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Abstract: In this paper, we present a numerical study of a metamaterial absorber that provides
polarization-insensitive absorption over a broad bandwidth of operation over the mid-infrared region.
The absorber consists of a periodically patterned metal-dielectric-metal structure integrated with
an epsilon-near-zero (ENZ) nanolayer into the insulating dielectric gap region. Such an anomalous
broadband absorber is achieved thanks to a couple of resonant modes including plasmon and ENZ
modes that are excited under mid-IR light illumination. By adding a 0.06-µm-thick ENZ layer between
the patterned gold rectangular grating and the SiO2 dielectric layer, the absorber captures >95% light
over a 1.5 µm bandwidth centered at a near-8-µm wavelength over a wide range of oblique incidence
under transverse-magnetic and -electric polarizations. The designed ENZ-based wideband absorber
has potential for many practical applications, including sensing, imaging and solar energy harvesting
over a wide frequency regime.
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1. Introduction

Nowadays, perfect light absorption has attracted much attention for the majority of the modern
optoelectronic devices working either in the infrared regime or in the visible spectrum. Among
these, perfect wideband absorption has attracted great attention due to its high applicability in
practical applications such as surface-enhanced sensing and imaging sensors. Especially, in solar cell
applications, high-performance photodetectors all rely on absorption of light. The absorption spectrum
can be adjusted in terms of absorption strength and bandwidth and can expand the range of many
practical device applications. So, a number of techniques have been proposed over the past years to
design the absorption of materials, examples of which include metamaterials, ultrathin semiconductors,
coherent absorption and plasmonic perfect absorber [1–12].

Up to now, most of the research related to wideband absorption has mainly been based on
plasmonic resonances of nanostructures having delicate structural patterns [13,14], or some studies
based on epsilon-near-zero (ENZ) metamaterial structures which can also achieve wideband perfect
absorption [15,16]. The complete light absorption in thin films allows perfect wideband carrier
collection thanks to the mutual interaction between plasmonic nanostructures and semiconductors
absorbers, as shown in previous studies [17–19]. In addition, the omnidirectional broadband absorption
can be obtained by nonresonant plasmonic Brewster effects [20].
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Recently, combinations of the gap plasmonic mode and the ENZ mode have been emerging
as good candidates to optimize broadband absorption [21]. However, the coupling regime of the
mode is still a weak and narrow bandwidth. In this work, we present a study of ENZ-enhanced
wideband absorption near the ENZ wavelength in the mid-infrared region when an ENZ material is
integrated into the gap region of a metal-insulator-metal plasmonic structure. Our study is based on
the combination of the gap plasmon mode, ENZ mode, and plasmonic Brewster effects. A mode called
"epsilon-near-zero" (ENZ) has been observed on subwavelength film thicknesses. The ENZ mode is
also known as a Berreman mode which can appear only as small film ENZ thicknesses [22]. The role of
ENZ layers and losses in such materials has been also discussed in previous studies [23–26].

In detail, the requirement for ENZ mode operation is that their thickness must be on the order of
or less than the wavelength where the real part of the dielectric constant becomes zero [27]. ENZ modes
have shown very large densities of states which make them attractive for enhancing light–matter
interactions. Moreover, by varying the doping concentration (i.e., depending on the doping level) or
other growth conditions, the ENZ wavelength can be controlled in a definite spectral range in the near-
and mid-infrared bands [28,29]. One such ENZ material is InAsSb [27], with an ENZ wavelength that
can be generated at around 8 µm. At this wavelength, the electric field in plasmonic subwavelength
thin films becomes very strong, and this can lead to extremely large light absorption in the film [10].
Several studies have demonstrated that thin films made of metal, doped semiconductors, or polar
materials can support surface plasmon polaritons (SPPs) [30,31]. The gap plasmon resonance localized
in the dielectric gap region between two metal layers, which has a strong electric field oriented in the
out-of-plane direction [32], can be incorporated efficiently to the ENZ mode of the ENZ layer.

The plasmonic Brewster effects are based on an inherently non-resonant mechanism. At a specific
angle, the Brewster angle, light absorption can be achieved over broad bandwidth thanks to the
impedance-matching mechanism at the entrance and exit metal surfaces with minimizing reflections
through the corrugated metal screen [20]. In this study, we have optimized ENZ mode, plasmon mode,
and Brewster effect. These resonances have been controlled to be efficiently coupled together in close
proximity. As a result, high and wideband absorption is achieved simultaneously in the wavelength
range of interest.

