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Abstract: The semiconductor industry is now facing challenges to keep pace with Moore’s law
and this leads to the requirement of new materials and newer technological devices. Molecular
switch-based nanodevices are one of the promising areas because of their ultimate size and
miniaturisation potential. These nanodevices are built through a self-assembled bottom-up
manufacturing method in which the possibility of external intervention is negligible. This leads
to a considerable yield loss due to defective device production and the traditional test-and-throw
faulty device approach will not hold well. Design of fault-tolerant devices are the only possible
solution. A widely studied nanodevice is nanocrossbar architectures and their fault tolerance can be
designed by exploiting the programmable logic array’s fault tolerance schemes. A defect-unaware
fault tolerance scheme is developed in this work based on the bipartite graph analogy of crossbar
architectures. The newly-designed algorithm can eliminate more than one node in each iteration and,
hence, a defect-free subcrossbar can be obtained much faster compared to the existing algorithms.
A comparison with the existing defect-unaware fault-tolerant methods with this newly-developed
algorithm shows a better yield in most of the cases.

Keywords: molecular switches; nanocrossbar architecture; faults; stuck-at-off; stuck-at-on;
fault tolerance; maximum independent set; yield

1. Introduction

With increased counts, transistors were able to operate at higher frequency until recently, and
the “performance at any cost” tactic will soon lead to fundamental thermal limits of an integrated
circuit (IC), approaching its end [1]. This has led to the implementation of new materials and
architectures. Carbon nanotubes (CNT), semiconductor nanowires, molecular devices, spin transistors,
single-electron transistors. etc., are the emerging nanotechnology devices. Most of these nano electronic
devices possess a regular array-like structure generated by a stochastic bottom-up assembly. In this
method, individual components are built first and then the design is assembled onto it. By utilizing
specific intra-molecular interactions, regular array-like structures are easy to produce with this kind
of manufacturing technology [2]. The nanocrossbar (NC) architecture is a promising technology to
improve the computing performance of nano electronic devices. The NC structure with a bistable
molecular switch as the switching element is known as a molecular switch crossbar circuit and the most
important advantage is their smallest size (molecular dimension). In an NC architecture, the molecular
switches are connected to each other in a two-dimensional grid. Since two terminal devices, like
molecular switches in crossbar circuits, are more advantageous than three terminal devices in terms of
flexible designs and reduced area requirement, they become the dominant category device [3].

During the fabrication life cycle of an electronic component, it is impossible to achieve 100%
efficiency and, hence, it will lead to faulty IC production. Since the manufacturing of CMOS devices is
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through a controlled top-down approach, defect density is low, hence, it is cost effective to reject an IC
if found defective during the testing process. The nanodevices are more susceptible to defects because
of their ‘self-assembled bottom-up’ manufacturing approach [2]. This will lead to a considerable yield
loss and, hence, the test-and-throw faulty device approach will not hold well [4]. Thus, the only
available option in the case of nanodevices for high throughput are the use of fault tolerance methods.

A nanocrossbar architecture-based electronic device can have errors either on the nanowire
or in the switching element. Faults in a nanocrossbar structure can be broadly classified into two
categories; (1) permanent faults or defects, and (2) transient faults [5]. Defects that occur during the
fabrication process are permanent faults, and in the case of molecular switching devices these may
occur as a structural differences in the molecule. Transient faults occur during the operation of the
device and, hence, they are considered as field errors. Nanocrossbar architectures are very similar
to programmable logic arrays (PLA) in terms of programming features, structure, and utilization [6].
In 1990, Demjanenko and Upadhyaya developed a fault-tolerant scheme for PLAs on the basis of
a bipartite graph model. Hence, bipartite graph-based fault-tolerant schemes will be suitable for
designing a fault-tolerant nanocrossbar architecture irrespective of the type of switching element. A
disadvantage of the bipartite graph-based fault-tolerant scheme is that these methods are not suitable
for wire defects and transient faults.

2. Nanocrossbar Architecture as a Bipartite Graph

Nanocrossbar architectures are realized by using molecular switch or any other two terminal
nanodevice as the programming element. These switching elements are connected to each other in a
two-dimensional grid. A schematic representation of an NC architecture is given Figure 1 [7].
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Figure 1. Schematic representation of a nanocrossbar (NC) architecture.

