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Abstract: Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost
all agricultural commodities worldwide, causing enormous economic losses in livestock production
and severe human health problems. Compared to traditional physical adsorption and chemical
reactions, interest in biological detoxification methods that are environmentally sound, safe and
highly efficient has seen a significant increase in recent years. However, researchers in this field
have been facing tremendous unexpected challenges and are eager to find solutions. This review
summarizes and assesses the research strategies and methodologies in each phase of the development
of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial
consortia from natural samples, isolation and identification of single colonies with biotransformation
activity, investigation of the physiological characteristics of isolated strains, identification and
assessment of the toxicities of biotransformation products, purification of functional enzymes and
the application of mycotoxin decontamination to feed/food production. A full understanding
and appropriate application of this tool box should be helpful towards the development of novel
microbiological solutions on mycotoxin detoxification.

Keywords: mycotoxin; detoxification; biodegradation; biotransformation; enzyme; microorganism
identification

1. Introduction

Over the past several decades, research interest in the mitigation of mycotoxins, the toxic
secondary metabolites produced by specific fungi, has continuously increased due to concerns over
human and animal health, economic losses and food safety and security [1]. Important mycotoxins
include aflatoxin B1 (AFB1), aflatoxin G1 (AFG1), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol
(NIV), fumonisin (FUM), zearalenone (ZEA), patulin (PAT) and citrinin (CIT), which are mainly
produced by the fungal genera Aspergillus, Fusarium and Penicillium. It has been estimated that the
economic costs of crop losses from major mycotoxins (aflatoxins, fumonisins and deoxynivalenol) in
the United States are as great as $932 million per year, in addition to mitigation costs of $466 million
and livestock costs of $6 million [2]. In Europe, although no data regarding economic losses caused by
mycotoxins are available, the direct and indirect losses due to a wheat epidemic in 1998 in Hungary
were estimated at 100 million euros [3]. Moreover, severe human health effects can result from the
exposure of mycotoxins through either ingestion, absorption or inhalation routes [4]. In 2015, the Rapid
Alert System for Food and Feed (RASFF) reported 475 notifications in Europe on mycotoxin exposure
in food, most related to the presence of aflatoxins [5].
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Pre-harvest control of mycotoxin production and post-harvest mitigation of contamination are the
main strategies to limit mycotoxins in food and feed. Good agricultural practices (GAPs), including
crop rotation, soil management, choice of varieties and correct fungicide use, have been recommended
by the European Commission (EC) to prevent the contamination of Fusarium toxins in cereals [6].
Strategies for post-harvest mitigation can be categorized as chemical, physical and biological. Chemical
strategies use acids, bases, oxidizing agents, aldehydes or bisulfite gases to change the structure of
mycotoxins, which has led to increased public concerns over the chemical residues in food and feed.
Furthermore, negative effects on the nutrition and palatability of food and feed may result from
chemical treatments [7–9]. For physical strategies, the application of adsorption agents has become
popular since the European Union (EU) allowed substrates that suppress or reduce the absorption,
promote the excretion of mycotoxins or modify their mode of action to be used as feed additives [10].
However, the efficacy of adsorption agents in reducing mycotoxin contamination is variable, and most
of the commercial binding agents presented no sufficient effect against DON [11]. Compared with
chemical and physical approaches, biological detoxification methods, which biotransform mycotoxins
into less toxic metabolites, are generally more specific, efficient and environmentally friendly.

As more and more researchers enter the field of biodetoxification, guidance is needed on the
various approaches and methodologies that may be employed. In this paper, we aim to review
the entire process of the discovery and development of biological mitigation systems, focusing on
the strategies and methodologies at each research stage from initial microorganism screening to
final application. Although the methods in the steps of enrichment, isolation, strain identification,
chemical analysis, mycotoxin biotransformation, toxicity evaluation and enzyme extraction were
developed based on specific mycotoxins and detoxifying microorganisms, the approaches used should
be generally applied to studies seeking microbial-based solutions for mycotoxin mitigation.

2. Workflow

An integrated research program on the microbial detoxification of mycotoxins is expected to
proceed through up to five stages. First, mycotoxin-biotransforming microorganisms (MBMs) or
consortia should be obtained and identified from either environmental sources or be screened from
a group of previously-identified candidates. Secondly, the efficacy and influencing factors on the
detoxification activities of the selected microorganisms, as well as the biotransformation products
should be investigated and identified. In the third stage, safety assessments of both functional strains
and biotransformation products should be performed. Biotransformation may not necessarily result
in a less toxic secondary product, so the reduced toxicity of the biotransformation products must
also be confirmed. In the fourth, and potentially most difficult, stage, the enzymes responsible for
the biotransformation are isolated, identified and/or cloned and expressed. Finally, the feasibility of
mycotoxin-detoxifying applications in food and feed should be validated. The complete workflow is
outlined in Figure 1. It should be noted that it is not necessary to endure all five stages in an individual
research project. For example, studies on the detoxification activities of known strains would not
require the first screening stage. Furthermore, the isolation of the enzymes may be optional if the
functional microorganisms are to be used in the application.
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Rumen fluid and intestinal contents are hosts to a diverse microbiota, which not only contribute 
to host metabolism, but have also been shown in some cases to have biotransformation activities. This 
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trichothecenes [40,41]. Some early studies reported that the rumen microbiota has the capability to 
transform a wide range of mycotoxins, including OTA, ZEA, DON, T-2 toxin and diacetoxyscirpenol 
[40,42]. In addition, chicken large intestinal contents have been shown to harbor functional bacteria 
with DON deepoxidation activity [39,43]. 

From a practical standpoint, it is advantageous to isolate MBMs from an environment similar to 
that to which they will be applied, as they will then be more likely to grow and express detoxification 
activities during application. For example, Bacillus subtilis strain UTBSP1, isolated from mature 
pistachio nut fruits in Iran, showed AFB1 biotransformation activity in this agriculture crop [38]. 
Similarly, the patulin in apple juice was degraded into less toxic E- and Z-ascladiol by Gluconobacter 
oxydans, a bacterium isolated from rotten apple puree [37]. 

In contrast to screening microbes in a particular environment, an alternative strategy is to focus 
on only a certain taxonomic group [19,35,45,49] or already available strains [50–53]. These strains may 
possess specific properties to facilitate isolation or provide additional benefits to commercial 
applications. For instance, Bacillus spp. have been targeted due to their tolerance of adverse 
environmental conditions, application as probiotics, antimicrobial activities and the production of 
insect toxins and extracellular enzymes [19,35,45,47]. Petchkongkaew et al. (2008) [35] screened for 
Bacillus spp. from Thai fermented soybean using Gram-staining and the API 50CH system, and they 
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3. Strategies and Methodologies

3.1. Sources of Microorganisms

Undoubtedly, the successful isolation of MBMs is one of the critical steps of the whole research
project. A careful selection of environmental sources more likely to harbor MBMs should increase the
probability of finding functional microorganisms. Previous studies have isolated microorganisms from
a range of environmental [12–29], plant [30–38] and animal [39–48] sources.

The existence of MBMs was initially hypothesized based on the fact that chemically-stable
mycotoxins do not accumulate in agricultural soil [25,30,46]. Soil is therefore a likely reservoir for
functional MBMs, in particular that on which crops susceptible to mycotoxigenic fungi have been
grown previously. In addition, nearby aqueous environments to agricultural soil have also been used
for the successful isolation of DON-degrading bacteria [15].

