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Abstract: The tunable fiber laser with high tuning resolution in the C-band is proposed and
demonstrated based on a digital micromirror device (DMD) chip and an echelle grating. The laser
employs a DMD as a programmable wavelength filter and an echelle grating with high-resolution
features to design a cross-dispersion optical path to achieve high-precision tuning. Experimental
results show that wavelength channels with 3 dB-linewidth less than 0.02 nm can be tuned
flexibly in the C-band and the wavelength tuning resolution is as small as 0.036 nm. The output
power fluctuation is better than 0.07 dB, and the wavelength shift is below 0.013 nm in 1 h at
room temperature.
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1. Introduction

Tunable lasers as a powerful tool have been widely applied in spectroscopy, photochemistry,
biomedicine, and optical communications for decades. For example, in dense wavelength division
multiplexing (DWDM) optical communication, tunable lasers can not only replace multiple
fixed-wavelength lasers to save the operation cost but also realize the remote dynamic allocation
of networks resources. The number of wavelength channels in C-band determines the information
transmission capacity in networks. Therefore, how to improve narrow-linewidth channels with a
high tuning accuracy from laser sources has been receiving an increasing amount of attention from
researchers and network service vendors.

To date, various technologies have been proposed and implemented to realize tunable filters
in laser sources, including fiber Bragg grating (FBG), Fabry–Perot (F–P) cavity, acousto-optics,
interferometer, liquid crystal on silicon (LCoS), etc. FBG can be tuned easily through either heating
or applying strain along the device. For example, it is reported that FBG can achieve 0.2 nm/V
tuning accuracy from 1555–1565 nm driven by direct current (DC) voltage of multilayer piezoelectric
transducers [1]. However, FBG-based tunable lasers are affected by the environment fluctuation,
resulting in a high packaging cost and limited tuning range. The fiber-optic self-seeding F–P cavity
achieves a wide range of single longitudinal modes tuning from 1153.75 to 1560.95 nm with a
tuning step of 1.38 nm [2]. Avanaki et al. investigate a fiber Fabry–Pérot tunable filter using a
well-established optimization method, simulated annealing (SA), to achieve maximum amplitude
for the Fourier transformed peaks of the photodetected interferometric signal [3]. Furthermore,
Y. Ding implemented a small-scale tuning with the accuracy of approximately 0.6 nm by using
micro-ring Mach–Zehnder interferometers [4]. These technologies generally need additional matching
devices, like an F–P laser, saturable absorber-based filters, which makes them complex and expensive
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to commercialize. Nowadays, a LCoS spatial light modulator as a programmable filter produced
by Very-Large-Scale-Integrated (VLSI) technology has been applied to laser systems [5]. A digital
micromirror device (DMD), another Opto-VLSI processor has also been attempted in a non-projection
field. In 2006, Chuang and Lo proposed a spectral synthesis method with a spectral tuning accuracy
of 0.076 nm/pixel in the C-band based on a DMD chip [6]. In 2009, W. Shin used the DMD-based
tunable laser system as light sources for the optical time domain reflectometry, with a tuning range of
1525–1562 nm, and an improved laser tuning accuracy of 0.1 nm [7]. Our research group also reported
a multi-wavelength tunable fiber laser based on a DMD chip with a step of 0.055 nm [8].

Echelle gratings are a special type of blazed gratings featured by a large blazing angle of grooves
and often operate at high diffraction orders to obtain high dispersion. They are different to conventional
gratings [9–12]. An echelle grating splits the radiant energy into a multitude of diffraction orders that
overlap in the narrow interval of the grating diffraction angle. Therefore, in practical application, an
additional order separator like the prism or grating, whose dispersion direction is perpendicular to that
of an echelle grating are inserted to separate the overlapping orders. By focusing the two-fold dispersed
radiation, a two-dimensional spectrum is produced, thus achieving an applicable high-resolution
spectrum. So far, echelle gratings are mainly applied in ultraviolet and visible high-resolution
spectrometers [10,11].

In this work, we first apply an echelle grating into a DMD-based tunable laser to realize the high
tuning resolution in C-band. The echelle-based tunable fiber laser is designed for a cross-dispersion
structure of a closed-loop fiber system. The laser wavelength was tuned in the range of 1540–1560 nm
with a tuning step of 36 pm. The 3dB-linewidth of the signals was less than 0.02 nm. The side mode
suppression ratio (SMSR) reaches 40 dB, and the maximum output power was 7.5 dBm.

2. Echelle Grating and System Design

The spectral order of an echelle grating is the result of mutual modulation of multi-slit interference
and single-slit diffraction. The echelle equation is expressed as:

mλ = d(sin α + sin β) cos γ (1)

where m, λ, and d are the diffraction order, wavelength, and grating constant, respectively. α, β and γ

are the incident angle, corresponding diffraction angle, and off-axis angle. As shown in Figure 1a, θB is
the blaze angle of an echelle grating and θ is the incident angle to the facet. So, the relation of angles is
written as:

α = θB + θ, β = θB − θ (2)

Substituting Equation (2) into (1), the diffraction of an echelle grating is characterized as follows:

mλ = 2d sin θB cos θ cos γ (3)

An echelle grating has the maximum diffraction efficiency only when the Littrow condition is
satisfied, that is the incidence is at the blaze angle. On both sides of the blaze angle, the diffraction
efficiency of a grating decreases rapidly as θ increases. However, the strict Littrow condition leads
to the difficulty in the arrangement of the actual optical path. Therefore, a quasi-Littrow structure is
usually employed with the incident ray at an off-axis angle γ from the principal section of a grating, as
shown in Figure 1b. The condition of the quasi-Littrow configuration is:

θ = 0, γ 6= 0 (4)

Therefore, the echelle grating equation under the quasi-Littrow condition is:

mλ = 2d sin θB cos γ (5)
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The free spectral range4λSFR:

4 λSFR =
λ

m
=

λ2

2d sin θB cos γ
(6)

The range of the dispersion angle of m-order:

4 θ = 4λSFR =
dθ

dλ
=

2 tan θB
m

(7)
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Figure 1. (a) Echelle grating working characteristics, (b) off-axis angles γ (the incident angle of
diffraction grating is 68◦).

It can be seen from Equations (5)–(7) that an echelle grating has the following features: (1) The
free spectral range is small and the spectral order is seriously overlapped. Therefore, it is necessary to
use auxiliary dispersion elements for cross-dispersion to obtain a two-dimensional spectrum. (2) The
angular dispersion is so high that the wavelength resolution is greatly improved. (3) The dispersion
angle of one order is small, and the wavelengths in the free spectral range of each stage are concentrated
near the blazed order, so an echelle grating can blaze in the entire band.

In Figure 2, the two-dimensional cross-dispersion is realized by a diffraction grating and an
echelle grating with main sections that are perpendicular to each other. As we know, echelle gratings
are, to date, mainly applied in ultraviolet (UV) and visible (VIS) spectrometers, so most of the prisms
are used as auxiliary dispersers placed before or after an echelle grating to achieve cross-dispersion. In
our work, the laser operates in the C-band and the prism glass material shows strong absorption in
infrared. Therefore, a diffraction grating is adopted to replace the prisms in fiber lasers.
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Figure 3 demonstrates the tunable laser structure employing a DMD chip as a programmable
filter in bulk optics and a fiber resonator with an erbium-doped fiber amplifier (EDFA). The lasing
process in a fiber cavity is achieved by optical pumping and erbium gain. The bulk optics obtain
the high-precision mode selection by an echelle grating and a 0.55” DMD in the experiment. The
detailed working principle of a 0.55” DMD and its diffraction efficiency have been analyzed in [13].
The EDFA emits the amplified spontaneous emission spectrum (ASE) signals from 1530–1560 nm.
After a 90/10 optical fiber coupler, 90% ASE light energy returns into a ring and then continues
to be coupled into the bulk optics via a circulator and an optical fiber collimator. The bulk optics
consists of two cylindrical lenses, a diffraction grating, an echelle grating, and a DMD chip. The
fiber collimator and the 1200 line/mm diffraction grating are located at the front and the rear focal
planes of lens (f 0 = 100 mm), respectively. The diffraction grating and the 79 line/mm echelle grating
are separated by 100 mm. In order to ensure that the echelle grating adheres to the quasi-Littrow
condition, the incident beam is arranged at an off-axis angle γ so that the diffracted beam and the
incident beam are in the same horizontal plane. The cylindrical lens 1 (f 1 = 150 mm) and cylindrical
lens 2 (f 2 = 100 mm) are 50 mm and 100 mm from the echelle grating, respectively. Therefore, the
busbars of two cylindrical lenses are perpendicular to each other, and the two dispersion directions
after two gratings are collimated, respectively. The DMD is at the back focal plane of two cylindrical
lenses, as shown in Figure 4. By uploading steering holograms onto the DMD controlled by remote
software, any waveband of ASE spectra can be routed and coupled into the optical system along the
original path, and the others are dropped out with dramatic attenuation, thereby achieving the laser
longitudinal mode selection and wavelength tuning. The selected wavebands through the collimator
and circulator returning into a ring cavity are amplified by EDFA, leading, after several recirculations,
to high-quality single-mode laser generation.
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The off-axis arrangement greatly influences the laser tuning range and accuracy. We optimize the
off-axis angle γ of the echelle grating (79 line/mm) for the laser system. According to Equation (5),
m = 15 and λ = 1550 nm are selected as the calibration blazed wavelength, and the corresponding
γ under the quasi-Littrow condition is calculated as 18.05◦. Using Zemax OpticStudio software, we
design the optical system to analyze the beam distribution on the DMD surface. The simulation results
illustrate the length of the two-dimensional dispersion strip is 12.2 mm in Figure 4, matching with the
experimental pattern in the inset of Figure 4. The 0.55” DMD receiving wavelength range is around
20 nm from 1540–1560 nm and is limited by the DMD size. The tuning accuracy of the laser wavelength
is 0.0177 nm/pixel, in theory. Considering the used echelle grating has a wide working range from
UV to 25 µm, this laser system is convenient to be extended in the 2 µm-band, which has potential
applications in the biomedical domain [14,15].

3. Experimental Results

When the optical loop is closed, Figure 5 shows a typical laser signal with the center of the
wavelength at 1546.733 nm when the pump power is 120 mW. The power of the laser output is
around 7.5 dBm, the 3 dB-linewidth is less than 0.02 nm (limited by the resolution of the YOKOGAWA
spectrum analyzer, Yokogawa Test & Measurement Corporation, Tokyo, Japan), and the SMSR exceeds
40 dB.

Different holograms are loaded onto the DMD chip, each hologram corresponds to a different
selected wavelength. Each selected wavelength is amplified by EDFA to achieve lasing. Figure 6 is the
measured outputs of the echelle-grating-based fiber laser tuning from 1542 to 1558 nm by remotely
uploading the 8 × 768 pixel-holograms at different positions along the DMD active window when
the threshold pumping power is 28 mW. It demonstrates an excellent tuning capability. Notice that
the range of the actual tuning wavelength is a little wider than 16 nm. The wavelength outside the
tuning range requires a higher threshold power to lasing due to the off-axis angle and the influence of
stray light.
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Figure 6. Coarse tuning characteristics of fiber laser in the range 1542–1558 nm.

Figure 7 is the fine tuning characteristics of laser outputs with the fine tuning accuracy 0.036 nm.
We modulate the selected wavelength each time by moving 2-pixels on the hologram. The tuning
accuracy corresponding to each pixel is related to the number of DMD pixels covered by the ASE
spectrum on the surface of the DMD. Note that the tuning accuracy can be further improved by
employing a DMD with a smaller pixel size, like the DLP2010NIR (Texas Instruments Incorporated,
Dallas, TX, USA. Each pixel size is 5.4 µm). The shoulders on both sides of the laser spectrum may
be due to self-phase modulation or other nonlinear phenomena arising from a high-level of output
power [16].

Figure 8 shows the drift of wavelength (dotted line) and the fluctuation of peak power (solid
line) at the pump power 40 mW during 1-h observation at the center wavelength of 1546 nm. The
maximum wavelength drift is less than 0.013 nm and the maximum peak power fluctuation is 0.07 dB
at room temperature. The linewidth is better than that reported in [5] (0.05 nm) and [8] (0.02 nm), and
the maximum peak power fluctuation is better than that in [8] (0.25 dB). Compared with other tunable
lasers with the same tuning mechanism, the laser output stability has been further improved.
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Figure 8. The shift of the center wavelength (dash line) and the fluctuation of laser powers (solid line)
within 1 h.

Finally, due to the off-axis angles introduced into the tunable fiber laser, the aberration-like coma
and astigmatism influences the tuning range and accuracy. Therefore, we will continue to optimize
the optical path and reduce the stray light effect caused by an echelle grating in the follow-up work,
which will be helpful to further improve the tuning property of devices. Also, loading the modulation
algorithm on the DMD is an attractive solution, and our research process in the future will also consider
using algorithms to further improve the performance of tunable fiber lasers.

4. Conclusions

The C-band tunable fiber laser based on a DMD chip and an echelle grating is proposed and
demonstrated experimentally. The laser employs a DMD as a programmable wavelength filter and
an echelle grating with high-resolution features to design a cross-dispersion optical path to achieve
high-precision tuning. The optimal off-axis angle of an echelle grating under the quasi-Littrow
condition is simulated and analyzed in detail. Experimental results show that wavelength channels are
tuned in the range of 1542–1558 nm with a tuning step of 0.036 nm. The 3 dB-linewidth of the signals
is less than 0.02 nm, the SMSR reaches 40 dB, and the maximum output power is 7.5 dBm. At room
temperature, the output power fluctuation is better than 0.07 dB in 1 h, and the wavelength shift is
below 0.013 nm.
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