A layer of bistable [2] rotaxane-like molecular switch is sandwiched between the metal nanowires
to form molecular crosspoint devices. These devices will act as an electrically-toggled switch for
implementing the logic function. These nanowires are aligned parallel to each other in two different
planes and these planes are placed orthogonally. Nanoimprint lithography is a technique that can
produce devices even at the sub-10 nm feature size.

2.1. Defects in a Crossbar Architecture

Nanocrossbar architectures thus manufactured will have a very high fault rate because of their
self-assembly. A nanocrossbar architecture-based electronic device can have errors either on the
nanowire or in the switching element. In this work, only switching element defects are considered and
nanowires are assumed to be defect-free. The most common type of faults occurring in nanocrossbar
circuits are due to defects and they are permanent faults. Molecular switching elements may lose
their switching capability during the manufacturing process and such switches are considered as a
defective switch. Defects in a molecular switching element can be of three categories: (1) stuck-at-off,
(2) stuck-at-on [8], and (3) neither stuck-at-off nor stuck-at-on [9].
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• Stuck-at-off : These type of defects makes the corresponding crosspoint switch not capable of
conducting electrical current or, in the case of a molecular switch, the molecule can possess only
its ground state co-conformer (GSCC) geometry.

• Stuck-at-on fault: These defects make the corresponding switch constantly conduct electric
current or, in case of a molecular switch, their geometry is permanently stuck in the metastable
state co-conformer (MSCC) state.

• Neither stuck-at-off nor stuck-at-on fault: This type of fault is typically found in molecular
switching elements. Here, the molecule loses its intended switching action, but it is neither
stuck-at-off nor stuck-at-on position.

• Our previous studies presented a detailed analysis on these type of faults [9] and in this paper we
are concentrating only on the fault tolerance method for stuck-at faults.

2.2. Characterisations of a Bipartite Graph

• Bipartite Graph: A graph G is called bipartite if its vertex set V can be decomposed into two disjoint
subsets V1 and V2 such that every edge in G joins a vertex in V1 a vertex in V2 [10]. In a bipartite
graph no edge will exist between the two nodes of the same set. Adjacent nodes are the connected
nodes via edges. Degree of a node is the number of edges connected to the node.

• Bipartite complement graph: This is the complement or inverse of a bipartite graph by keeping all
of the nodes in the original graph with an addition of all edges that do not exist in the original
graph. Two distinct vertices in the complement graph are adjacent if and only if they are not
adjacent in the original graph [10].

• Independent set: This is a subset of the set of vertices which contains nodes such that no node pair
has an edge connecting the nodes. Independent sets are also known as stable sets [10,11].

• Biclique: A biclique is complete bipartite graph. This is a special kind of graph in which every
vertex of the first set of vertices is connected to every vertex of the second set of vertices [11].

2.3. Analogy between Crossbar Arrays and Bipartite Graphs

A nanocrossbar architecture with n input and n output wires can be represented as an n × n
graph with nodes and edges. A crossbar architecture is generally represented as a bipartite graph.
Here, each of the nodes corresponds to input and output lines. The edges connecting between these
nodes represents the cross-point switch present between the particular input and output wire. The two
subsets of the vertex set of the bipartite graph are represented by I and O which corresponds to the
input set and the output set of the crossbar array. Each configurable cross-point switch is represented
by an edge connecting between the node set I and O [11].

• Stuck-at ON fault—Erasure of the corresponding nodes from V and U along with all edges
connected to these nodes.

• Stuck-at OFF fault—Erasure of the corresponding edge only.

The manufacturing yield of crossbar arrays can be maximized by implementing fault-tolerant
methods. Fault-tolerant logic mapping problem is further divided into two categories: (1) defect-aware
fault tolerance and (2) defect-unaware fault tolerance. All defect-tolerant designs either avoid or
exploit defects. In defect avoiding approach, faulty wires and switches are avoided and defect-free
crossbar subset is searched for mapping logic functions [12]. Both procedures use a defect map to
show the position of defects/faults in the crossbar architecture. Hence, these methods are also called
as defect avoiding and defect employing methods, respectively.