2. Absorber Structure and Simulation Details

The absorber device structure was designed on a 2-µm supporting silicon substrate. As for the
silicon dioxide dielectric spacer layer, there are two considerations when calculating thickness. The
first consideration is that the spacer layer thickness affects the absorption intensity of the gap plasmon
resonance, as has been seen in many previous studies on metal-insulator-metal structures without
an integrated ENZ layer [33]. The second consideration is that too thick of a spacer layer makes the
coupling of the gap plasmon mode to the ENZ mode weaker because of the spatial overlap of these
modes decreasing gradually with the increasing thickness of the spacer layer. Contrariwise, if the
spacer layer thickness is too thin, the coupling regime is made robust and can split the two resonances
in the hybrid resonance modes [34]. Choosing the exact thickness of the spacer layer depends on the
thickness of the ENZ layer.

Figure 1 illustrates the proposed absorber structure with the following specific parameters. The
exact thickness of the dielectric layer was 0.75 µm to separate the two metal layers. The repeat period
P was 4.55 µm in both x and y directions. A metallic TiN film worked as a ground plane. The gold
gratings were placed on the top of the ENZ nanofilm, which has the resonance wavelength of 8 µm.
For the device, the absorption band can be broadened significantly in the mid-infrared region around
the ENZ resonance wavelength. The thickness of the ENZ layer was 0.06 µm. On the top layers, the
height, the lengths of the rectangular grating are designated as tAu, Lx and Ly in the x and y directions
with values of 0.9, 1.59 and 1.5 µm, respectively.
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addition, the effects of angles of incident and other parameters in the structure were also considered. 

 
Figure 2. The dielectric constant of the ENZ material. 

3. Results 

A significant factor in getting broadband absorption is the coupling between the gap plasmon 
mode and the ENZ mode must be robust, but still be weak coupling. Therefore, the simultaneous 
combination of these two resonances and the Brewster mode has been investigated in repelling each 
other to generate wideband absorption. Moreover, the wideband absorption also has an incident 
angle and therefore it is more suitable for many device applications that require multiple-direction 
light absorption and energy conversion. We utilized the commercial CST Microwave Studio (CST 
MWS; Computer Simulation Technology AG., Darmstadt, Germany) software based on a finite 
element method (FEM) [36] to simulate the device with appropriate boundary conditions. In the 
device considered here where an optical TiN thick metallic ground plane is used (i.e., transmission is 
equal to zero), the simple expression of A = 1 – R will show the relationship between the absorption 
A and reflectivity R. This section will provide a concise and precise description of the simulated 
results, their mechanism as well as the conclusions that can be drawn.  

Figure 1. Sketch and top view of the epsilon-near-zero (ENZ)-based absorber with a top rectangular grating.

Similarly, the thicknesses of the rectangular grating’s rim Wx and Wy were 0.09 µm and 0.1 µm,
respectively. Optical properties of TiN, SiO2, Si layers were extracted from the material library of the
simulation software and verified with experimental data [27], while the gold electric permittivities
were taken from Palik’s Handbook of Optical Constants [35]. Dispersive properties of the constituent
materials of the device absorber were taken into the simulations.

ENZ materials are known to possess some unusual properties when a class of the materials which
have their real part of permittivity crossing zero at a certain wavelength (i.e., ENZ wavelength) [27].
Figure 2 shows the resultant spectral dependence of the real and imaginary parts of the ENZ permittivity
(ε). In order to demonstrate ENZ-enhanced wideband absorption, we show the coupling of the gap
plasmon resonance mode which localized in the gap SiO2 layer with a strong electric field region and
ENZ mode which was excited into the gap region of metal-insulator-metal interfaces. In addition, the
effects of angles of incident and other parameters in the structure were also considered.
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Figure 2. The dielectric constant of the ENZ material.

3. Results

A significant factor in getting broadband absorption is the coupling between the gap plasmon
mode and the ENZ mode must be robust, but still be weak coupling. Therefore, the simultaneous
combination of these two resonances and the Brewster mode has been investigated in repelling each
other to generate wideband absorption. Moreover, the wideband absorption also has an incident
angle and therefore it is more suitable for many device applications that require multiple-direction
light absorption and energy conversion. We utilized the commercial CST Microwave Studio (CST
MWS; Computer Simulation Technology AG., Darmstadt, Germany) software based on a finite element
method (FEM) [36] to simulate the device with appropriate boundary conditions. In the device
considered here where an optical TiN thick metallic ground plane is used (i.e., transmission is equal to
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zero), the simple expression of A = 1 − R will show the relationship between the absorption A and
reflectivity R. This section will provide a concise and precise description of the simulated results, their
mechanism as well as the conclusions that can be drawn.

