google Scholar] [CrossRef] [PubMed]
  154. Torres, V.J.; VanCompernolle, S.E.; Sundrud, M.S.; Unutmaz, D.; Cover, T.L. Helicobacter pylori vacuolating cytotoxin inhibits activation-induced proliferation of human T and B lymphocyte subsets. J. Immunol. 2007, 179, 5433–5440. [Google Scholar] [CrossRef] [PubMed]
  155. Gaddy, J.A.; Radin, J.N.; Loh, J.T.; Zhang, F.; Washington, M.K.; Peek, R.M., Jr.; Algood, H.M.; Cover, T.L. High Dietary Salt Intake Exacerbates Helicobacter pylori-Induced Gastric Carcinogenesis. Infect. Immun. 2013, 81, 2258–2267. [Google Scholar] [CrossRef] [PubMed]
  156. Noto, J.M.; Romero-Gallo, J.; Piazuelo, M.B.; Peek, R.M. The Mongolian Gerbil: A Robust Model of Helicobacter pylori-Induced Gastric Inflammation and Cancer. Methods Mol. Biol. 2016, 1422, 263–280. [Google Scholar] [PubMed]
  157. Ghiara, P.; Marchetti, M.; Blaser, M.J.; Tummuru, M.K.; Cover, T.L.; Segal, E.D.; Tompkins, L.S.; Rappuoli, R. Role of the Helicobacter pylori virulence factors vacuolating cytotoxin, CagA, and urease in a mouse model of disease. Infect. Immun. 1995, 63, 4154–4160. [Google Scholar] [PubMed]
  158. Supajatura, V.; Ushio, H.; Wada, A.; Yahiro, K.; Okumura, K.; Ogawa, H.; Hirayama, T.; Ra, C. Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J. Immunol. 2002, 168, 2603–2607. [Google Scholar] [CrossRef] [PubMed]
  159. Fujikawa, A.; Shirasaka, D.; Yamamoto, S.; Ota, H.; Yahiro, K.; Fukada, M.; Shintani, T.; Wada, A.; Aoyama, N.; Hirayama, T.; et al. Mice deficient in protein tyrosine phosphatase receptor type Z are resistant to gastric ulcer induction by VacA of Helicobacter pylori. Nat. Genet. 2003, 33, 375–381. [Google Scholar] [CrossRef] [PubMed]
  160. Algood, H.M.; Torres, V.J.; Unutmaz, D.; Cover, T.L. Resistance of primary murine CD4+ T cells to Helicobacter pylori vacuolating cytotoxin. Infect. Immun. 2007, 75, 334–341. [Google Scholar] [CrossRef] [PubMed]
  161. Javaheri, A.; Kruse, T.; Moonens, K.; Mejias-Luque, R.; Debraekeleer, A.; Asche, C.I.; Tegtmeyer, N.; Kalali, B.; Bach, N.C.; Sieber, S.A.; et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat. Microbiol. 2016, 2, 16189. [Google Scholar] [CrossRef] [PubMed]
  162. Koniger, V.; Holsten, L.; Harrison, U.; Busch, B.; Loell, E.; Zhao, Q.; Bonsor, D.A.; Roth, A.; Kengmo-Tchoupa, A.; Smith, S.I.; et al. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol. 2016, 2, 16188. [Google Scholar] [CrossRef] [PubMed]
  163. Papini, E.; Satin, B.; Norais, N.; de Bernard, M.; Telford, J.L.; Rappuoli, R.; Montecucco, C. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Investig. 1998, 102, 813–820. [Google Scholar] [CrossRef] [PubMed]
  164. Amieva, M.R.; Vogelmann, R.; Covacci, A.; Tompkins, L.S.; Nelson, W.J.; Falkow, S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 2003, 300, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
  165. Radin, J.N.; Gonzalez-Rivera, C.; Frick-Cheng, A.E.; Sheng, J.; Gaddy, J.A.; Rubin, D.H.; Algood, H.M.; McClain, M.S.; Cover, T.L. Role of connexin 43 in Helicobacter pylori VacA-induced cell death. Infect. Immun. 2014, 82, 423–432. [Google Scholar] [CrossRef] [PubMed]
  166. Yahiro, K.; Akazawa, Y.; Nakano, M.; Suzuki, H.; Hisatune, J.; Isomoto, H.; Sap, J.; Noda, M.; Moss, J.; Hirayama, T. Helicobacter pylori VacA induces apoptosis by accumulation of connexin 43 in autophagic vesicles via a Rac1/ERK-dependent pathway. Cell Death Discov. 2015, 1, 15035. [Google Scholar] [CrossRef] [PubMed]
  167. Aasen, T.; Mesnil, M.; Naus, C.C.; Lampe, P.D.; Laird, D.W. Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer 2016, 16, 775–788. [Google Scholar] [CrossRef] [PubMed]
  168. Sigal, M.; Rothenberg, M.E.; Logan, C.Y.; Lee, J.Y.; Honaker, R.W.; Cooper, R.L.; Passarelli, B.; Camorlinga, M.; Bouley, D.M.; Alvarez, G.; et al. Helicobacter pylori Activates and Expands Lgr5(+) Stem Cells Through Direct Colonization of the Gastric Glands. Gastroenterology 2015, 148, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
  169. Sigal, M.; Logan, C.Y.; Kapalczynska, M.; Mollenkopf, H.J.; Berger, H.; Wiedenmann, B.; Nusse, R.; Amieva, M.R.; Meyer, T.F. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 2017, 548, 451–455. [Google Scholar] [CrossRef] [PubMed]
  170. Engler, D.B.; Reuter, S.; van Wijck, Y.; Urban, S.; Kyburz, A.; Maxeiner, J.; Martin, H.; Yogev, N.; Waisman, A.; Gerhard, M.; et al. Effective treatment of allergic airway inflammation with Helicobacter pylori immunomodulators requires BATF3-dependent dendritic cells and IL-10. Proc. Natl. Acad. Sci. USA 2014, 111, 11810–11815. [Google Scholar] [CrossRef] [PubMed]
