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Abstract: Au–Au surface activated bonding is promising for room-temperature bonding. The use
of Ar plasma vs. O2 plasma for pretreatment was investigated for room-temperature wafer-scale
Au–Au bonding using ultrathin Au films (<50 nm) in ambient air. The main difference between
Ar plasma and O2 plasma is their surface activation mechanism: physical etching and chemical
reaction, respectively. Destructive razor blade testing revealed that the bonding strength of samples
obtained using Ar plasma treatment was higher than the strength of bulk Si (surface energy of
bulk Si: 2.5 J/m2), while that of samples obtained using O2 plasma treatment was low (surface
energy: 0.1–0.2 J/m2). X-ray photoelectron spectroscopy analysis revealed that a gold oxide (Au2O3)
layer readily formed with O2 plasma treatment, and this layer impeded Au–Au bonding. Thermal
desorption spectroscopy analysis revealed that Au2O3 thermally desorbed around 110 ◦C. Annealing
of O2 plasma-treated samples up to 150 ◦C before bonding increased the bonding strength from 0.1 to
2.5 J/m2 due to Au2O3 decomposition.

Keywords: heterogeneous integration; wafer bonding; low-temperature bonding; Au–Au bonding;
ultrathin Au films; Ar plasma treatment; O2 plasma treatment

1. Introduction

Low-temperature wafer bonding is increasingly required due to the increasing use of
heterogeneous integrations [1–3]. An effective approach to such bonding is to use intermediate
layers [4,5]. Gold (Au) is a good candidate material for these bonding layers because of its high
electrical and thermal conductivity, good deformability, and high oxidation resistance.

Several Au–Au bonding techniques have been investigated to achieve low-temperature bonding,
including thermocompression bonding [6–12], atomic diffusion bonding [4,13,14], and surface activated
bonding (SAB) [15–19]. With SAB, the surfaces to be bonded are activated by plasma pretreatment
and then bonded at low temperature (<150 ◦C). Furthermore, the use of Au for the bonding layer
enables bonding in ambient air because gold oxide (Au2O3) is the only metal oxide that has a positive
formation enthalpy (+19.3 kJ/mol) [20]. The use of SAB with little contact pressure at room temperature
in ambient air using ultrathin (<50 nm) Au films with smooth (root mean square (RMS) <0.50 nm)
surfaces was recently shown to result in reliable Au–Au bonding [17].
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While Ar plasma is commonly used to activate Au surfaces by physically bombarding them with
Ar ions or atoms, O2 plasma is commonly used to clean surfaces because it can eliminate organic
contaminants by chemical reaction [21,22]. It is also used for pretreatment before Au–Au bonding; O2

plasma treatment has been reported to more effectively improve Au wire bond interfacial adhesion
than Ar plasma treatment [23,24]. However, the Au–Au bonding may be weakened by the mixing of
O2 gas into the plasma processing gas [25,26]. The effect of plasma treatment, and especially the effect
of O2 plasma treatment on Au–Au bonding, thus needs further investigation.

This paper reports the investigation of Ar plasma vs. O2 plasma as a pretreatment method for
room-temperature wafer-scale Au–Au bonding using ultrathin Au films (<50 nm) in ambient air.
The main difference between Ar plasma and O2 plasma is their surface activation mechanism: physical
etching and chemical reaction, respectively. The investigation included an analysis of Au surfaces
treated with Ar or O2 plasma.

2. Materials and Methods

Silicon substrates with Au film and a Ti adhesion layer were used for analysis and bonding. A Ti
adhesion layer followed by Au thin film was deposited on a Si substrate or a thermally oxidized Si
substrate by direct current (DC) sputtering at a substrate temperature of 25 ◦C. The Ar or O2 plasma
used to activate the surfaces was generated by applying 200 W radio frequency (RF) power at 60 Pa.
Both plasmas were generated using the same equipment; only the process gas was changed.