The absorption spectrum of the integrated ENZ wideband absorber is also shown at the normal
incident (black square line) and at the Brewster angle (red circle line) with a wideband absorption of
approximately 95% over wavelength ranges of 1.26 µm (from 7.94 µm to 9.2 µm) and 1.46 µm (from
7.77 µm to 9.23 µm), respectively, shown in Figure 3a for transverse-magnetic (TM) polarization. Along
with that comparison, in order to reobtain the perfect absorption spectrum in the device without the
ENZ layer, herein called a “ENZ-removed” perfect absorber, it was necessary to change the device
parameters to a 0.55-µm spacer layer, a 0.4-µm grating thickness, lengths of the grating (Lx and Ly)
which have same value of 1.31 µm and thicknesses of grating’s rim (Wx and Wy) being 0.11 µm in the x
and y directions; all other parameters remained the same. The calculated bandwidth for 95% absorption
is 0.58 µm (from 7.94 µm to 8.52 µm) for the “ENZ-removed” perfect absorber (blue triangle line) also
shown in Figure 3a for TM mode. A similar comparison is shown in Figure 3b for transverse-electric
(TE) mode with various spectral absorption ranges. The angles of incidence play an important role
in the optical response of nanostructured surfaces. Degraded performance stems from large oblique
angles. To understand more about the performance of the optimized integrated wideband ENZ
absorber, we calculated the absorption as a function of the incident angle over a range of 0–90◦ for both
TE and TM modes for the structure. The full structure or the optimized integrated wideband ENZ
absorber structure exhibited angular stability up 24◦ with wideband absorption intensity of over 95% as
shown in Figure 3c for TM mode. The absorption gradually decreased with increase in incidence angle.
Similarly, the wideband absorption and absorption intensity were reduced when incident angles were
over 22◦ for TE mode as shown Figure 3d. For both TE and TM modes, the absorption intensity on the
shorter wavelength side of the absorption bandwidth began to decrease as the incident angle increased
above these bandwidths, while the long-wavelength side of the absorption band remained until below
70◦. Figure 3e shows the percentage of absorption in the metal layers of the structure where the
absorption loss was around 20% in the wavelength range of interest. It can be seen that the absorption
bandwidth in the TM mode was wider than that of the TE mode which is due to the temporal and
spatial interference between the optical cavity in the SiO2 spacer and the grating plasmonic modes
modifying the angular response. This can be seen in Figure 3a,b where the absorption bandwidths in
TM and TE modes are almost same at the normal incident. Though the plasmon lifetime also affects
such an absorption bandwidth [5,6], this effect was minor in this proposed design.
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The absorption mechanism of the structure can be explained by combination of plasmonic effect,
ENZ mode and Brewster mode. These effects cause the strong electromagnetic resonances at the
absorption wavelengths. As shown in Figure 2, when the dielectric constant ε becomes zero (i.e., ENZ)
at near 8 µm we could still achieve reasonably high field enhancement at the ENZ wavelength. As an
effective explanation for the mechanisms of the observed absorption of three peaks of light, Figure 4
shows the electromagnetic field distributions at the specific resonant wavelengths. At 7.9 µm, the first
absorption peak, we investigated the distribution of the magnitude of the electric field. As a result,
the electric field was excited and confined strongly into the ENZ layer, as shown in Figure 4a. This
behavior indicates that the excitation of the ENZ mode has occurred. Figure 4b shows the magnetic
field magnitude distribution of the third peak at 8.9 µm. It can be found that the magnetic field
enhancement is mainly located in the dielectric gap between the gold grating and the TiN metallic film,
indicating that the gap plasmon resonance mode is strongly excited. This effect can be understood to
be simply due to the patterned gold grating and the ENZ layer generating electric fields and currents
when the structure has the presence of an electromagnetic wave. The high charge concentration at
the edges of the gold grating results in the strong enhancement of the field around the edges of the
metal structure. In the opposite direction, the conductive TiN ground plane generated the currents and
electric fields thanks to the near-field coupling. Then, the antiparallel currents generated magnetic
fields in the SiO2 layer.
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In the structure, we set up a periodic structure with boundary conditions and the incident waves
excited along the z-axis by using Floquet ports at the top and bottom of the structure. When the light
propagates as a plane wave on this structure, light will be reflected or absorbed depending on the
mismatch of impedance in this structure to impedance in free space. By using numerical analysis, the
effective refractive index n and the effective impedance z can be extracted from the relationship with
S-parameters expressed in Equations (1)–(4), where S11 and S21 are the S-parameter results from the
two-port model of the aforementioned structure, k0 is wave number and m is an integer [37].
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Similar to the explanation of the mechanism of metamaterial absorber structures in previous
studies, the mechanism of the behavior of this device is also explained through impedance matching
mechanism [38,39]. In this mechanism, the absorber structure plays a role as a thin slab which made
from a homogeneous structure. The mechanism of absorption in the structure is due to the coupling of
resonance modes to Brewster mode to generate the strong electromagnetic resonances at the absorption
peaks as explained in the above section. Also, we utilized the effective medium theory to explain the
absorption mechanism. We calculated the effective parameters of the structure through reflection and
transmission coefficients of the structure. The relationship of the thickness of a homogeneous slab (d),
free space vector (k0), S-parameters and the effective parameters of the input impedance (z) and the
refractive index (n) as expressed in Equation (3). However, this structure is backed by a metallic layer,
therefore, Equation (3) will become:
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Figure 5a shows the effective impedance at resonance wavelengths. Figure 5a indicates that
the absorption is maximum when the real part of the impedance of the structure is equal to free
space (i.e., equal to 1) and the imaginary part has a value of zero. Otherwise, the absorption will
be reduced due to the impedance mismatch between the structure and free space, which results in
reflection. Meanwhile, the effective refractive index is given Equation (4). In Figure 5b, at the perfect
absorption wavelength of 8.9 µm, the effective refractive index exhibits a large imaginary part, n′′ >> n′.
n = n′ + in′′ = 0.12 + 3.16i has the large imaginary part (i.e., n′′ = 3.16, n′ = 0.12) with a high ratio
contrasting the real part and the imaginary part of up to 26.3, so that the incident electromagnetic wave
enters the device without any reflectivity and then rapidly decays to zero inside the structure.
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When light propagates between two media of differing refractive indexes, generally some of it is
reflected at the boundary. However, light with one particular polarization cannot be reflected at one
particular angle of incidence. This angle of incidence is Brewster’s angle θB which can be determined
by:

θB = arctan
(

n2

n1

)
(6)

This equation is called Brewster’s law in which n1 is the refractive index of the incident medium
(usually air) and n2 is the effective index of the medium in the structure. In this work, we investigated
a light wave passing from air (n1 = 1.00) to the effective medium (n2 = 0.41) at a wavelength of 7.9 µm;
the Brewster angle, θB, was calculated to be 22◦.

We have also investigated the effects of periodicity (P) on the absorption light in the structure
by increasing and decreasing it by 10% compared to the optimized value of P for both TM mode
and TE mode. Figure 6 shows the absorption characteristics for various periodicities. In general, the
absorption peaks shifted, and absorption intensity was also affected, especially at the absorption peak
around 8 µm, as P varied, which was observed both in TM and TE modes. The optimized P was
selected regarding to the highest absorption and widest bandwidth.
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Figure 6. Investigation of the effect of periodicity P for absorption light in the structure. (a) for TM
mode, (b) for TE mode.

4. The Absorptivity as a Function of Polarization angle

The insensitivity of polarization is an essential factor in practical applications. In this paper, the
polarization independence of the proposed absorber was investigated for polarization angle. Figure 6
shows plots of the absorption spectra of the proposed light absorber to demonstrate the absorption
spectra for the different polarizations. Optimization of the integrated ENZ wideband absorber can be
observed at the Brewster angle for the TM and TE modes and circular polarizations; such an absorber
shows the spectral band with 95% approximate absorption over a 1.46 µm spectral range (from 7.77 µm
to 9.23 µm) for TM mode (black square line) and over a 1.4 µm wideband absorption range (from
7.78 µm to 9.27 µm) for TE mode (red circle line). As a comparison, the absorption spectrum of the
integrated ENZ wideband absorber is also shown at the Brewster angle (blue triangle line) for circular
polarization with a wideband absorption of approximate 95% over a wavelength range of 1.26 µm
(from 7.94 µm to 9.2 µm). It can be found from Figure 7 that for both TE and TM polarized waves and
circular polarization, the absorption curves are quite similar, which reveals that the proposed absorber
is polarization-insensitive.
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from devices of integrated ENZ perfect absorber at Brewster angle.

Next, we also investigated the polarization independence of the proposed absorber for polarization
angle. Figure 8 illustrates the absorption spectra with various polarization angles for the both TM
and TE modes at normal incident, Brewster angle, and 40◦ incident. The absorption curves are similar,
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which indicates that the enhanced absorption is independent of the light polarization, at least up to
Brewster angle. However, beyond this angle, TE mode can keep its polarization-insensitivity but the
TM mode cannot.
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5. Conclusions

We have proposed an absorber based on a combination of ENZ mode and the gap plasmon mode
and Brewster effect. The simulated results reveal that this device has a wide range absorption bandwidth
of mid-infrared radiation (IR) wavelengths for polarized waves at normal incident and Brewster
angle. Furthermore, the ENZ-based absorber is polarization insensitive and keeps high absorption



Micromachines 2019, 10, 673 10 of 11

in a broad wavelength range at oblique incidence for TM and TE polarization wave. The proposed
design is expected to work at other different wavelength ranges based on the studied mechanisms. The
ENZ-based absorber will be a potential candidate for many applications, such as detection, sensing,
imaging and defense applications. Also, our device can help improve light-harvesting efficiency with
enhanced absorption both in terms of intensity and broadband.
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