  171. Kyburz, A.; Urban, S.; Altobelli, A.; Floess, S.; Huehn, J.; Cover, T.L.; Muller, A. Helicobacter pylori and its secreted immunomodulator VacA protect against anaphylaxis in experimental models of food allergy. Clin. Exp. Allergy 2017, 47, 1331–1341. [Google Scholar] [CrossRef] [PubMed]
  172. Montecucco, C.; de Bernard, M. Immunosuppressive and proinflammatory activities of the VacA toxin of Helicobacter pylori. J. Exp. Med. 2003, 198, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
  173. Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar] [CrossRef] [PubMed]
Figure 1. vacA allelic diversity. Three main regions of vacA heterogeneity are recognized, designated as the signal or “s” region, the intermediate or “i” region, and the middle or “m” region. The sequences in each of these regions can be classified into two main families (s1 and s2; i1 and i2; m1 and m2). The figure illustrates the relationship of these regions to VacA p33 and p55 domains.
Figure 1. vacA allelic diversity. Three main regions of vacA heterogeneity are recognized, designated as the signal or “s” region, the intermediate or “i” region, and the middle or “m” region. The sequences in each of these regions can be classified into two main families (s1 and s2; i1 and i2; m1 and m2). The figure illustrates the relationship of these regions to VacA p33 and p55 domains.
Toxins 09 00316 g001
Figure 2. Sites of VacA action relevant to gastric cancer pathogenesis. H. pylori colonizes the mucus layer overlying foveolar/surface mucous epithelium and also enters gastric glands. (1) VacA causes multiple alterations in foveolar gastric epithelial cells. (2) Targeting of gastric stem cells by VacA may be a critical step in the pathogenesis of gastric cancer. (3) VacA inhibits acid secretion by parietal cells. Increased gastric pH allows other bacterial species to colonize the stomach. (4) VacA interferes with the function of multiple types of immune cells, potentially compromising their ability to function effectively in surveillance for malignant cells. (5) As a consequence of VacA targeting epithelial cells, tight junctions between gastric epithelial cells are disrupted. This potentially allows carcinogenic molecules to enter the gastric mucosa.
Figure 2. Sites of VacA action relevant to gastric cancer pathogenesis. H. pylori colonizes the mucus layer overlying foveolar/surface mucous epithelium and also enters gastric glands. (1) VacA causes multiple alterations in foveolar gastric epithelial cells. (2) Targeting of gastric stem cells by VacA may be a critical step in the pathogenesis of gastric cancer. (3) VacA inhibits acid secretion by parietal cells. Increased gastric pH allows other bacterial species to colonize the stomach. (4) VacA interferes with the function of multiple types of immune cells, potentially compromising their ability to function effectively in surveillance for malignant cells. (5) As a consequence of VacA targeting epithelial cells, tight junctions between gastric epithelial cells are disrupted. This potentially allows carcinogenic molecules to enter the gastric mucosa.
Toxins 09 00316 g002
Table 1. Association of specific vacA allelic types with gastric cancer risk.
Table 1. Association of specific vacA allelic types with gastric cancer risk.
vacA AlleleOdds Ratio for Developing GC aLocationReference
s region
s117 (7.8–38)PortugalFigueiredo, 2002 [98]
s18.3 (2.8–25)ItalyBasso, 2008 [99]
s15.6IranRhead, 2007 [81]
i region
i15.0 (2.1–12)Italy Basso, 2008 [99]
i18.7Iran Rhead, 2007 [81]
m region
m16.7 (3.6–12)Portugal Figueiredo, 2002 [98]
m15.3 (1.0–27)Italy Basso, 2008 [99]
m13Iran Rhead, 2007 [81]
a The Odds Ratio for developing gastric cancer compares the likelihood of gastric cancer occurrence among individuals infected with H. pylori strains harboring s1, i1, or m1 alleles vs strains harboring s2, i2, or m2 alleles. The 95% confidence interval is shown in parentheses where available.

Share and Cite

MDPI and ACS Style

McClain, M.S.; Beckett, A.C.; Cover, T.L. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins 2017, 9, 316. https://doi.org/10.3390/toxins9100316

AMA Style

McClain MS, Beckett AC, Cover TL. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins. 2017; 9(10):316. https://doi.org/10.3390/toxins9100316

Chicago/Turabian Style

McClain, Mark S., Amber C. Beckett, and Timothy L. Cover. 2017. "Helicobacter pylori Vacuolating Toxin and Gastric Cancer" Toxins 9, no. 10: 316. https://doi.org/10.3390/toxins9100316

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop