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Abstract: In this study, a high-performance liquid chromatography-tandem mass spectrometry
(HPLC-MS/MS) method was developed for simultaneous determination of eight paralytic shellfish
poisoning (PSP) toxins, including saxitoxin (STX), neosaxitoxin (NEO), gonyautoxins (GTX1–4)
and the N-sulfo carbamoyl toxins C1 and C2, in sea shellfish. The samples were extracted by
acetonitrile/water (80:20, v/v) with 0.1% formic and purified by dispersive solid-phase extraction
(dSPE) with C18 silica and acidic alumina. Qualitative and quantitative detection for the target
toxins were conducted under the multiple reaction monitoring (MRM) mode by using the positive
electrospray ionization (ESI) mode after chromatographic separation on a TSK-gel Amide-80 HILIC
column with water and acetonitrile. Matrix-matched calibration was used to compensate for matrix
effects. The established method was further validated by determining the linearity (R2 ≥ 0.9900),
average recovery (81.52–116.50%), sensitivity (limits of detection (LODs): 0.33–5.52 µg·kg−1; limits of
quantitation (LOQs): 1.32–11.29 µg·kg−1) and precision (relative standard deviation (RSD) ≤ 19.10%).
The application of this proposed approach to thirty shellfish samples proved its desirable performance
and sufficient capability for simultaneous determination of multiclass PSP toxins in sea foods.

Keywords: paralytic shellfish poisoning (PSP) toxins; LC-MS/MS; dispersive solid-phase extraction
(dSPE); saxitoxin

1. Introduction

The paralytic shellfish poisoning (PSP) toxins are potent neurotoxins produced by toxic algae
in red tide [1,2] and further accumulated in shellfish [3,4]. They are known for causing severe food
poisoning by intake of contaminated shellfish or other seafood [5]. These naturally produced toxins
show thermal stability and cannot be destroyed even under normal heating. At least 57 saxitoxin (STX)
analogues congeners were identified and typically classified into four groups [6]. STX is considered
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as the most important toxin in the known PSP toxins [1,2]. According to Oshima, the toxicity of the
other PSP toxins is calculated in relation to STX [7]. The regulatory limit for PSP toxins in shellfish
meat has been set at 800 µg STXequ·kg−1 [8]. A joint report by the Food and Agriculture Organization
(FAO), the World Health Organization (WHO) and the International Oceanographic Commission of
United Nations Educational, Scientific and Cultural Organization (IOC) has recommended a derived
guidance level of 170 or 110 µg STXequ·kg−1 based on the consumption of 250 or 380 g shellfish meat
by adults [9], and then a level of 75 µg STXequ·kg−1 based on 400 g feed size was suggested [10].

Eight commonly occurring toxins (Figure 1), including STX, neosaxitoxin (neoSTX, NEO),
gonyautoxins (GTX1–4) and the N-sulfocarbamoyl toxins C1 and C2, were studied in this work.
The carbamate toxins, including STX, NEO and GTX1–4, are more potent than C1 and C2. However,
C1 and C2 can be changed into the other highly toxic molecules form induced by the environment
or biological transformation [6], indicating that the monitoring of lowly toxic C1 and C2 should not
be neglected. The AOAC (Association of Official Analytical Chemists) mouse bioassay (MBA) was
applied for routine monitoring of PSP toxins [11] with a specified reference method by European Union
(EU) legislation [12]. However, this method only provides a total toxicity value without information
about specific toxin profiles of a real sample. Also, MBA has the disadvantages of poor sensitivity, low
stability and interferences from other compounds in the matrix.

Another concern about analysis is that generally PSP toxins do not have natural ultraviolet
or fluorescence absorption and thus need derivation pretreatments before detection by liquid
chromatography. Post-column derivatization [13–16] or pre-column derivatization [17–20] with
fluorescence detection (LC-FLD) shows high sensitivity but requires a complex equipment with
daily maintenance. In recent years, the development methods of liquid chromatography-tandem mass
spectrometry (LC-MS/MS) for determination of cyanobacterial toxins and STXs were carried out in
previous studies [21–25] with a hydrophilic interaction liquid chromatography (HILIC)-based column
for separation. This type of column was proved to give good retention of the PSP toxins [26–29] and
thus applied in our study.
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Matrix interferences are common problems that occur when using LC-MS/MS. The appropriate
sample pretreatment technique, for example solid-phase extraction (SPE), has reduced the interferences
effectively. Also, the dispersive solid-phase extraction (dSPE) has been applied as a cleanup procedure
prior to LC-MS/MS [30–32]. Compared to the conventional SPE, dSPE has the advantages of fast and
simple operation [33], minimal solvent consumption and low costs [30], as well as reducing matrix
interferences and increasing column lifetime [34]. It is important to choose appropriate adsorbent
materials to purify the sample matrixes and thus minimize the matrix interference in dSPE techniques.
In the study, some dSPE adsorbents materials were evaluated and applied for cleanup procedures.
Also, an LC-MS/MS method coupled with dSPE was developed for simultaneous determination of
eight PSP toxins in shellfish.

2. Results and Discussion

2.1. Optimization of HPLC-MS/MS Conditions

The mobile phase included organic phase and aqueous phase. For reversed-phase LC, acetonitrile
and methanol are commonly used as organic phase, while acetonitrile was considered for better
resolution than methanol in some of the previous reports [22]. However, acetonitrile is always
selected as organic phase in HILIC studies. In addition, pH of water phase could affect the retention
time, peak shape and method sensitivity. Herein, formic acid and ammonium formate buffer were
applied to adjust pH which was set to 2.7, 3.0, 3.3, 3.5 and 4.0, respectively. The result indicated that
retention time and separation efficiency increased with increased pH. The chromatographic peaks
of C1/C2/GTX2 were not separated completely under pH 2.7 and 3.0, which did not allow accurate
quantification. Besides, the baseline noise increased significantly and the sensitivity was reduced at
pH 4.0. Consequently, pH 3.5 was finally chosen in this study. Although shown in previous study [30],
addition of buffer in the organic phase could maintain the pH of mobile phase and ensure the stability
of retention time. However, our experimental results indicated that the retention time, peak shape and
sensitivity were not improved by adding buffer in organic phase, so pure acetonitrile was adopted in
this study.

The MS/MS conditions were optimized for each PSP toxin with direct injection of the mixed stock
solution. Precursor ions were observed by Q1 full scan in the positive mode, and the MS/MS conditions
in the multiple reaction monitoring (MRM) mode were further optimized. The results showed that
abundant [M + H]+ ions were generated from STX, NEO, GTX3 and GTX4. [M + H-SO3]+ions produced
by GTX1, GTX2, C1 and C2 were obviously higher than their [M + H]+ ions, indicating in-source
fragmentation [M + H]+ tend to lose neutral group SO3 and form stable [M + H-SO3]+ under the
positive electrospray ionization (ESI) condition. Collision energies of precursor–product ion transitions
were optimized to give the maximum intensity of the product ions. The precursor–product ion
transition with the highest signal abundance was selected for quantification, while the secondary
product ion and the abundance ration of two transitions were used for qualification. The optimized
MS/MS parameters for the eight PSP toxins in MRM mode are shown in Table 1, and the extracted ion
chromatograms of toxins is shown in Figure 2.
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Table 1. MS/MS parameters for the eight target PSP toxins in multiple reaction monitoring
(MRM) mode.

PSP Toxins Transition Made from Retention Time (min) Precursor Ion (m/z) Product Ion (m/z) CE (eV)

C1 [M + H-SO3]+ 8.38 396.1
316.1 * 13.0
298.1 19.0

C2 [M + H-SO3]+ 8.97 396.1
298.1 * 19.0
316.1 13.0

GTX2 [M + H-SO3]+ 9.68 316.1
220.0 * 26.0
147.9 24.0

GTX1 [M + H-SO3]+ 9.75 332.1
236.1 * 29.0
164.0 32.0

GTX3 [M + H]+ 10.23 396.1
298.1 * 19.0
316.1 13.0

GTX4 [M + H]+ 10.33 412.2
314.2 * 22.0
332.2 21.0

STX [M + H]+ 13.18 300.1
204.0 * 25.0
282.1 19.0

NEO [M + H]+ 13.48 316.1
220.1 * 21.0
298.1 18.0

* Quantitative fragment ion.
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Figure 2. Extracted ion chromatograms of eight target PSP toxins in standard solution (STX: 19.98 
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Figure 2. Extracted ion chromatograms of eight target PSP toxins in standard solution (STX: 19.98 ng·mL−1;
NEO: 20.68 ng·mL−1; GTX1: 24.84 ng·mL−1; GTX2: 45.14 ng·mL−1; GTX3: 19.16 ng·mL−1; GTX4:
8.103 ng·mL−1; C1: 53.92 ng·mL−1; C2: 16.12 ng·mL−1). RT = retention time, SM = smooth point, NL =
normalized level.
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2.2. Optimization of Sample Pretreatment

Extraction solvent was optimized by evaluating recoveries of analytes which was affected by
extraction capacities and possibly matrix effects with difference solvents [35]. In this study, in
order to select suitable extraction solvents to achieve satisfactory recoveries, a variety of solvents
acidified with 0.1% formic acid were evaluated by spiking the blank sample with the intermediate
concentration (1/1000 of the mixed stock solution concentration), including (1) ethanol/water
(80/20, v/v); (2) acetone/water (80/20, v/v); (3) dichloromethane/water (80/20, v/v); (4) ethyl
ether/water (80/20, v/v); (5) ethyl acetate/water (80/20, v/v); and (6) acetonitrile/water (80/20, v/v).
Each extraction solvent was tested in blank sample, and each experiment was done in triplicate, and a
total of 18 samples were ran in the experiment. The extraction efficiencies of each extraction solvent
are averaged and shown in Figure 3. Desirable recoveries were obtained ranging from 80.53 to 94.30%
when selecting acetonitrile/water (80/20, v/v), so it was employed in the subsequent toxin extraction.
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dSPE adsorbents were applied for purification to minimize the matrix effects. C18, a
hydrophobic silica-based sorbent, was used commonly because of its strong affinity with
non-polar compounds. Graphitized carbon black (GCB), which has a high affinity with planar
molecules, is suitable for purification procedures, especially removal of the pigment and sterols.
Ethylenediamine-N-propyl-silane (PSA) with two amino groups can remove pigment and metal ions.
Activated carbon (AC) is capable of cleaning up impurities with negative charge by ion exchange.
Acidic alumina (Al-A) was selected here as well, purification of PSP toxins by using merely Al-A
has been reported [36]. According to the previous report [30], 100 mg of adsorbent was adequate for
purification of 1g of sample. Various adsorbents or adsorbent mixtures, C18 (100 mg), AC (100 mg),
C18 (90 mg) + GCB (10 mg), C18 (46.5 mg) + GCB (7 mg) + PSA (46.5 mg) and C18 (50 mg) + Al-A
(50 mg) were thoroughly compared with regard to the recovery efficiencies in blank sample with the
spiked intermediate concentration (1/1000 of the mixed stock solution concentration). Each experiment
was performed in triplicate. The recoveries of PSP toxins by using above dSPE sorbents were shown in
Figure 4. The recoveries, for example some high values obtained with C18 + GCB, also result from
matrix effects after purification of adsorbents. Although highest recovery of each analyte was achieved
with different sorbent material, acceptable recoveries (>70%) were presented for all of the eight PSP
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toxins only with C18 + Al-A, showing that the performance of C18 + Al-A was apparently a good
choice and thus used as dSPE adsorbent in this study.Toxins 2017, 9, 206 6 of 13 
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Figure 4. Recovery efficiencies of different dispersive solid-phase extraction (dSPE) adsorbents for
eight target PSP toxins.

The composition of reconstitution solvent was considered to directly affect the peak shape and
separation of the analytes in chromatographic system. In order to optimize the sample solvent,
methanol, methanol-water (50/50, v/v), methanol-water (50/50, v/v) containing 10 mmol·L−1

ammonium acetate, methanol-water (50/50, v/v) containing 0.1% of formic acid and 0.1% formic acid
aqueous solution were compared in the pilot test. The results showed that the best peak shapes were
obtained with water with 0.1% formic acid, so it was applied as sample solvent in this study.

2.3. Evaluation of the Matrix Effects

Matrix effects (ME) are a common problem that occurs when using LC-MS/MS. The extent of the
signal suppression/enhancement (SSE) was observed differently for the eight PSP toxins. The SSE
range between −20% and +20% is typically considered as tolerable [37]. The signals were generally
suppressed, except signal enhancement of STX and NEO with the sample matrix scallop, mussel and
clam. As shown in Figure 5, with a tolerance level indicated, significant matrix effects were observed.
Since the matrix effects of the shellfish could interfere with method accuracy, the matrix-matched
calibration curves by using analyte-free matrixes were further constructed for analysis to compensate
the matrix effects and ensure the accurate quantification.



Toxins 2017, 9, 206 7 of 13
Toxins 2017, 9, 206 7 of 13 

 

 
Figure 5. Matrix effects of eight target PSP toxins in the three matrices. A tolerance level of matrix 
effect was shown between the two dashed lines. 

2.4. Method Validation 

According to the EU guideline [38], method validation including the determination of recovery, 
precision, linearity, the limit of detection (LOD) and the limit of quantitation (LOQ), etc. was 
carried out. 

As shown in Table 2, the matrix-matched calibration curves of toxins showed good linear 
relationships with coefficients of determination R2 ≥ 0.9900. The LODs and LOQs of this established 
method were in the range of 1.32–11.29 μg·kg−1 and 0.33–5.52 μg·kg−1. LOQs of STX (2.48 μg·kg−1), 
NEO (4.14 μg·kg−1), GTX1 (8.28 μg·kg−1), GTX2 (9.03μg·kg−1), GTX3 (4.79 μg·kg−1) and GTX4 (4.05 
μg·kg−1) in clam were obviously lower than those of STX (11.3 μg·kg−1), NEO (19.0 μg·kg−1), GTX1 
(26.7 μg·kg−1), GTX2 (38.3 μg·kg−1), GTX3 (17.3 μg·kg−1) and GTX4 (5.30 μg·kg−1) previously reported 
[30]. The results indicated that the proposed method has effectively reduced the matrix effect and 
has increased the sensitivity of the detection. 

Table 2. The matrix-matched calibration curves, linearity range and sensitivities of eight PSP toxins 
in three different matrixes (limit of detection (LOD) & limit of quantitation (LOQ): μg·kg−1). 

PSP 
Toxins 

Linearity Range 
(ng·mL−1) 

Scallop Mussel Clam 
R2 LOD LOQ R2 LOD LOQ R2 LOD LOQ 

STX 9.92~158.75 0.9982 0.33 1.32 0.9995 1.65 4.96 0.9986 0.82 2.48 
NEO 10.34~165.47 0.9983 0.69 2.07 0.9982 2.59 5.17 0.9985 2.07 4.14 
GTX1 12.42~198.74 0.9991 4.14 8.28 0.9960 5.52 8.28 0.9971 5.52 8.28 
GTX2 22.57~361.15 0.9991 2.01 9.03 0.9959 2.82 11.29 0.9977 2.01 9.03 
GTX3 9.58~153.25 0.9999 2.55 6.39 0.9937 4.79 9.58 0.9996 1.60 4.79 
GTX4 4.05~64.82 0.9994 2.70 4.05 0.9957 3.04 6.08 0.9966 2.70 4.05 

C1 26.96~431.28 0.9954 2.27 9.08 0.9977 3.33 9.98 0.9994 2.85 9.98 
C2 8.06~128.93 0.9972 1.35 2.02 0.9969 1.61 3.22 0.9962 2.69 4.03 

The results showed that the recoveries were acquired in the range of 81.52–116.50% for all 
tested PSP toxins in scallop, clam and mussel, as displayed in Table 3. Intra- and inter-day precision 
was investigated by spiking the analyte-free samples with three levels of the mixed standards and 

Figure 5. Matrix effects of eight target PSP toxins in the three matrices. A tolerance level of matrix
effect was shown between the two dashed lines.

2.4. Method Validation

According to the EU guideline [38], method validation including the determination of recovery,
precision, linearity, the limit of detection (LOD) and the limit of quantitation (LOQ), etc. was carried out.

As shown in Table 2, the matrix-matched calibration curves of toxins showed good linear
relationships with coefficients of determination R2 ≥ 0.9900. The LODs and LOQs of this established
method were in the range of 1.32–11.29 µg·kg−1 and 0.33–5.52 µg·kg−1. LOQs of STX (2.48 µg·kg−1),
NEO (4.14 µg·kg−1), GTX1 (8.28 µg·kg−1), GTX2 (9.03µg·kg−1), GTX3 (4.79 µg·kg−1) and GTX4
(4.05 µg·kg−1) in clam were obviously lower than those of STX (11.3 µg·kg−1), NEO (19.0 µg·kg−1),
GTX1 (26.7 µg·kg−1), GTX2 (38.3 µg·kg−1), GTX3 (17.3 µg·kg−1) and GTX4 (5.30 µg·kg−1) previously
reported [30]. The results indicated that the proposed method has effectively reduced the matrix effect
and has increased the sensitivity of the detection.

Table 2. The matrix-matched calibration curves, linearity range and sensitivities of eight PSP toxins in
three different matrixes (limit of detection (LOD) & limit of quantitation (LOQ): µg·kg−1).

PSP
Toxins

Linearity Range
(ng·mL−1)

Scallop Mussel Clam

R2 LOD LOQ R2 LOD LOQ R2 LOD LOQ

STX 9.92~158.75 0.9982 0.33 1.32 0.9995 1.65 4.96 0.9986 0.82 2.48
NEO 10.34~165.47 0.9983 0.69 2.07 0.9982 2.59 5.17 0.9985 2.07 4.14
GTX1 12.42~198.74 0.9991 4.14 8.28 0.9960 5.52 8.28 0.9971 5.52 8.28
GTX2 22.57~361.15 0.9991 2.01 9.03 0.9959 2.82 11.29 0.9977 2.01 9.03
GTX3 9.58~153.25 0.9999 2.55 6.39 0.9937 4.79 9.58 0.9996 1.60 4.79
GTX4 4.05~64.82 0.9994 2.70 4.05 0.9957 3.04 6.08 0.9966 2.70 4.05

C1 26.96~431.28 0.9954 2.27 9.08 0.9977 3.33 9.98 0.9994 2.85 9.98
C2 8.06~128.93 0.9972 1.35 2.02 0.9969 1.61 3.22 0.9962 2.69 4.03

The results showed that the recoveries were acquired in the range of 81.52–116.50% for all
tested PSP toxins in scallop, clam and mussel, as displayed in Table 3. Intra- and inter-day precision
was investigated by spiking the analyte-free samples with three levels of the mixed standards and
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performing analysis on five consecutive days with six replicates every day. As shown in Table 3, the
relative standard deviation (RSD) of intra-day was ranging from 1.50% to 19.10%, and RSD of inter-day
was in the range of 0.35–18.37%. The results indicated that this established method was precise and
can be adopted for analysis.

Table 3. Recovery, intra-day repeatability and inter-day reproducibility of the developed method in
three matrixes *.

PSP
Toxins

Spike Conc.
(µg kg−1)

Scallop Mussel Clam

Intra-Day (%) Inter-Day (%) Intra-Day (%) Inter-Day (%) Intra-Day (%) Inter-Day (%)

Recovery RSD Recovery RSD Recovery RSD Recovery RSD Recovery RSD Recovery RSD

STX 49.61 96.78 10.27 93.25 2.28 98.34 6.43 96.19 0.63 95.56 5.65 94.58 1.53
26.46 89.74 9.76 100.30 5.37 92.43 5.06 96.73 4.22 97.80 6.18 95.86 0.35
9.92 98.77 5.39 95.13 2.88 92.21 2.80 94.62 4.35 85.89 7.76 89.01 5.47

NEO 51.71 88.70 9.23 92.25 7.21 84.04 6.70 92.29 7.31 93.11 10.95 101.12 14.77
27.58 90.54 14.63 91.84 14.39 88.92 12.01 83.62 6.22 90.93 3.63 94.33 0.56
10.34 102.96 9.23 97.41 3.98 102.13 13.48 92.20 3.07 91.41 3.18 99.29 4.64

GTX1 62.11 84.69 14.34 89.96 5.09 99.56 9.86 96.50 3.45 96.01 12.53 97.80 9.45
33.12 85.59 12.01 90.98 12.63 91.02 12.50 93.48 9.19 80.22 1.17 90.12 1.38
12.42 89.18 18.17 96.42 4.05 88.28 16.19 97.87 2.42 89.32 19.10 87.66 0.62

GTX2 112.86 94.10 4.89 87.04 3.35 91.38 8.93 94.50 7.02 100.76 4.52 97.68 11.77
60.19 95.32 16.22 89.71 3.22 99.78 7.20 96.46 1.61 116.53 7.32 85.87 13.25
22.57 101.78 2.75 88.47 12.44 100.08 5.41 92.88 18.37 82.22 14.26 94.50 5.27

GTX3 47.89 96.18 2.24 90.08 3.88 82.80 5.62 94.74 2.74 99.39 1.50 90.38 1.12
25.54 90.88 6.57 98.80 6.90 96.96 12.29 98.02 0.59 100.06 11.07 94.22 2.67
9.58 92.36 8.62 93.96 17.47 86.36 5.05 97.04 0.59 93.60 13.00 99.01 6.32

GTX4 20.25 81.52 14.57 95.34 4.07 93.45 17.85 86.76 4.34 91.79 8.25 96.80 7.09
10.80 83.66 12.66 89.00 7.72 82.63 12.51 95.46 8.85 95.84 6.83 95.16 1.74
4.05 96.90 11.83 93.84 7.22 91.57 5.27 96.93 5.63 90.19 5.27 86.40 6.68

C1 134.78 89.06 13.85 93.98 2.90 90.19 11.26 94.37 2.42 107.86 9.87 98.09 1.13
71.88 99.69 5.31 90.92 16.92 98.49 10.07 101.09 3.48 94.68 16.59 98.42 9.33
26.96 94.82 10.19 97.59 11.21 96.91 11.23 88.36 7.38 86.42 3.20 94.23 1.69

C2 40.29 91.57 12.77 88.07 1.08 82.27 8.57 99.64 1.99 102.35 7.33 92.53 7.78
21.49 96.45 18.70 86.50 9.04 104.50 15.53 100.67 1.71 96.18 8.07 96.78 8.27
8.06 97.10 2.96 104.68 11.59 90.34 6.96 94.41 10.59 93.40 17.49 94.80 4.52

* Three levels of concentration, five days of consecutive analyses and six replications each day. RSD = relative
standard deviation.

2.5. Sample Analysis

The validated method was employed to assess natural occurrence of STX, NEO, GTX1, GTX2,
GTX3, GXT4, C1 and C2 in shellfish in China. The samples were collected and pretreated as described
in Sections 2.3 and 2.4. In the analysis, the matrix-matched calibration was applied to compensate the
matrix effect and ensure the accurate quantification of the target toxins. As shown in Table 4, in a total
of the collected thirty shellfish samples determined to contain PSP toxins (36.7% of incidence), ranging
from 6.34 to 20.82 µg·kg−1, 6 of the 11 positive-result samples originate from western coastal waters of
the Yellow Sea, which was consistent with previous reports [39].

Table 4. Occurrence of PSP toxins in 30 collected shellfish samples (µg·kg−1).

Shellfish Sample No. Origin STX NEO GTX1 GTX2 GTX3 GTX4 C1 C2

Scallop

1 Dalian - * - - - - - - -
2 Qinhuangdao - - - - - - - -
3 Tianjin - - - - - - - -
4 Yantai - - - - 16.35 - - -
5 Dalian - - - - - - - -
6 Quanzhou - - - - - - - -
7 Ningbo - - - 7.85 - - - -
8 Qingdao - - - - - 12.31 - -
9 Rizhao - - - - - - - -

10 Xiamen - - - - - - 16.32 -
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Table 4. Cont.

Shellfish Sample No. Origin STX NEO GTX1 GTX2 GTX3 GTX4 C1 C2

Clam

11 Lianyungang - - - - 6.24 - - -
12 Dalian - - - - - - - -
13 Qinhuangdao - - - - - - - -
14 Tianjin - - - - - - - -
15 Yantai - - - - - - - -
16 Dalian - - - - - - - -
17 Quanzhou - - - - - - - -
18 Ningbo - - - - 15.68 - - -
19 Qingdao - - - - - - - -
20 Rizhao - - - - - - - -

Mussel

21 Ningbo - - - - - - - -
22 Qingdao - - - - 11.44 20.82 - -
23 Rizhao - - - - 6.34 - - -
24 Quanzhou - - - - - - - -
25 Qinhuangdao - - - - - - - -
26 Tianjin - - - - 9.87 - - -
27 Yantai - - - - - - - -
28 Taizhou - - - - - 18.91 - -
29 Quanzhou - - 9.67 - - - - -
30 Dalian - - - - - - - -

* Not detected.

3. Conclusions

The occurring of PSP toxins poses health risks and attracts attention in the system of seafood safety
management. In the current study, HPLC-MS/MS method, coupled with simplified extraction and
effective dSPE pretreatment procedures using C18 + Al-A as cleanup adsorbents, has been established
for simultaneous quantification of STX, NEO, GTX1, GTX2, GTX3, GXT4, C1 and C2 in shellfish. After
validation by investigating the sensitivity, linearity, accuracy, stability and matrix effects, the developed
analytical method was applied to quantification of the eight toxins in shellfish samples collected from
various areas of coastal waters in China. The results have proved that this method is reliable and
practical for rapid detection of multiclass PSP toxins, and therefore suitable for both research and
routine monitoring of PSP toxins in shellfish regarding the fields of fisheries and marine environment.

4. Materials and Methods

4.1. Materials and Reagents

The PSP toxin standards, including STX, NEO, GTX1–3, GTX2–4 and C1-2, were purchased from
the National Research Council, Halifax, NS, Canada. Acetonitrile, formic acid and ammonium formate
of HPLC grade were obtained from Merck (Darmstadt, Germany). Deionized water was purified using
a Milli-Q Gradient A 10 System (Millipore, Billerica, MA, USA). All other chemicals and solvents were
of HPLC or analytical grade. Acidic alumina was purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China) and other dSPE adsorbents were purchased from Bonna-Agela Technologies
Inc. (Wilmington, DE, USA).

4.2. Preparation of Standard Solutions

Accurately weighed solid portions of STX, NEO, GTX1, GTX2, GTX3, GXT4, C1 and C2 were
dissolved with 0.1% formic acid aqueous solution to prepare stock solutions, and the concentrations
of stock solutions were 198.44 µg·mL−1 (STX), 206.84 µg·mL−1 (NEO), 248.43 µg·mL−1 (GTX1),
451.43 µg·mL−1 (GTX2), 191.56 µg·mL−1 (GTX3), 81.03 µg·mL−1 (GTX4), 539.10 µg·mL−1 (C1)
and 161.16 µg·mL−1 (C2), respectively. A mixed stock solution containing 39.69 µg·mL−1 of STX,
41.37 µg·mL−1 of NEO, 49.69 µg·mL−1 of GTX1, 90.29 µg·mL−1 of GTX2, 38.31 µg·mL−1 of GTX3,
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16.21 µg·mL−1 of GXT4, 107.82 µg·mL−1 of C1 and 32.23 µg·mL−1 of C2 was prepared in 0.1% formic
acid solution. All solutions were stored at −20 ◦C in the darkness. The working solutions were
prepared from the mixed stock solution and stepwise diluted with 0.1% formic acid aqueous solution
immediately before use. When the analyte-free shellfish were pretreated as described in Section 4.4,
the working solutions were used to re-dissolve dried matrix residues for preparing matrix-matched
standard solutions. Herein, analyte-free scallop (Patinopecten yessoensis), clam (Meretrix lusoria) and
mussel (Mytilus corusc) were adopted for blank matrixes.

4.3. Samples

Thirty shellfish samples, including scallop, clam and mussel were purchased from local
supermarkets in Shanghai city, and the origin information of the samples were collected. The soft
tissues of the samples were homogenized by IKA T25 high-speed homogenizer (Ika-Werke GmbH,
Staufen, Germany), and stored at −20 ◦C until further treatment.

4.4. Sample Pretreatment

Homogenate (1 ± 0.02 g) was weighted directly in a centrifuge tube and then extracted two times
with 2 mL of acetonitrile/water (80:20, v/v) containing 0.1% formic acid. The combined extracting
solution was vortex-mixed, ultrasonicated for 10 min and then centrifuged with 4500 rpm at 14 ◦C
for 15 min. According to the previous study [30], after the supernatant was frozen under −20 ◦C
for at least 4 h, the upper layer was removed quickly within 1 min. The remaining aqueous-phase
layer was freeze-dried to near dryness, and then re-dissolved to 1 mL with water containing 0.1%
formic acid. After mixing with 50 mg (±1 mg) C18 silica and 50 mg (±1 mg) acidic alumina (Al-A),
the suspension was vortexed for 1 min and then centrifuged at 4500 rpm under less than 15 ◦C for
10 min. The supernatant was filtrated through a 0.22 µm nylon filter (ANPEL Technologies Inc.,
Shanghai, China) and ready for injection.

4.5. LC-MS/MS Analysis

The standard and pretreated sample solutions were directly injected into a Thermo Scientific
triple quadrupole LC-MS/MS system (TSQ QUANTUM ULTRA, Thermo Scientific, San Jose, CA,
USA) with positive-mode electrospray ionization (ESI) source and analysis was performed by using
multiple reaction monitoring (MRM) mode. Separation was achieved on a TSK-gel Amide-80 HILIC
column (Tosoh Bioscience Shanghai Co. Ltd., Shanghai, China) (150 mm × 2 mm, 3 µm) at 30 ◦C, with
a mobile phase flow rate of 0.3 mL min−1. The mobile phase consisted of (A) formic acid (3.6 mM) and
ammonium formate (2 mM) buffer solution and (B) acetonitrile. A linear gradient elution program
was applied as follows: initial 15% A, 10 min 15% A, 11 min 45% A, 14 min 15% A, and finally 5 min
for re-equilibration, giving a total run time of 19 min. The injection volume was 5.0 µL. The MS/MS
settings were used as follows: spray voltage, 4.0 kV; vaporizer temperature, 300 ◦C; sheath gas pressure,
35 psi; aux valve flow, 20arb; capillary temperature, 350 ◦C. Data acquisition and processing were
carried out using Thermo Xcalibur Series software (version1.3, Thermo Scientific, Waltham, MA, USA).

4.6. Evaluation of Matrix Effects

The evaluation of ME was based on by comparing the slope of the standard curves prepared
in pure solvent and matrix-matched blank extract. The formula was as follows: ME (%) = [(slope of
spiked extract/slope of pure standard) − 1] × 100%. ME of 0% indicated that no matrix effect occurred
in the selected concentration ranges. ME above 0% revealed signal enhancement, while ME below
0% indicated signal suppression. The blank matrix was prepared using the analyte-free shellfish by
following the sample pretreatment procedures. The mixed stock solutions were diluted with the blank
matrix to yield a serial of concentrations (4/1000, 2/1000, 1/1000, 1/1500, 1/2000 and 1/4000 of stock
solution concentration), respectively.
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4.7. Validation of the Method

The parameters evaluated in the validation were linearity, precision (expressed as RSD in terms
of intra-day and inter-day precision) and recovery. LODs were determined by measurements with
successive dilution of matrix-spiked standard solution until a signal-to-noise ratio (S/N) of 3:1, and
LOQs were defined as the concentration of a PSP toxin producing S/N = 10:1. Recovery experiments
were performed in the analyte-free shellfish by employing the method of standard addition with low
(9.92 for STX, 10.34 for NEO, 12.42 for GTX1, 22.57 for GTX2, 9.58 for GTX3, 4.05 for GTX4, 26.96 for C1
and 8.06 for C2 ng·mL−1), intermediate (26.46 for STX, 27.58 for NEO, 33.12 for GTX1, 60.19 for GTX2,
25.54 for GTX3, 10.80 for GTX4, 71.88 for C1 and 21.49 for C2 ng·mL−1) and high concentration (49.61
for STX, 51.71 for NEO, 62.11 for GTX1, 112.86 for GTX2, 47.89 for GTX3, 20.25 for GTX4, 134.78 for C1
and 40.29 for C2 ng·mL−1) of the mixed standards. Intra- and inter-day precision was investigated by
spiking the analyte-free samples with three levels of the mixed standards and performing analysis on
five consecutive days with six replicates every day.
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