In defect-unaware methods a k × k defect-free subcrossbar is obtained from an n × n crossbar and
thus size of the required crossbar is known in advance. A defect-free subcrossbar can be represented
as a biclique. According to the fundamentals of graph theory, the maximum independent set of
the complement graph will be the biclique of the original graph [10]. This principle is exploited in
developing the new fault-tolerant method.
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Logic implementation on to a defect-free subcrossbar is a direct and straight-forward mapping,
but the existing literature shows that the efficiency of defect-unaware methods is significantly low and,
hence, the studies are limited. In defect-aware logic mapping methods, defective elements are utilized
during the mapping process and, hence, a better area yield is obtained. However, these methods are
complicated to implement. The problem formalizing is comparatively easier and flexible. This leads to
a very large number of studies in the defect-aware logic mapping field.

2.4. Obtaining the Bipartite Graph Corresponding to a Defective Crossbar Architecture

Consider a 5 × 5 crossbar structure with two stuck-closed faults and seven stuck-open faults,
as shown in Figure 2a. Figure 2b shows the bipartite graph representation of this defective crossbar
by considering the effect of stuck-open faults alone (the stuck-closed fault switch shown in Figure 2a
is assumed to be fault-free in this scenario). Here, few edges are absent which corresponds to the
stuck-open faults and it is to be noted that none of the nodes are absent [13]. This is because the effect
of a stuck-open fault will not eliminate the complete input and/or output wire. Figure 2c shows the
bipartite graph corresponding to the crossbar under consideration after looking into the effect of both
stuck-open and stuck-closed faults.
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Figure 2. Representation of (a) a defective crossbar; (b) a bipartite graph representation of the crossbar
by considering only the stuck at open fault; and (c) a bipartite graph representation of the crossbar by
considering both stuck-at-open and -closed faults.

Here we can see that the some of the nodes are also eliminated from the bipartite graph
representation, which indicates the presence of a stuck-closed fault which eliminates the corresponding
input and output lines along with the switch [14].

3. A Novel Defect-Tolerant Scheme

In this newly-developed algorithm, the maximum independent set of the complement graph is
calculated in a much faster and efficient manner compared to the existing [13,15–17] defect-unaware
methods. The newly-developed defect-tolerant method’s flowchart is given in Figure 3.

The newly-developed algorithm is applied to the systems which contain stuck-open faults alone
and a system that contains both stuck-open and stuck-closed faults. The algorithm finds the maximum
independent set of the given bipartite complement graph within a fewer number of iterations in
comparison with Yamani’s algorithm [15]. This algorithm progress as follows, resulting in the
generation of the maximum independent set of the complement graph, which is nothing but the
defect-free subcrossbar. Initially, the algorithm checks for all zero-degree nodes and all such nodes
are moved into the independent node set. In the next step the algorithm selects all minimum degree
nodes from the input node set and the adjacent nodes set is completed by considering the adjacent
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nodes for all the minimum degree nodes. The next phase brings the main difference in running time
compared to the existing algorithms.
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In this proposed algorithm, all adjacent nodes are eliminated except the minimum degree node.
This situation may end up in three different scenarios: (a) If only adjacent node exists then it is removed
from the node set and correspondingly its edges, too; (b) if there exist more than one adjacent node and
each of them have different degrees, then all nodes except the minimum degree adjacent node/nodes
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are removed from the original node list; and (c) if there exist more than one adjacent node and each of
them have same node degree, then any one minimum degree adjacent node is retained, and all others
are eliminated. Deletion of a node explicitly indicates the deletion of the corresponding edge. As the
next step, the algorithm checks the possibility of new zero-degree nodes and they are moved into the
independent node set. The complete algorithm is repeated with alternating input and output nodes in
each iteration, until any node set becomes empty.

The algorithm is implemented using JAVA (version 1.8. Mac OS 10.13) as the development
platform used with Eclipse 4.6 as the development tool. The pseudo code of the algorithm is as
given below.

Algorithm 1. Defect tolerance algorithm with enhanced efficiency.

1. While Connection Exists Between Nodes
2. Parse Input Graph Left -> Right
3. Get Candidate Nodes(Graph) <- Minimum Connection Nodes(Graph)
4. Get Adjacent Nodes(Graph) <- Candidate Nodes(Graph)
5. Get Minimum(Adjacent Nodes)
6. If Count(#5) == 1 And Count(#4) == 1 Then Keep(#5) And Delete(All Other #4’s)
7. If Count(#5) == 1 And Count(#4) > 1 Then Keep(Any One #4’s) And Delete(Other #4’s)
8. If Count(#5) == Count(#4) Then Keep(Any One #4’s) And Delete(Other #4’s)
9. If Count(#5) < Count(#4) Then Keep(#5’s) And Delete(#4’s)
10. Get Independent Nodes(Graph)
11. Redraw(Graph)
12. Repeat #2 Right <-> Left Until(#1)
13. Draw(#10)

Consider a 4 × 4 defective crossbar as shown in Figure 4a. The defect-free subcrossbar analysis is
done based on the assumption that the system has only stuck-open fault as depicted. The bipartite
graph and its complement graph are shown in Figures 4b and 5a, respectively. The edges corresponding
to the stuck at open faults are eliminated from the complement graph. Figure 5b shows the new graph
after the application of the first iteration of the algorithm. This eliminates the node O3 and this makes
I2 as an independent node. In the next iteration nodes I3 and I4 are eliminated and, hence, O1 and O4

become independent. The result of this iteration is shown Figure 5c. The next iteration will yield the
complete independent set of the complement graph as shown in Figure 5d. In this iteration node O2 is
eliminated and this result in the independent node I1. The complete node set obtained as independent
corresponds to the defect-free subcrossbar of the defective bipartite graph considered.
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4. Results and Discussions

4.1. Defect-Free Subcrossbar for Smaller Systems

By applying the newly-developed algorithm to find the defect-free subcrossbar, it is clear that
as the defect density increases yield is decreasing. It also indicates that as the original crossbar size
increases the yield also slightly increases for the same defect density. The algorithm is applied to three
different crossbar sizes with various defect densities.

Initially the method is applied to three different defective crossbar system, which include
stuck-at-open faults only. Considered in this study are 4 × 4, 5 × 5, and 6 × 6 crossbars with
defect densities of 10% to 80%. The area yield of the defect-free subcrossbar is calculated as the square
ratio between the nodes of defect-free subcrossbars with the defective crossbar.

A 4 × 4 crossbar system with a 10% defect has the maximum yield, of about 50%. However, as the
defect density increases, yield shows a decreasing trend and it reaches 25% when the defect density
reaches 80%. In the case of the 5 × 5 crossbar, the maximum yield is obtained with a defect density of
10% and the minimum is with a defect density of 80%. Similarly, for a 6 × 6 crossbar system, when the
defect density is 10% the yield is 22%, while it becomes 11% with a defect density of 80%. Yield is at a
minimum in the case of the 6 × 6 crossbar with 80% defects. Thus, even for a smaller sized crossbar
system, there is a considerable decrease in yield with the increase in defect density. These results are
tabulated in Table 1.

A graph is plotted between the percentage yield of the defect-free subcrossbar with the defect
density. The graph is plotted for 3 the different crossbar sizes that are analyzed here and is given in
Figure 6. From the graph it can be seen that as the defect density and crossbar size increases, the yield
of the defect-free subcrossbars decreases.
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Table 1. Percentage yield analysis for three different sized crossbars with different densities.

Crossbar Size Defect Density (%) Yield (%)

4 × 4

10 43
20 31
30 31
40 31
50 25
60 25
70 25
80 25

5 × 5

10 32
20 28
30 24
40 24
50 20
60 20
70 16
80 16

6 × 6

10 22
20 22
30 19
40 19
50 16
60 19
70 14
80 11
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4.2. Defect-Free Subcrossbar for Higher Orders

Higher-order defective crossbar systems of four different sizes are analyzed in terms of defect-free
subcrossbar yield through the algorithm developed in this research work.
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4.2.1. 50 × 50 Crossbar

For a 5% defect density, the algorithm gives 27% yield, which is the same as that of the existing
algorithms while, for 10% and 15% defect densities, the algorithm gives a yield of 19% and 17%,
respectively. These results have a considerable increase in yield from the existing algorithms.

4.2.2. 100 × 100 Crossbar

The yield obtained for a 100 × 100 size crossbar with a defect density of 5, 10, and 15% are 16, 6,
and 5%, respectively. Even a 5% increase in the defect density causes a considerable decrease in the
defect-free subcrossbar size.

4.2.3. 150 × 150 Crossbar

In all the three different defect densities that are considered, the yield obtained is higher than that
of all the four existing algorithms.

4.2.4. 200 × 200 Crossbar

In this case, also, the yield is considerably high compared to the existing algorithms.
Due to the NP-complete nature of the maximum independent set finding problem, in some cases

the yield is either equal or lower than that of the existing algorithm. But in most of the cases the newly
designed fault-tolerant algorithm produces a better area yield.

Table 2 shows the details of yield comparison for four different sized crossbar architectures
(50 × 50, 100 × 100, 150 × 150 & 200 × 200) with three different defect densities. The maximum
possible yield from all algorithms in each case is written in bold numbers. Even though only four
different crossbar size yield results are presented here, the new algorithm can be applied to any
crossbar size with different defect densities. From the defect-free subcrossbar size analysis it can be
found that the yield will decrease with the size of the crossbar as well as the defect density. It can be
seen that, as the defect density increases, the yield decreases irrespective of the crossbar size. It can
also be seen that, for the same defect density, as the crossbar size increases the yield is decreasing.
From the yield comparison of all five defect-unaware fault-tolerant algorithms, it can be decided that
the newly-designed algorithm has a better yield in most of the cases. A graphical comparison of the
yield with respect to the crossbar size is given in Figures 7–9 corresponding to defect densities of 5%,
10%, and 15%, respectively.

Table 2. Yield comparison of different defect-unaware fault-tolerant algorithms.

Crossbar
Size

Defect
Density (%)

Yield

Newly-Designed
Algorithm Tahoori [17] Yamani [13] Yuan [16] Yuan [15]

50 × 50
5 27 33 27 27 27

10 19 12 14 16 14
15 12 9 7 7 10

100 × 100
5 16 16 16 16 17

10 6 6 8 8 7
15 5 3 4 4 4

150 × 150
5 14 9 11 10 11

10 5 4 4 4 4
15 3 1 2 3 2

200 × 200
5 9 6 8 7 8

10 3 3 3 3 3
15 2 1 1 1 1
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According to boundary theory, k is given that k(n) ≤ k ≤ 2k(n) with high probability (for sufficiently
large n), where k(n) = log n/log (1/(1 − p)) and p is the defect density [18]. Thus, a very large sized
crossbar is insignificant from the point of view of defect-unaware fault-tolerant methods. Nanocrossbar
manufacturing is an ongoing field of research and this newly-developed algorithm can be certainly
used to achieve a better manufacturing yield.
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In the next phase a 4 × 4, a 5 × 5 and a 6 × 6 crossbar are analyzed for 10% stuck-at-open and
10% stuck-at-closed faults. However, it is found that the yield is very low compared to stuck-open
faults alone in all three cases. For the 4 × 4 crossbar, the yield is only 31.25% while, for 5 × 5, it is only
16%. When it comes to a 6 × 6 crossbar, the yield is still decreasing and becomes only 8.3%. Hence,
even for a 10% defect density for a 6 × 6 crossbar system the yield is too low and it is not cost effective
to examine the crossbar systems with higher defect density.

5. Conclusions

The newly-developed fault-tolerant system is analyzed for various crossbar sizes with different
defect densities. The newly-developed defect-tolerant method is developed based on graph theory
by eliminating the all adjacent nodes excluding the minimum degree node. Thus, this method can
eliminate more adjacent nodes in each iteration since it is considering more candidate nodes in each
pass. This results in a considerable improvement in runtime. It is also clear that, in most of the cases,
the newly-developed algorithm gives a better yield compared to that of the existing defect-unaware
fault-tolerant logic mapping schemes.

The fault-tolerant scheme designed here can be applied to defective crossbar system with both
stuck-at-on and stuck-at-off fault. However, the presence of stuck-at-on faults leads to a considerable
yield loss in the defect-free subcrossbar. The defect-free subcrossbar design is simple but the design
flexibility is low compared to defect-aware fault-tolerant methods. The fault-tolerant design can be
applied to all types of crossbar architectures irrespective of the type of connecting/switching element.

The fault-tolerant method described here considers only the stuck-at faults. Defect-unaware
fault-tolerant methods for other types of faults, like wire defects, transient faults, etc., are yet to be
investigated. There exists a possibility of the formation of new defects or the removal of existing
defects during the operational lifetime of the crossbar array. The fault tolerance mechanism for these
kinds of defects needs to be explored in the future. It can also be found that the maximum biclique
finding of a bipartite graph is an NP-complete problem and, hence, there may exist more efficient
methods which need to be explored in future.
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