Rumen fluid and intestinal contents are hosts to a diverse microbiota, which not only
contribute to host metabolism, but have also been shown in some cases to have biotransformation
activities. This is partly demonstrated by the reduced sensitivity of ruminants to mycotoxins and
in particular to trichothecenes [40,41]. Some early studies reported that the rumen microbiota has
the capability to transform a wide range of mycotoxins, including OTA, ZEA, DON, T-2 toxin and
diacetoxyscirpenol [40,42]. In addition, chicken large intestinal contents have been shown to harbor
functional bacteria with DON deepoxidation activity [39,43].

From a practical standpoint, it is advantageous to isolate MBMs from an environment similar to
that to which they will be applied, as they will then be more likely to grow and express detoxification
activities during application. For example, Bacillus subtilis strain UTBSP1, isolated from mature
pistachio nut fruits in Iran, showed AFB1 biotransformation activity in this agriculture crop [38].
Similarly, the patulin in apple juice was degraded into less toxic E- and Z-ascladiol by Gluconobacter oxydans,
a bacterium isolated from rotten apple puree [37].

In contrast to screening microbes in a particular environment, an alternative strategy is to focus
on only a certain taxonomic group [19,35,45,49] or already available strains [50–53]. These strains
may possess specific properties to facilitate isolation or provide additional benefits to commercial
applications. For instance, Bacillus spp. have been targeted due to their tolerance of adverse
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environmental conditions, application as probiotics, antimicrobial activities and the production of
insect toxins and extracellular enzymes [19,35,45,47]. Petchkongkaew et al. (2008) [35] screened for
Bacillus spp. from Thai fermented soybean using Gram-staining and the API 50CH system, and they
isolated three strains with highly efficient AFB1 and OTA biotransformation capabilities. Lactic acid
bacteria (LAB) are also good candidates for mycotoxin biotransforming bacteria since their additional
probiotic properties promote their application in food and feed. Pediococcus parvulus UTAD 473 was
selected from a collection of 19 LAB strains and has the ability to biotransform 90% of OTA to the
less toxic OTα [53]. An isolated CIT biotransforming bacterium, Moraxella sp. MB1, has the particular
benefit of being able to perform detoxification in solvent environment, as it belongs to the class of
organic solvent-tolerant microorganisms (OSTMs) [50]. Rodriguez et al. (2011) [51] considered strains
belonging to Rhodococcus, Pseudomonas and Brevibacterium, which have the capability to biotransform
aromatic compounds, to have a higher potential to degrade mycotoxins. The authors successfully
obtained Brevibacterium casei RM101 and Brevibacterium linens DSM 20425T, which can completely
biotransform OTA at concentrations up to 40 µg/mL [51].

3.2. Enrichment

Due to the complexity of microbial communities obtained from environmental or animal
sources, screening may fall into a “trial-and-error” phase, leading to high costs of labour and
consumables. Enrichment of particular microorganism taxa, by either enhancing the growth of
potentially functional strains or supressing unwanted ones, is therefore used to reduce the diversity of
the microbial consortium.

Enrichment strategies vary based on sources of microbiota, the mycotoxins to be targeted and
possible biotransformation pathways (Table 1). Media used for enrichment may be classified into three
categories: nutrient medium, minimal medium and sole carbon source medium. The latter normally
contains the salt medium with or without vitamin mixtures as the medium base and supplemented
with the specific mycotoxin or related compounds as a sole carbon source.

The application of selective pressures encountered in the environments of plant materials
contaminated with mycotoxigenic fungi is an effective strategy to screen for functional microbes. In this
way, the potential functional strains may become predominant, which aids in further isolation. He et al.
(2016) [12] hypothesized that DON-biotransforming microorganisms would have the ability to tolerate
and grow in the presence of DON-producing Fusarium graminearum and using this approach eventually
isolated Devosia mutans 17-2-E-8, a new bacterial species that detoxifies DON into 3-epi-DON with high
efficiency. An in situ plant enrichment (isPE) strategy has been developed to screen functional strains
on wheat heads that were artificially contaminated with DON and grown in situ for one month. This
approach yielded 17 colonies with DON-biotransformation activities among 60 colonies examined [32].
In order to screen for biotransforming bacteria in the chicken intestinal tract, in vivo enrichment was
performed by feeding the chickens moldy wheat contaminated with DON (10 mg/kg), which was
shown to improve the activities of the digesta contents in biotransforming DON [43].

Another well-known and effective enrichment strategy that has been widely employed involves
the use of a specific mycotoxin as a sole carbon source in a basal mineral medium. It has been reported
that DON, ZEA, PAT and CIT can be utilized as a sole carbon source and ultimately biotransformed
by a number of microbial strains [13,15,18,23,24,26,27,29,32,41,54]. Due to the high cost and toxicity
of many pure mycotoxins, chemically-related compounds may be substituted as the sole carbon
source when screening for potential MBMs [25,46,55,56]. One successful application of this strategy
involved the use of coumarin as a surrogate for AFB1, which shares the basic structure of this extremely
toxic mycotoxin, but is a much safer and less expensive alternative [25,46]. Guan et al. (2008) [46]
first developed this strategy to isolate 25 single colonies grown in medium supplemented with
coumarin as the sole carbon source, which were all shown to have AFB1 biotransformation activities
(between 9.18% and 82.50%), as determined by HPLC, indicating the highly selective and accurate
nature of this method.
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Table 1. Strategies and methodologies in the enrichment and isolation of mycotoxin biotransforming microorganisms. DGGE, denaturing gradient gel electrophoresis;
T-RFLP, terminal restriction fragment length polymorphism.

Mycotoxin
Enrichment Isolation

Medium Strategy/Methodology Medium Strategy/Methodology Biotransforming Strains Reference

DON

Corn meal broth
Soil samples enriched from the corn

contaminated by the
DON-producing fungi

Corn meal agar
Single colonies screening;

extended incubation time for
slow-growth strains

Devosia mutans 17-2-E-8 [12]

Anaerobic incubation medium with 10%
chicken cecal digesta extract

In vivo enrichment with moldy
wheat; antibiotics treatment; guiding

the enrichment by PCR-DGGE
L10 agar Single colonies screening Bacillus sp. LS-100 [43]

M10 medium + DON (100 µg/mL) Treatment by antibiotics and hemin M1 medium Single colonies screening Eubacterium sp. BBSH 797 [55,56]

Mineral salts with peptone
medium + DON (50 µg/mL)

Antibiotics and heat treatment;
guiding the enrichment by T-RFLP

Mineral salts with
peptone agar

Single colonies screening;
extended incubation time for

slow-growth strains

Microbial consortium with
at least 6 bacterial genera [14]

Mineral medium + DON (100 µg/mL) DON as a sole carbon source 1/100 nutrient agar Single colonies screening Nocardioides sp. WSN05-2 [13]

Mineral salt medium + DON
(100 µg/mL)

In situ plant enrichment in
contaminated wheat head by

spraying DON
MRDG medium Single colonies screening; using

gellan gum rather than agar Marmoricola sp. MIM116 [32]

Mineral medium + DON (100 µg/mL) DON as a sole carbon source Reasoner’s 2A (R2A) agar,
1/100 nutrient agar Single colonies screening 9 Nocardioides spp. and

4 Devosia spp. [15]

BYE medium + DON (200 µg/mL)
Repeated sub-culturing in fresh
medium with high level of DON

(200 µg/mL)
1/10 nutrient agar Single colonies screening E3-39 (belonging to

Agrobacterium or Rhizobium) [16]

Inorganic salt culture medium + DON
(4 µg/mL) Enrichment with minimal nutrients Czapek’s agar, LB agar Single colonies screening Aspergillus tubingensis

NJA-1 [57]

Mineral salts with peptone
medium + DON (50 µg/mL)

In situ soil enrichment by spraying
DON; guiding the enrichment

by PCR-DGGE
- - Microbial consortium [17]

ZEA

Minimal salt medium + ZEA (2 µg/mL) ZEA as a sole carbon source LB agar Single colonies screening
Pseudomonas alcaliphila
TH-C1, Pseudomonas
plecoglossicida TH-L1

[18]

LB broth Selective screening Bacillus strains by
heat treatment LB agar Single colonies screening Bacillus subtilis ANSB01G [19]

Minimal salt medium + ZEA (2 µg/mL) ZEA as a sole carbon source LB agar Single colonies screening Pseudomonas otitidis TH-N1 [41]

M1 + ZEA (25 µg/mL) + nystatin
(15 µg/mL), M2 + ZEA (500 µg/mL) ZEA as a sole carbon source Nutrient agar Single colonies screening Acinetobacter sp. SM04 [23]

M9 medium + ZEA (50 µg/mL) ZEA as a sole carbon source LB agar Single colonies screening Microbial consortium [24]

AFB1 Coumarin medium (with 1% coumarin)
Coumarin, a basic molecular

structure of aflatoxins,
as a sole carbon source

Coumarin medium Single colonies screening;
coumarin as a sole carbon source

Stenotrophomonas maltophilia
35-3 [46]
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Table 1. Cont.

Mycotoxin
Enrichment Isolation

Medium Strategy/Methodology Medium Strategy/Methodology Biotransforming Strains Reference

AFB1

Coumarin medium (with 1% coumarin)
Coumarin, a basic molecular

structure of aflatoxins,
as a sole carbon source

Coumarin medium Single colonies screening;
coumarin as a sole carbon source

Pseudomonas aeruginosa
N17-1 [25]

- -
Modified Hormisch

medium
(with 0.1% coumarin)

Coumarin as a sole carbon source Stenotrophomonas sp. NMO-3 [58]

Nutrient broth Non-selective enrichment Coumarin medium
(with 0.1% coumarin)

Single colonies screening;
coumarin as a sole carbon source;

K-B disk diffusion
Aspergillus niger ND-1 [34]

Minimal salt/vitamin medium +
fluoranthene (10 mg/mL) Fluoranthene as a sole carbon source R2A agar Single colonies screening Mycobacterium

fluoranthenivorans sp. nov. [59]

Minimal salt medium + AFB1
(10 µg/mL) AFB1 as a sole carbon source Minimal salt agar + AFB1

(10 µg/mL) Single colonies screening Bacillus sp. TUBF1 [31]

- - Nutrient agar Single colonies screening Bacillus licheniformis CM21,
Bacillus subtilis MHS 13 [35]

AFB1, AFM1,
AFG1

LB broth Selective screening Bacillus strains by
heat treatment LB agar Single colonies screening Bacillus subtilis ANSB060 [45]

PAT

Mineral salt medium + increased
concentration (300–600 µg/mL) of PAT PAT as a sole carbon source Mineral salt agar + PAT

(600 µg/mL) Single colonies screening Byssochlamys nivea FF1-2 [54]

- - YEPD medium + PAT
(10 µg/mL) Screening in liquid medium Kodameae ohmeri HYJM34 [60]

CIT

Mineral broth + (1–4 µg/mL) of CIT CIT as a sole carbon source Mineral salt agar + CIT
(10 µg/mL) Single colonies screening Klebsiella pneumoniae

NPUST-B11 [26]

Mineral broth + CIT (1 µg/mL) CIT as a sole carbon source Mineral salt agar + CIT
(1–5 µg/mL) Single colonies screening Rhizobium borbori PS45 [27]

- - Nutrient agar
Screening strains by disc plate

diffusion assay
(50 µg/disk of CIT)

Moraxella sp. MB1 [50]

FUB1 BYE medium + FUB1 (500 µg/mL)
Increasing population of

FUB1-transforming microbes;
antibiotics treatment

Nutrient agar (NA),
NA + sucrose, NA + skim
milk, PYEI agar, BYE agar

Single colonies screening NCB 1492 (belonging to
Delftia or Comamonas) [28]

OTA

- - YES medium + OTA
(2 µg/mL) Screening in liquid medium Aspergillus niger CBS 120.49 [61]

- - Czapek-Dox medium +
OTA (40 µg/plate)

Screening point-pated colonies
by observing the loss

of fluorescence

Acinetobacter calcoaceticus
NRRL B-551 [62]

- -

LB agar + OTA
(3 µg/mL); medium with
isocoumarin as the sole

carbon source

Screening microbes using
isocoumarin as a sole

carbon source
Bacillus subtilis CW 14 [47]
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Individual or combinations of antibiotics can also be used as a selective factor to inhibit the
growth of unwanted microorganisms according to the different antimicrobial spectra [14,28,43].
Yu et al. (2010) [43] investigated the growth and DON-biotransformation activity of a bacterial culture
treated with different combinations of 10 antibiotics, at various concentrations, demonstrating that
one combination of virginiamycin (20 µg/mL), lincomycin (60 µg/mL) and salinomycin (5 µg/mL)
significantly reduced microbial growth, without a loss of biotransforming activity.

Heat treatment is another effective method to enrich for heat-resistant strains, such as
Bacillus spp. [14,19]. In order to enrich for desirable Bacillus strains with mycotoxin biotransforming
activities, samples were treated at 80 ◦C for 15 min to inactive non-thermophiles [19,45].

The changes that occur in a microbial community following enrichment, such as the anticipated
dominance of functional microbes and the decrease in the population diversity, are often difficult to
track using traditional microbiological approaches. Fortunately, a number of molecular techniques,
such as polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE), terminal
restriction fragment length polymorphism (T-RFLP) or 16S rRNA gene sequencing, can be applied to
assess the microbial diversity and guide the screening process [14,17,43]. By monitoring the number
of bands in PCR-DGGE bacterial profiles, Yu et al. (2010) [43] were able to show a reduction in the
diversity of a microbial community with DON-biotransformation activity following several rounds
of antibiotics and medium-based selection. Guided by PCR-DGGE, 10 positive isolates were finally
obtained from 196 single colonies, which is more efficient than traditional blind screenings.

3.3. Isolation of Single Colonies

Once an enriched microflora containing MBMs is obtained, further screening to isolate single
active colonies can be performed. Traditional plating methods have been widely used for this
purpose. In order to selectively support the growth of potential MBMs, mycotoxins or mycotoxin-like
compounds have also been introduced as sole carbon sources [26,27,31,34,46,54,58,62] or used to apply
selective pressure in media containing another carbon source [47,60], as mentioned above. A summary
of the various media, isolation strategies and isolated functional strains is given in Table 1.

Due to the physiological characteristics of the potential MBMs, they may be difficult to culture
under the conditions used in the laboratory [63]. Efforts such as extending the incubation time,
choosing media with inorganic nitrogen sources and changing the solidifying agent in the media, have
been adopted to improve culturability [13,14,32,57]. The use of longer incubation times (i.e., >5 days)
could help in the isolation of slow-growing bacteria, which are prone to suppression by more
predominant bacteria [13,14]. In regard to the media-solidifying agent, it was reported that gellan
gum, rather than agar, better supported the growth of soil-based bacteria [64]. Ito et al. (2012) [32]
isolated a DON-biotransforming strain, Marmoricola sp. MIM116, from 1/3 R2A-gellan gum media
and also observed better growth of the strain in media containing gellan gum as the solidification
agent as compared with agar.

The mycotoxin biotransformation activities of isolated microbes are typically detected by chemical
analysis methods, such as TLC, HPLC and LC-MS, which will be discussed further below. Some rapid
detection methods have also been developed [34,50,62]. The basic concepts for these methods were
originally based on the Kirby–Bauer disc plate diffusion assay. Devi et al. (2006) [50] examined six
marine bacteria belonging to Moraxella spp. using the disc plate diffusion assay with 50 µg/disk of
CIT. A strain showing high tolerance to mycotoxin was selected and examined for biotransformation
activity. In another study screening for MBMs, a sterile filter paper disk inoculated with a culture
was incubated on a nutrient agar plate coated with 0.4 mL of AFB1 (10 µg/mL). Another successful
application involved visualizing single colonies able to biotransform AFB1 through the disappearance
in fluorescence surrounding the colony, which is contributed by the coumarin ring structure in AFB1,
indicating the degradation of AFB1 [34]. Similarly, this method has been applied to screening single
strains with OTA biotransformation activity, which indicated that none of the strains had the ability to
break the isocoumarin ring of OTA [62].
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3.4. Identification of Functional Microorganisms

Microbial isolates capable of biotransforming mycotoxins may be identified and further
characterized based on genome sequence information, which can range from the analysis of a single
marker gene to entire genomes. The most commonly-used marker gene for bacterial identification
and phylogenetic analysis is the 16S small ribosomal RNA subunit gene (rDNA) [65], which can be
used to characterize both individual isolates and complex microbiota, though other conserved genes,
such as rpoA, may also be used [66]. Several characteristics make the 16S gene well suited: it is present
among all bacteria; it contains regions of a conserved sequence that allow for the design of universal
PCR primers, but is also interspersed with regions of variability sufficient to discern phylogenetic
relationships often to the genus and, occasionally, the species, level [67–69]. Furthermore, several
databases of high-quality full-length 16S rDNA sequences and taxonomical assignments have been
developed, such as SILVA [70], the Ribosomal Database Project (RDP) [71] and GreenGenes [72], and
many bioinformatics tools are available for processing the sequence data. Many universal 16S primers
are available in the literature, and several systematic comparisons have been carried out to evaluate
their performance in terms of taxonomic coverage and discriminatory power [73–75].

The general workflow for taxonomic classification of a single isolate involves amplification of
the 16S gene region, cloning of the amplicon and subsequent sequencing by the Sanger method.
The taxonomy is then assigned by comparison of the sequence against one of the established reference
databases (e.g., SILVA, RDP or GreenGenes), in which the taxonomy has already been established.

Next-generation DNA sequencing (NGS) technologies now allow for the taxonomic classification
of complex microbiota by sequencing of the rDNA gene en masse, with the added benefit that the
rDNA amplicons can be sequenced directly without the need for a cloning step. This approach
may be useful during different stages of the isolation process to examine mixed cultures capable of
biotransformation and to identify candidate bacteria that might possess activity. Illumina technology
is currently the highest throughput and most cost-effective method for microbiota sequencing and can
sequence rDNA amplicons up to ~600 bp in length, which is generally adequate for classification to
the genus level. Several open-source bioinformatic pipelines, including QIIME [76] and mothur [77],
are freely available, which will cluster the rDNA reads into operational taxonomic units (OTUs),
assign taxonomy and perform various diversity analyses. It is important to consider several technical
factors that could lead to systematic biases in the final community composition, including the choice of
universal primers, as mentioned above, as well as the DNA extraction method, which should extract
DNA equally from all members of the population [78,79].

A drawback of rDNA-based phylogenetic analysis is that, due to the relatively high conservation
of this gene, its resolution is limited and cannot be used to distinguish between different strains.
A wide range of other molecular typing techniques is available for strain-level typing, which typically
infer sequence variability based on DNA fragment length polymorphisms. These methods generate
electrophoretic DNA banding patterns from genomic DNA either through restriction enzyme digestion,
(e.g., restriction fragment polymorphism (RFLP), pulsed field gel electrophoresis (PFGE)), PCR
amplification (e.g., rapid amplification of polymorphic DNA (RAPD), repetitive sequencing-based
PCR (REP-PCR), Multiple-locus variable number tandem repeat analysis (MLVA), Denaturing gradient
gel electrophoresis (DGGE)) or a combination of both (e.g., amplified fragment length polymorphism
(AFLP)) [80]. Additionally, strain-level sequence-based typing methods, such as multi-locus sequence
typing (MLST), use several conserved marker genes to phylogenetically classify members of the same
species; however, for these methods, a complete genome sequence is first required to develop the assay.
The most definitive phylogenetic resolution, of course, is achieved by whole genome sequencing of the
isolate, which is now becoming routine due to the reduced cost made possible by NGS.

Although phylogenetic analysis is a useful tool for the identification of functional strains,
traditional morphological and biochemical characterization is still necessary to confirm the physiological
characteristics of the isolates. These may include light [18,54], phase contrast, bright field [59] and electron
microscopy [12,16,57] to determine cell size, shape and Gram-stain type. Biochemical tests, such as



Toxins 2017, 9, 130 9 of 26

carbon source utilization, enzyme activity and chemical sensitivities [18,19,27,33,38,45,46,50,58,59,81],
as well as commercial identification systems, such as BIOLOG or API® strips, may also be used for
the identification of MBMs [12,21,35,60]. In addition, fatty acid and ribosomal protein profiles may be
determined using gas chromatographic analysis of fatty acid methyl esters (GC-FAME) and matrix
assisted laser desorption/ionization-time of flight (MALDI-TOF) techniques, respectively [12,59].

A safety assessment must be performed to exclude potential pathogens, which may produce
extracellular toxins that could contaminate food and feed. Bacillus spp. with mycotoxin biotransformation
activities have been more sought after, due to their perceived probiotic properties. However,
some species, such as Bacillus cereus, are known toxin producers, and even species outside the
Bacillus cereus group have been reported to produce related enterotoxins [82]. Yi et al. (2011) [21], using
two commercial immunoassay kits, evaluated the enterotoxin-producing ability of Bacillus licheniformis
CK1 by assaying for the Hbl and Nhe enterotoxins, which are produced by Bacillus cereus.

It is recommended to check the functional strains against the U.S. Food and Drug Administration
(FDA) Generally Recognized as Safe (GRAS) list and European Food Safety Authority (EFSA) Qualified
Presumption of Safety (QPS) list. Biological agents belonging to GRAS are exempt from premarket
review and FDA approval. Similarly, biological agents included in the QPS list usually undergo
a simplified assessment by the EFSA [83,84].

The identified MBMs are suggested to be registered and deposited in a microorganism collection
organization for further research or patent procedures. Those governmental or private non-profit
organizations include the Agriculture Research Service Culture Collection (NRRL), the International
Depositary Authority of Canada (IDAC), Deutsche Sammlung von Mikroorganismen und Zellkulturen
(DSMZ) and the American Type Culture Collection (ATCC).

3.5. Physiological Characterization of Mycotoxin Biotransformation Activity

In this stage, the isolated microorganisms should be investigated to verify the biotransformation
activity by determining the efficiency correlation with cell growth, influencing factors and the position
of active substrates. A time course showing a decrease in mycotoxin levels combined with an increase
in biotransformation products provides clear evidence of the biotransformation activity of the isolated
strain [12,14,30,37,53,61,85–87]. The efficiency of biotransformation can be measured based on the
relationship between mycotoxin decrease and cell growth. The mycotoxin biotransformation rate
(Equation (1)) may be calculated as follows [15,32]:

Mycotoxin Biotransformation rate =
amount of transformation (µg)

amount of dry cell (mg)× time (hour)
(1)

Knowledge of intrinsic and extrinsic factors that influence the biotransformation is beneficial to
understanding the mechanisms of enzymatic biotransformation and for developing and optimizing
the detoxification conditions in the complex food/feed matrix. A number of studies have evaluated intrinsic
factors, including carbon source [26,34], nitrogen source [26,34,88], vitamins [26], metals ions [12,34,46,89–93],
enzyme inhibitors and promoters [52,89–94], initial concentration of mycotoxins [93,95], initial
concentration of cells [53,95] and initial pH value [12,14,17,26,31,34,41,46,54,60,88,89,95,96], as well as
extrinsic factors, including temperature [12,14,17,25,26,31,34,38,41,46,52,54,60,88,89,95,96], aeriation
(shaking rate) [26], oxygen preference [14], as well as pre-incubation [26] and incubation time [34,97].
The experimental designs and optimized biotransformation conditions are summarized in Table 2.
In addition to the investigation of single factors, researchers have also looked for optimized
conditions for multiple variables using mathematic models. One example is the optimization of
AFB1 biotransformation based on six parameters (temperature, pH, liquid volume, inoculum size,
agitation speed and incubation time) using a Plackett–Burman design followed by a response surface
methodology (RSM) based on a central composite design (CCD). The degradation efficiency reached
95.8% based on the predicted parameters from the mathematic model [97]. Other methods, such as
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the orthogonal method and one-factor-at-a-time method, were also useful for screening of optimized
biotransformation conditions [26,34].

Table 2. Intrinsic and extrinsic factors to influence the biotransformation rates.

Factor Mycotoxin Biotransforming
Product(s) Optimal Condition/Reverse Effect

Carbon source
AFB1 U.I. a Starch (4.0%) [34]

CIT U.I. Glucose (1.2%) [26]

Nitrogen source
AFB1 U.I. Yeast extract (0.5%) [88]; tryptone (0.5%) [34]

CIT U.I. Peptone (0.3%) [26]

Vitamins CIT U.I. Vitamin C (100 µg/mL) [26]

Metals ions

DON 3-epi-DON Minerals added in the corn steep liquor and
peptone [12]

ZEA U.I. Zn2+, Mn2+, Ca2+, Mg2+ (10 mmol/L) [89]

AFB1 U.I.

Mg2+, Cu2+ (10 mmol/L) [46]; Ca2+, Mg2+

(10 mmol/L) [90–92]; Mn2+, Cu2+

(10 mmol/L) [25]; Mg2+, Zn2+, Cu2+, Mn2+

(10 mmol/L) [93]

Enzyme inhibitor/enhancer

ZEA U.I. Reverse effect: chelating agents of EDTA,
OPT (10 mmol/L) [89]

AFB1 U.I. Reverse effect: chelating agents of EDTA,
OPT (10 mmol/L) [90–92]

OTA OTα Reverse effect: chelating agents of EDTA
(10 mmol/L), OPT (1 mmol/L) [52]

AFB1 U.I. Tween 80, Triton X-100 (0.05%) [93]

AFB1 U.I. NADPH (0.2 mmol/L), NaIO4
(3 mmol/L) [94]

Concentration of mycotoxins
AFB1 U.I. 0.5 µg/mL [93]

OTA U.I. a 0.1 µg/mL [95]

Concentration of cells
OTA U.I. 108 CFU/mL [95]

OTA OTα 109 CFU/mL [53]

Initial pH

DON 3-epi-DON pH = 7 [12]

DON DOM-1 pH = 6.5–7 [14]; pH = 5–10 [17]

ZEA U.I. pH = 7–8 [89]; pH = 4.5 [41]

AFB1 U.I. pH = 5–6 [96]; pH = 6–7 [31,34,88];
pH = 8 [46]

PAT E- and Z-ascladiol pH = 3–6 [60]

PAT U.I. pH = 3–5 [54]

CIT U.I. pH = 7 [26]

OTA U.I. pH = 4 [95]

Temperature

DON 3-epi-DON 20–35 ◦C [12]

DON DOM-1 20–35 ◦C [14]; 20–37 ◦C [17]

ZEA U.I. 30–37 ◦C [41]; 42 ◦C [89]

AFB1 U.I. 30–37 ◦C [31,34,46,88,96]

PAT E- and Z-ascladiol 35 ◦C [60]

PAT U.I. 37 ◦C [54]

CIT U.I. 37 ◦C [26]

OTA OTα 25–35 ◦C [52]

OTA U.I. 28 ◦C [95]

Shaking rate CIT U.I. 200 RPM [26]

Oxygen preference DON DOM-1 Aerobic condition [14]

Concentration of mycotoxins OTA U.I. 0.1 µg/mL [95]

Pre-incubation time CIT U.I. 36–48 h [26]
a U.I. means unidentified.
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As an observed decrease in the amount of mycotoxin may result from absorption rather than
biotransformation, identification of the daughter compound(s) is necessary to confirm biotransformation
activities. The most direct evidence to support biotransformation is the observation of new product(s)
in parallel with a decrease in the amount of the original mycotoxin. In some cases, however,
the biotransformation product is not detectable through chemical analysis methods, and indirect
methods must therefore be adopted to distinguish between adsorption and biotransformation.
The involvement of an enzymatic reaction, rather than simple binding, is evidenced by the loss
of biotransformation activity following heat or acid-inactivation of cells or in an extracellular
extract treated with enzyme inactivating agents, such as proteinase K, SDS or EDTA [12,15,19,98,99].
Furthermore, the subcellular location of active components responsible for biotransformation can be
identified by comparing activities in the whole cell culture, extracellular extract (by centrifugation)
and cytoplasmic extract (by cell lysis) [25,27,34,45,50,59,88,99].

3.6. Identification of Mycotoxins and Their Biotransformation Products

To determine the mycotoxin content in a sample, chromatographic techniques are most commonly
adopted. Based on the properties of the sample matrices and the mycotoxin itself, a solvent can be
chosen for extraction followed by a range of different clean-up procedures. For example, DON was
extracted from mouldy corn with 84% acetonitrile (acetonitrile/water 84:16, v/v) on a rocking platform
at 60 RPM for two hours at room temperature [100] before HPLC analysis. ZEA was usually recovered
by a mixture of water and methanol (50:50) [18,41] before HPLC analysis. Solvent extraction can be
performed under regular shaking conditions or more efficiently with the aid of an ultrasonicator [18].
Table 3 summarizes the solvents used during the extraction of various mycotoxins and can be used as
a baseline to choose appropriate extraction solvents for the analysis of mycotoxins.

Table 3. Analytical methods for the detection and identification of mycotoxins and their
biotransforming products.

Mycotoxins/Biotransforming Products Extraction Solvents Analytical Method

DON
50% methanol [12,43,48];

84% acetonitrile [100,101];
ethyl acetate [30]

HPLC [12,13,15,100,101];
LC-MS [48,101,102]; ELISA [32];

HSCCC [101]; NMR [102]

3-epi-DON 50% methanol [12];
ethyl acetate [13]

HPLC [12,13,15]; LC-MS [102];
NMR [13,102]

DOM-1 (deepoxy DON) 84% acetonitrile [100];
50% methanol [48]

HPLC [100]; LC-MS [14,48];
GC-MS [17]; MS [43]

3-keto-DON Ethyl acetate [16,30] MS [16,30]; NMR [16,30]

ZEA

50% methanol [18,23,41];
90% acetonitrile [19];
84% acetonitrile [21];
50% acetonitrile [98]

HPLC [18,19,21,24,41];
LC-MS [23,89,98]; ELISA [24]

1-(3,5-dihydroxy-phenyl)-
10′-hydroxy-1′E-undecene-6′-one Chloroform [22] TLC, MS, NMR [22]

ZEA-sulfate 60% methanol [36] LC-MS [36]

ZEA-4-O-β-glucoside TLC, MS, NMR, IR [103]

α-ZAL, β-ZAL, α-ZOL,
β-ZOL, ZAN, 8′(S)-hydroxyzearalenone,

ZEA-2,4-bis(methyl ether), ZEA-2-methyl ether
50% chloroform [104] TLC, MS, NMR, IR [104]

ZEN-4-O-sulfate 33% chloroform:methanol
(9:1) [105] MS, NMR, infrared [105]

ZOM-1 ((5S)-5-({2,4-dihydroxy-6-[(1E)-5-
hydroxypent-1-en-1-yl]benzoyl}oxy)hexanoic acid) Ethyl acetate [106] HPLC, LC-MS, NMR [106]

α-ZOL, α-ZOL-S, ZEA-14-sulfate, ZEA-16-sulfate,
ZEA-14-Glc, ZEA-16-Glc 50% acetonitrile [107] LC-MS [107]
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Table 3. Cont.

Mycotoxins/Biotransforming Products Extraction Solvents Analytical Method

AFB1

60% methanol [108];
50% methanol [45];

chloroform [38,46,88,109];
dichloromethane [110]

HPLC [25,38,45,46,88,96,108–110];
TLC [38,96,109]; ESMS [109];

LC-MS [38,96,109]; HR-FTMS [96];
ELISA [34]

AFB2 Chloroform [25] HPLC [25]

AFG1
60% methanol [108];
50% methanol [45] HPLC [45,108]

AFM1
Chloroform [25];

50% methanol [45] HPLC [25,45]

AFD1, AFD2, AFD3 Chloroform [111] TLC, HPLC, GC-MS, FT-IR [111]

PAT Ethyl acetate [54,60,99] TLC [85]; HPLC([37,54,60,85];
LC-MS [99]; NMR [85]

DPA (desoxypatulinic acid) Ethyl acetate [99] HPLC [112]; LC-MS [99];
NMR [112]

E- and Z-ascladiol Ethyl acetate [60,85] TLC [85]; HPLC [37,60,85];
LC-MS [37,60]; NMR [37,85]

CIT Acetone:ethyl acetate
(1:1) [27]; ethyl acetate [50] TLC(C04); HPLC [26,27]

Decarboxycitrinin Ethyl acetate [50] MS, NMR [50]

FUB1
TLC [28]; HPLC [28]; GC-MS[28];

LC-MS [113,114]

Heptadecanone, isononadecene,
octadecenal, eicosane GC-MS [28]

Hydrolyzed FUB1 LC-MS [113,114]

2-keto-hydrolyzed FUB1 LC-MS, NMR [115]

OTA
Methanol [51];

dichloromethane [33,52,61];
ethyl acetate [53]

TLC [52,61]; HPLC [33,51–53,61]

OTα Methanol [51];
dichloromethane [52]; HPLC[51,52]; LC-MS [51]

L-β-phenylalanine Methanol [51] HPLC [51]

The strategy for the identification of unknown mycotoxin biotransformation products will be very
different from the determination of known mycotoxins in a sample due to the unknown properties of
the products. Thus, the sample needs to be subjected to both polar and non-polar solvent extraction
and the formation of new compounds identified by comparing the chromatographs of samples
before and after biotransformation. Initial identification of the biotransformation products is usually
performed using LC/MS, while final identification requires the peaks to be purified at milligram levels
and subjected to NMR analysis. For example, the DON biotransformation product 3-epi-DON by
D. mutans 17-2-E-8 was purified from bacterial culture following centrifugation, filtration, freeze-drying
and high-speed countercurrent chromatography. The purified 3-epi-DON was then subjected to 1D
and 2D NMR, and the structure was then identified [102]. Metabolomic strategies have started
gaining recognition for the identification of new products resulting from microbial biotransformation.
With the progress in metabolomics and its related tools and software, the identification of novel
biotransformation mycotoxin products will become easier and faster.

3.7. Evaluation of Toxicity of Biotransforming Product

While many studies report novel structural/chemical modifications that render mycotoxins
less toxic [116–119], the final use of any biological detoxification method is dependent on providing
empirical evidence for this claim. Furthermore, some country/state regulatory agencies have set up
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rigid parameters for the assessment of the safety and efficacy of any developed detoxification product,
which need to be addressed accordingly before the registration of that product. A very clear example is
the EU regulations regarding the additives for use in animal nutrition and the establishment of a new
functional group of feed additives (No. 1831/2003 and No. 386/2009).

Different in vitro and in vivo [120–122] approaches were suggested in the past to test for changes
in toxicity (Table 4), each with a unique set of advantages and challenges [123,124]. The adopted
system should take into consideration: (a) the nature of the tested mycotoxin as screening carcinogens
for example with long-term exposure studies is different from screening estrogenic toxins; (b) host
suitability and selection since mono-gastric animals for example show higher sensitivity towards
certain toxins (such as DON) in comparison to other livestock; (c) the solubility and stability of
final biotransformation products (the reduced solubility and stability of 3-keto-DON for example
necessitates using organic solvents for storing and diluting this metabolite that might interfere with
assay outcomes in certain cases.); and finally, (d) the route of exposure; even though the oral route is
the main contamination means, symptoms might also develop in animals due to inhalation of grain
dust (as the case of aflatoxins for example) [125,126]. Generally speaking, a host highly ranked within
the evolutionary tree is more sensitive toward mycotoxins; hence, bacterial hosts are the least preferred
for evaluating the bio-toxicity of mycotoxins.

Table 4. Models and methodologies of toxicity evaluation of mycotoxins and their biotransforming products.

Mycotoxins Biotransforming Products Model Methodologies Reference

DON

3-epi-DON Caco-2 cells Evaluation of metabolic activity by
an MTT cell proliferation assay [127]

3-epi-DON 3T3 cells
Evaluation of DNA synthesis

activity by a cell proliferation ELISA
employing BrdU incorporation

[127]

3-epi-DON Female B6C3F1 mice

Evaluation of effects on body
weight gain, relative organ weights,
food consumption, hematology and

clinical chemistry

[127]

DOM-1 Swine kidney cells Evaluation of metabolic activity by
an MTT cell proliferation assay [44]

DOM-1 Chicken
lymphocytes

Evaluation of DNA synthesis
activity by a cell proliferation ELISA

employing BrdU incorporation
[56]

DOM-1 Starter pigs Evaluation of effects on growth
performance and serum metabolites [100]

3-keto-DON Mouse spleen
lymphocytes

Evaluation of immunosuppressive
activity by a cell proliferation assay [16]

ZEA

1-(3,5-dihydroxy-phenyl)-10′-
hydroxy-1′E-undecene-6′-one MCF-7 cells Evaluation of estrogenic activity by

a WST cell proliferation assay [22]

ZEA-sulfate MCF-7 cells Evaluation of estrogenic activity by
an MTS cell proliferation assay [36]

α-ZAL, β-ZAL, α-ZOL,
β-ZOL

MCF-7 and
MDA-MB-231 cells

Evaluation of estrogenic activity by
an MTT cell proliferation assay [128]

α-ZAL, β-ZAL, α-ZOL,
β-ZOL, ZAN,

8′(S)-Hydroxyzearalenone,
ZEA-2,4-bis(methyl ether),

ZEA-2-methyl ether

Rat uteri
Evaluation of relative binding

affinity by an estrogen receptor
binding assay

[104]

ZOM-1 Yeast YZRM7 Evaluation of estrogenic activity by
a sensitive yeast assay [106]

ZOM-1 Human estrogen
receptor-α

Evaluation of estrogenic activity by
a HitHunter EFC estrogen
chemiluminescence assay

[106]
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Table 4. Cont.

Mycotoxins Biotransforming Products Model Methodologies Reference

ZEA

U.I. a Pre-pubertal
female gilts

Evaluation of effects on growth
performance, genital organs,

serum hormones and
histopathological changes

[129]

U.I. Yeast BLYES Evaluation of estrogenic activity by
a sensitive yeast assay [130]

U.I. Pre-pubertal
female rats

Evaluation of estrogenic activity by
an immature uterotrophic assay [130]

AFB1

AFD1, AFD2, AFD3 Hela cells Evaluation of cytotoxicity by
an MTT cell proliferation assay [111]

U.I. L929 cells Evaluation of cytotoxicity by
an MTT cell proliferation assay [108]

U.I. Salmonella
typhimurium TA100

Evaluation of mutagenicity by
an Ames assay [109]

U.I. Artemia salina Evaluation of toxicity by an insect
larvae survival assay [31]

PAT

DPA Escherichia coli Evaluation of microbial toxicity [99]

DPA Seeds of
Arabidopsis thaliana Evaluation of phytotoxicity [99]

DPA Human hepatocytes
LO2

Evaluation of cytotoxicity by
an MTT cell proliferation assay [99]

DPA Human lymphocytes Evaluation of cytotoxicity by
a trypan blue cell proliferation assay [112]

CIT U.I. Bacillus subtilis TISTR Evaluation of microbial toxicity [27]

OTA

U.I. HepG2 cells Evaluation of cytotoxicity by
an MTT cell proliferation assay [95]

OTα Zebrafish
(Danio rerio) embryo Evaluation of teratogenicity [131]

a U.I. means unidentified.

The high costs of raising and keeping large animals and strict guidelines for using animals in
research [132,133] are other factors to consider when performing preliminary toxicity evaluations.
In some cases, the use of primary and secondary cell lines derived from different hosts (mainly
porcine/canine) [134–138] may be warranted to replace actual animals. Specific cell lines may be
more or less suitable for testing certain toxins. For example, He et al. (2015) [127] used heterogeneous
human epithelial colorectal adenocarcinoma (Caco-2) cells and mouse embryonic fibroblast (3T3)
cells to assess cell viability and DNA synthesis, respectively, and thereby to illustrate the diminished
toxicity of 3-epi-DON. Recently, mouse models have been gaining more attention and becoming
feasible routes for bio-potency testing. He et al. (2015) [127] followed the above cell culture assays by
exposing B6C3F1 mice to DON and 3-epi-DON treatments for 14 consecutive days, demonstrating that
toxin-induced lesions were only observed in the adrenal glands, thymus, stomach, spleen and colon of
the DON-group, but not 3-epi-DON. Some alternative approaches for using large animals in toxicity
testing have been devised recently. For example, explants of specific and more sensitive tissues were
developed by the Oswald group using pig jejunal explants to investigate the toxicity of deepoxy-DON
and 3-epi-DON [139,140].

Another primary challenge for toxicity testing is the purification of enough starting
materials/metabolites with which to proceed. The optimum range to start with can span milligram to
gram quantities, based on the selected host, assay and testing approach. In some cases, the development
of a large-scale preparative purification of the final biotransformation metabolite(s) is unavoidable
in order to proceed with the toxicity testing. He et al. (2015) [102] applied a refined high-speed
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counter-current chromatography protocol to scale up the purification of 3-epi-DON from D. mutans
17-2-E-8 bacterial cultures before toxicity assessment.

The stability of the final biotransformation products used in toxicity bio-assays is another
factor that should be considered. Conjugation-based modifications (acetylation, glycosylation,
phosphorylation) are usually more difficult to address as the attached groups can be hydrolyzed
or cleaved under the implemented experimental conditions. Compounds with chemically-active
groups, such as ketones [141,142] (3-keto-deoxynivalenol for example), are another example of unstable
modifications that can give misleading results, as such reactive groups seek the simultaneous reduction
to more thermodynamically-stable alcohols (DON or 3-epi-DON) in aqueous solutions with the
possibility of reverting back to the original toxins (DON in the above example).

Beyond showing a reduction in the toxicity of the final biotransformation product(s), the mechanism
of this reduction must also be determined [143,144]. For example, the reduction in DON toxicity
due to C3 carbon epimerization was attributed to attenuated binding of 3-epi-DON within the
ribosomal peptidyl transferase center [139,140], in addition to increased polarity of 3-epi-DON and
decreased molecular interactions with different cellular targets, such as Fusarium graminearum Tri101
acetyltransferase [145]. Similar results were also obtained for deepoxy-DON when transformed
anaerobically by strain BBSH 797 [139,140]. This mechanistic information is pivotal for predicting how
the final biotransformation product(s) will behave under different scenarios and usage conditions, such
as under unfavorable pH conditions, or in the presence of metabolizing bacteria in the animal intestinal
tract. Some of the modifications that were promising in early stages (conjugation-based modifications
such as acetylation/glycosylation) were subsequently found to be incompatible with practical
agricultural and industrial applications as they give rise to so-called masked mycotoxins [146,147],
where the modifying chemical groups are easily cleaved or hydrolyzed by intestinal bacteria [148–152].

3.8. Genes and Enzymes

One of the ultimate goals for mycotoxin mitigation strategies is to establish the conditions
needed for efficient practical usage [9]. In many agricultural and industrial applications, the use
of whole bacterial cells, for instance through incorporation into fermentation matrixes (especially if
they belong to the lactic acid group), might be the most feasible approach to mitigation [153,154].
This also reduces the costs associated with enzyme(s) purification and the need to incorporate any
co-factors/co-substrates into the final enzymatic reactions. The above scenario is not always possible
due to either processing conditions that do not favor the use of microorganisms (human food chain
applications) or the presence of natural consortium that outcompete the active strain(s). In such cases,
the use of pure enzyme preparations is unavoidable.

The identification of functional genes and the purification of detoxification enzyme(s) is a laborious
and time-consuming process that involves working expertise in the fields of microbiology, analytical
and synthetic chemistry, molecular biology, enzymology, genomics and bioinformatics. For detailed
information regarding such a process and the involved procedures, the readers are referred to other
recently published in-depth reviews [9,155–157].

After the responsible enzyme(s) are identified, a second stage of troubleshooting and optimization
is initiated to deliver workable enzymatic mixtures that are suitable for the chosen application. Many
native enzymes are not stable under certain processing conditions (pH, temperature, presence of
inhibitors) or require specific expensive co-factors, such as NADP(H), to function. Such properties
can sometimes be manipulated to make these enzymes more industry friendly through targeted
protein-engineering [158,159]. The enantioselective epoxidation of styrene by two-component
monooxygenases offers a good example of efficient enzyme engineering that was preformed recently.
A fusion protein was generated by joining the C-terminus of StyA epoxidase with the N-terminus of
the StyB reductase. Furthermore, the above fusion protein was cloned into a single-vector expression
system to couple the epoxidation function to NADH oxidation, thereby enhancing the overall
catalytic function of the system. The observed positive changes in the catalytic mechanism were
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attributed in part to an increased flavin-binding affinity of the StyB reductase associated with its
N-terminal extension [160]. In a similar optimization, the NADP(H) dependence of hyperthermophilic
6-phosphogluconate dehydrogenase was engineered to favor the less expensive NAD(H) cofactor for
a promising industrial application in bio-batteries [161].

3.9. Feasibility of Commercial Application

From the application point of view, there are many additional challenges to overcome in order
to achieve success. These obstacles include the validation of detoxification activities in food/feed
materials, the industrial-scale production and marketing authorization based on the extensive
assessment. Unlike ideal in vitro conditions, many factors such as poor nutrient availability, lower
pH, natural temperature, interactions with the microbiota and complicated structures of food/feed
materials may become hurdles for successful application. For example, the ensiling procedure for
production of silage, an important fodder for ruminants, generates an anaerobic environment with
acidic pH, high carbon/nitrogen ratio and low nutrient availability, which inhibits most MBMs that
grow well and present detoxification activities in media [162]. During the large-scale production
of MBMs, the difficulties to maintain the activity may appear as the media and fermentation
conditions vary from those in the laboratory. From an economical point of view, the media used
in industrial-scale fermentation processes are usually produced from less expensive and more readily
available materials, as opposed to the costly synthetic or semi-synthetic media used in laboratory-scale
fermentation. Moreover, the downstream processing steps, such as freeze-drying, spray-drying or
preparing a direct-fed microbial (DFM) product, may also influence the detoxification activities. Thus,
the optimization and validation of mycotoxin detoxification activities should eventually be performed
under conditions of commercial-scale production. In addition, any negative or uncertain effects,
such as nutrient/palatability loss and safety of biotransformation agents, must also be considered.
Finally, the manufacturer should obtain marketing authority before they may claim their products as
anti-mycotoxin additives. In Europe, for example, the dossier of anti-mycotoxin additives registration
must include the mycotoxin specificity, the species specificity, the efficacy and the safety. The marketing
authority in EU member states is issued by the EC based on positive evaluation by the EFSA [163].
For these reasons, the successful commercial application of microbial detoxification has been limited.
To our knowledge, Biomin® BBSH 797 is the sole microorganism product that has obtained market
authority in the EU. The product has the capacity of biotransforming DON to harmless products and
was approved as a pig feed additive in 2013. Recently, the EFSA published a positive scientific opinion
on the safety and efficacy of Biomin® BBSH 797 for application in poultry feed. FUMzyme®, a purified
enzyme isolated from the fumonisin-degrading soil bacteria Sphingopyxis sp. MTA 144, is the only
enzyme product for mycotoxin detoxification that has been approved by the EC [164–166].

The feasibility of commercial applications has been evaluated in a number of research papers and
granted patents [8,9]. One of the essential considerations at this stage is to validate the detoxification
activity of MBMs in the complex food/feed matrices to which they will be applied, such as corn,
wheat, barley, DGGS, peanut meal, pistachio nut, rice straw, apple juice, apple puree and grape
must [13,20,32,37–39,47,53,54,100,108,110,167]. The typical procedure includes preparation of samples
with either spiked or naturally-contaminated mycotoxins, incubation of samples with the MBMs under
natural conditions, followed by extraction and chemical analysis of mycotoxins and their metabolites.
Ito et al. (2012) verified a decrease in DON in 1000 kernels of wheat and barley grain by applying
Marmoricola sp. MIM116. The authors also investigated spreading agents and selected 0.01% Tween 80
for its advantages in facilitating cell growth and DON reduction [32]. Gluconobacter oxydans, a bacterium
isolated from PAT-contaminated apples, has been reported to degrade 96% of PAT (800 µg/mL) to
ascladiols in apple juice. However, a full evaluation of the quality attributes of apple juice, the toxicity
of ascladiol and safety assessment of the MBM is needed before any industrial applications of such
a microorganism [37].
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Since the principle detrimental effect of mycotoxin contamination is the decreased growth
of livestock, another consideration for the application of MBMs is the effect of detoxified feed
on livestock performance. A two by two factorial design is recommended for these studies.
Specifically, the experimental samples should be catalogued into four groups including positive
mycotoxin-free control, negative mycotoxin-exposed control, mycotoxin-free with detoxifying agents
and mycotoxin-exposed with detoxifying agents. The strength of this design is that it not only verifies
the detoxification activity, but also ensures that the bio-availability of essential feed ingredients is not
impaired by the detoxifying agent [168]. Li et al. (2011) [100] designed an animal trial to evaluate the
growth performance of swine, a DON-sensitive livestock, fed a diet detoxified by the isolate Bacillus sp.
LS100. Compared to pigs fed a diet with Fusarium-infected corn with DON, the daily feed consumption,
daily weight gain and feed efficiency of pigs fed the LS100-detoxified diet were significantly improved
by 45%, 82% and 32%, respectively. These results demonstrate that microbially-detoxified feed can be
used in the livestock industry to reduce the effects of DON toxicity, while not conferring significant
negative effects on the nutrition and palatability of the feed.

In addition to reducing mycotoxin contamination through biotransformation, some detoxification
strategies have introduced specific microorganisms with additional benefits to commercial applications.
For example, Bacillus subtilis ANSB01G may be delivered as spores, which have the ability to tolerate
the gut environment. In addition, this strain produces antimicrobial compounds against common
bacterial pathogens such as Escherichia coli, Salmonella typhimurium and Staphylococcus aureus, which
could improve the growth of livestock [19]. In another study, a Bacillus licheniformis strain was shown
to have higher xylanase, CMCase and protease activities, which may enhance the digestibility of
nutrients in feed [21]. Another potential advantage of detoxifying microorganisms is that certain such
microorganisms may possess antifungal activity, inhibiting the growth of mycotoxin-producing fungi
and further reducing mycotoxin contaminations [33,35,47,95].

4. Conclusions and Research Trends

The biological detoxification of mycotoxins is an attractive and environmentally-friendly
alternative to the chemical and physical decontamination methods explored extensively over the past
three decades [169]. The recently-reported examples, coupled with the emergence of some efficient
commercialized biological/enzymatic agents, highlight the promise of this approach to address the
safety of animal feed and human food [170,171].

The introduction of state-of-the-art research tools, such as next-generation sequencing,
recombinant-enzyme overexpression and robust HPLC-MS/MS systems, combined with our enhanced
understanding of the actual mechanisms underlying the diminished toxicity of final biotransformation
products [140,146,172], will immensely aid in the identification [12], optimization and usage [170,171]
of such naturally-derived alternatives. It is anticipated that these novel approaches will form the basis
for sustainable long-term solutions to the ever-growing problem of mycotoxins in the coming years.
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Abbreviations

AFB1 aflatoxin B1

AFB2 aflatoxin B2

AFG1 aflatoxin G1

AFM1 aflatoxin M1

CIT citrinin
DON deoxynivalenol
DOM-1 deepoxy-deoxynivalenol
DPA desoxypatulinic acid
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FUM fumonisin
FUB1 fumonisin B1

NIV nivalenol
OTA ochratoxin A
OTα ochratoxin α

PAT patulin
ZEA zearalenone
ZAL zearalanol
ZOL zearalenol
ZAN zearalenone
ZOM-1 ((5S)-5-({2,4-dihydroxy-6-[(1E)-5-hydroxypent-1-en-1-yl]benzoyl}oxy)hexanoic acid)
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