The effect of each plasma treatment on the surface properties was determined by evaluating
the surface roughness, hydrophilicity, electrical characteristics, and chemical state of the Au surfaces
before and after each treatment. Surface roughness was measured using an atomic force microscope
(AFM, Hitachi High-Tech Science Co., Tokyo, Japan, L-trace) and Si wafers with Au thin film (thickness:
15 nm) and a Ti adhesion layer (thickness: 5 nm). The AFM measurement was performed with a
scan area of 500 nm × 500 nm and a resolution of 256 × 256 pixels. Hydrophilicity was evaluated
by measuring the contact angle of the Au surfaces as measured with a contact angle meter (Kyowa
Interface Science Co, Ltd., Saitama, Japan, PCA-11). Pure water (1.5 µL) was dropped on the Au
surfaces, and the contact angle was calculated using the half-angle method. The electrical characteristics
were evaluated by four-point measurement of the sheet resistance using a resistivity processor (NPS
Inc., Tokyo, Japan, Model Σ) and Si wafers with Au thin film (thickness: 15 nm) and a Ti adhesion layer
(thickness: 5 nm). The effect of the plasma treatment time was measured by irradiating plasma onto
the same wafer several times. The surface chemical states were determined using X-ray photoelectron
spectroscopy (XPS) analysis and thermal desorption spectrometry (TDS) analysis. The XPS analysis
was performed using an X-ray photoelectron spectroscope (JEOL Ltd., Tokyo, Japan, JPS9200-T).
A non-monochromatic Mg Kα source (photon energy: 1253.6 eV) was used at an operating power of
10 kV × 10 mA. Smoothing, Shirley-type background subtraction, and charge correction using the Au
4f7/2 binding energy were performed. The TDS analysis was performed using a thermal desorption
spectrometer (ESCO Ltd., Tokyo, Japan, EMD-WA1000S). Thicker Au films (thickness: 300 nm) with Ti
adhesion layers (thickness: 5 nm) deposited on thermally oxidized Si substrates were used to avoid
the effect of diffusion from the adhesion layer or Si substrate during annealing. The temperature was
increased at a rate of 30 ◦C/min and was corrected by measurement using a dummy Si substrate.

Four-inch Si wafers with Au thin film (thickness: 15 nm) and a Ti adhesion layer (thickness: 5 nm)
were bonded after Ar or O2 plasma treatment in ambient air by overlapping two wafers and pinching
the wafers together with tweezers. Bond front propagation was observed using an infrared (IR)
transmission setup. The effects of plasma treatment time and air exposure time after plasma treatment
on self-propagation of the bonding area and on bonding strength were investigated. The effects of
annealing before bonding on the self-propagation of the bonding area and on bonding strength were
also investigated by annealing wafers that had been plasma-treated up to 150 ◦C for 10 min in vacuum
and then bonding them together in ambient air at room temperature.
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Bonding strength was measured using destructive razor blade testing, also known as the crack
opening or double cantilever beam method [27,28]. This testing method is an effective way to evaluate
the energy of the bonded surfaces (i.e., surface energy). It is performed by inserting a razor blade
between the bonded wafer pairs and observing the crack length along the bonded interface. The surface
energy γ (J/m2) (i.e., half the bonding energy G) was calculated under plane strain conditions and the
assumptions of beam theory using

γ =
3
32

·ETb
2Tw

3

L4 , (1)

where E (Pa) is the Young’s modulus of the wafer, Tb (m) is the blade thickness, Tw (m) is the wafer
thickness, and L (m) is the crack length [27]. In this experiment, Si substrates with a thickness of

525 µm and a blade with a thickness of 100 µm were used. For calculation, we assumed that Si is
isotropic, with Young’s modulus of elasticity E = 169 GPa [29,30]. Although the measurement should
be conducted using beam-shaped samples in order to accurately determine the surface energy [31], we
used whole bonded wafer pairs because the fabrication of beam-shaped samples is particularly difficult
for weakly bonded wafer pairs. The crack length along the bonded interface was observed with an IR
camera in a standard clean room atmosphere. Since values obtained from Equation (1) are affected by
the crack detection resolution, anisotropic mechanical properties, and humidity environment [28,30],
the comparison of absolute energy values with published results requires careful consideration.

3. Results

3.1. Surface Analysis

3.1.1. AFM Measurement

The measured RMS surface roughness for different plasma treatment times (30, 60, 120 s) are
plotted in Figure 1. The roughness before plasma treatment was 0.38 nm. Both the Ar and O2

plasma treatments of 60 s or less had little effect on surface roughness, while both treatments of
120 s increased it. This indicates that a short plasma treatment time is important for achieving
low-temperature bonding.
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3.1.2. Contact Angle Measurement

The measured contact angles for different plasma treatment times (30, 60, 120 s) are shown in
Figure 2. The Au films had been exposed to air for over 1 month, and the measurement was performed
immediately after plasma treatment. Typical images of the measured contact angle are shown in
Figure 3. Figure 3b,c was taken 30 s after plasma treatment. Before treatment, the contact angle was
about 80–100◦, and the Au surfaces were hydrophobic. Both treatments reduced the contact angle,
which means that the Au surfaces became hydrophilic with plasma treatment. The contact angle for
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Au surfaces with O2 plasma treatment was less than 5◦, which is smaller than that with Ar plasma
treatment. The treatment times were the same.
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The changes in the contact angle with the air exposure time after Au film deposition and after
plasma treatment are plotted in Figure 4. Previous studies reported that Au film is hydrophilic
immediately after deposition and that the Au surface quickly becomes hydrophobic after exposure in
air [32,33]. The measured change in the contact angle after deposition agrees well with the results of
previous studies. The contact angles of Au surfaces that received Ar plasma treatment increased rapidly
after exposure in air, similar to the results for the Au film immediately after deposition. In contrast,
the rate of increase was much lower for Au surfaces that received O2 plasma treatment.
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3.1.3. Sheet Resistance Measurement

The relationship between the measured sheet resistance and the plasma treatment time is plotted
in Figure 5. Before plasma treatment, the sheet resistance was about 4.7 Ω. While Ar plasma treatment
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did not change the resistance, 30 s O2 plasma treatment increased it to about 5.4 Ω. Additional O2

plasma treatment time did not increase it.
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Figure 5. Measured sheet resistance vs. plasma treatment time.

3.1.4. XPS Analysis

The Au surface conditions were evaluated by using XPS analysis to investigate Au surfaces after
Ar or O2 plasma treatment. The treatment time was set to 60 s. The relative peak intensities in the
Au 4f region are plotted in Figure 6a,b, and the relative peak intensities in the O 1s region are plotted
in Figure 6c. The results plotted in (a) show that the Au surfaces that received Ar plasma treatment
were pure Au, while those plotted in (b) show that an Au2O3 peak appeared for the Au surfaces that
received O2 plasma treatment. The results plotted in (c) show that the O2 plasma treatment increased
the oxygen contamination intensity.
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Figure 6. X-ray photoelectron spectroscopy (XPS) spectra of Au surfaces that received different plasma
treatments: (a) relative peak intensity in the Au 4f region of surface that received Ar plasma treatment;
(b) relative peak intensity in the Au 4f region of surface that received O2 plasma treatment; (c) relative
peak intensities in the O 1s region of surface that received Ar and O2 plasma treatments.
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3.1.5. TDS Analysis

The results of the TDS analysis are plotted in Figure 7. There was little desorption from the Au
surface with the Ar plasma treatment. In contrast, with the O2 plasma treatment, mass-to-charge ratio
(m/z) peaks of 16 and 18 were detected at annealing temperatures around 70 ◦C, and m/z peaks of 16
and 32 were detected at annealing temperatures around 110 ◦C. Since m/z 16, 18, and 32 correspond to
O, H2O, and O2, it appears that H2O was desorbed around 70 ◦C from the Au surfaces that received
O2 plasma treatment, while O2 was desorbed around 110 ◦C.
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3.2. Bonding Results

3.2.1. Effect of Plasma Treatment Time

To determine the effect of the plasma treatment time, Au–Au bonding with or without plasma
treatment was performed. The treatment times were 30 s or 60 s because a longer treatment time
increased the surface roughness. Bonding was performed immediately after plasma treatment. Without
plasma treatment, bonding front propagation did not occur, and bonding did not succeed. With plasma
treatment, bonding front propagation occurred, and bonding succeeded. IR images of typical bond
front propagation between two Si wafers for a plasma treatment time of 60 s are shown in in Figure 8.
The contrast and brightness of the images were adjusted, and the edges of the bonding area were
marked to make it more visible. With Ar plasma treatment, the bonding area quickly expanded across
the entire 4-inch wafer after pushing the center. With O2 plasma treatment, the bonding area expanded
much more slowly.
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The results of the destructive razor blade testing are summarized in Table 1. With Ar plasma
treatment (30 s and 60 s), the bonding was sufficient to break the substrate, meaning that strong bonding
was achieved. With O2 plasma treatment, although much of the area was bonded, the bonding strength
(surface energy) was only about 0.1–0.2 J/m2, lower than the surface energy of Au (1.6 J/m2) [34].
Debonding thus occurred between the Au–Au bonding interfaces.

Table 1. Results of room-temperature wafer-scale Au–Au bonding with Ar or O2 plasma treatment.

Types of Plasmas
Plasma Treatment Time (s)

0
(Without Plasma) 30 60

Ar plasma Bonding
failed

Wafer broken
(High bonding strength)

Wafer broken
(High bonding strength)

O2 plasma Bonding
failed 0.2 J/m2 0.1 J/m2



Micromachines 2019, 10, 119 8 of 12

Transmission electron microscope (TEM) images of a bonded sample that received Ar plasma
treatment are shown in Figure 9. Bonding was achieved at the atomic level, and part of the grain
boundary grew beyond the bonding interface.Micromachines 2019, 10, x 8 of 11 
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Figure 9. Transmission electron microscope (TEM) images of Au–Au bonding interface after 30 s Ar
plasma treatment. Arrows indicate original interface: (a) low magnification; (b) high magnification.

3.2.2. Effect of Air Exposure

To investigate the effect of air exposure after plasma treatment, bonding was performed after
air exposure. The bonding of Au films immediately after deposition was also compared. Because
Au films immediately after deposition have clean and activated surfaces, bonding can be performed
at room temperature. This bonding technique is usually called atomic diffusion bonding [4,13,14].
The effect of air exposure time on the occurrence of self-propagation of the bonding area and on the
bonding strength of atomic diffusion bonding for Au films immediately after deposition is summarized
in Table 2. Self-propagation occurred even after 1 h of air exposure. Though the bonding strength
decreased as the exposure time increased, sufficient bonding strength (greater than the surface energy
of bulk Si (2.5 J/m2) [35]) was obtained even after 1 h of air exposure.

Table 2. Effect of air exposure time on the occurrence of self-propagation of the bonding area and on
the bonding strength of atomic diffusion bonding for Au films immediately after deposition.

Evaluation Points
Air Exposure Time

Within 5 min 10 min 30 min 1 h

Occurrence of
self-propagation Yes Yes Yes Yes

Bonding strength
(J/m2)

Wafer broken
(High bonding strength)

Wafer broken
(High bonding strength)

Wafer broken
(High bonding strength) >2.5

The effect of air exposure time for surface activated bonding is summarized in Table 3. In the
cases where self-propagation did not occur, bonding was achieved by pushing the whole wafer with
tweezers. With Ar plasma treatment, self-propagation did not occur after 30 min of air exposure.
Moreover, the bonding strength greatly decreased as the air exposure time increased. With O2 plasma
treatment, while self-propagation occurred even after 1 hour of air exposure, the bonding strength was
lower under all conditions.
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Table 3. Effect of air exposure time on the occurrence of self-propagation of the bonding area and on
the bonding strength of surface activated bonding.

Types of
Plasmas

Evaluation
Points

Air Exposure Time

Within 5 min 10 min 30 min 1 h

Ar plasma

Occurrence of
self-propagation Yes Yes No No

Bonding strength
(J/m2)

Wafer broken
(High bonding strength) >2.5 2.0 0.1

O2 plasma

Occurrence of
self-propagation Yes Yes Yes Yes

Bonding strength
(J/m2) 0.1 0.1 0.1 0.1

3.2.3. Room-Temperature Wafer-Scale Au–Au Bonding After Annealing

Analysis of Au surfaces that received O2 plasma treatment revealed that Au2O3 formed and that
O2 desorbed around 110 ◦C. This indicates that bonding after annealing at over 110 ◦C increases the
bonding strength of samples that receive O2 plasma treatment. Here, annealing up to 150 ◦C after
plasma treatment was investigated: Ar or O2 plasma was irradiated onto Au surfaces for 60 s, and then
the wafers were annealed at 150 ◦C for 10 min in vacuum. After annealing, the wafers were bonded in
ambient air at room temperature. The entire annealing process took about one hour.

Self-propagation did not occur in either the Ar or O2 plasma-treated samples. The wafers were
thus bonded by pushing the entire wafers with tweezers. Although the bonding strength of samples
that received Ar plasma treatment exceeded the surface energy of bulk Si (2.5 J/m2), the annealing
reduced the bonding strength, as evidenced by the breaking of the wafers during blade testing for
wafers that had not been annealed. The bonding strength of samples that received O2 plasma treatment
increased substantially (from 0.1 J/m2 without annealing to 2.5 J/m2 with annealing). To investigate
whether Au2O3 was desorbed, XPS analysis of annealed Au surfaces after O2 plasma treatment was
also performed. The results did not reveal an Au2O3 peak, meaning that Au2O3 formed by O2 plasma
treatment impedes Au–Au bonding. To investigate the change in surface roughness due to annealing,
AFM analysis was also performed. The results did not reveal any changes in surface roughness.

4. Discussion

While Ar plasma treatment improved room-temperature wafer-scale Au–Au bonding strength,
O2 plasma treatment did not. The O2 plasma treatment reduced the contact angle to less than 5◦ and
increased the sheet resistance. XPS analysis showed that the O2 plasma treatment formed Au2O3

on the Au surface. This indicates that the changes in contact angle and sheet resistance were both
apparently caused by oxidation of the Au surfaces and that the Au2O3 formed by the O2 plasma
treatment impeded Au–Au bonding.

Because TDS analysis showed that Au2O3 desorbed at around 110 ◦C, bonding after annealing up
to 150 ◦C was performed. While the bonding strength of samples that received Ar plasma treatment
was reduced by the annealing, that of samples that received O2 plasma treatment was improved from
0.1 to 2.5 J/m2. This also demonstrates that the Au2O3 formed by O2 plasma treatment impeded
Au–Au bonding. The decrease in bonding strength with Ar plasma treatment may have been due to
the annealing processing time (~1 h).

The effects of air exposure after Au film deposition or plasma treatment on the contact angle
and bonding strength were also investigated. The changes in surface hydrophilicity due to contact
angle measurement of water on Au surfaces that received Ar plasma treatment were similar to those
on Au surfaces immediately after deposition. The bonding strength of samples that were exposed in
air following Ar plasma treatment decreased more rapidly than that of samples bonded immediately
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after deposition. Further research on the effects of air exposure and the relationship between surface
conditions and bonding strength is necessary.

Previous studies found that O2 plasma treatment improved Au–Au bonding strength [23,24],
possibly because Au2O3 desorbed due to the high bonding temperature (150 ◦C) or ultrasonic vibrations.

5. Conclusions

Pretreatment using Ar or O2 plasma was investigated for ambient room-temperature wafer-scale
Au–Au bonding using ultrathin Au films. Surface activation by Ar plasma is mainly due to physical
etching by Ar ions, while surface activation by O2 plasma is mainly due to chemical reaction. The O2

plasma treatment increased the sheet resistance of the Au surfaces but did not increase the bonding
strength. XPS analysis revealed that Au2O3 formed on the Au surfaces that received O2 plasma
treatment, and TDS analysis revealed that annealing at over 110 ◦C is necessary for desorption of
Au2O3. Annealing up to 150 ◦C before bonding increased the bonding strength of samples that received
O2 plasma treatment, demonstrating that Au2O3 impedes strong Au–Au bonding.

On the other hand, Ar plasma treatment increased the Au–Au bonding strength enough for the
Si substrate to be broken in destructive razor blade testing. Although an Au surface that receives Ar
plasma treatment is more activated than one that receives O2 plasma treatment, bonding should be
performed immediately after plasma treatment.
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