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Abstract: For realizing neural networks with binary memristor crossbars, memristors should
be programmed by high-resistance state (HRS) and low-resistance state (LRS), according to
the training algorithms like backpropagation. Unfortunately, it takes a very long time and
consumes a large amount of power in training the memristor crossbar, because the program-verify
scheme of memristor-programming is based on the incremental programming pulses, where many
programming and verifying pulses are repeated until the target conductance. Thus, this reduces the
programming time and power is very essential for energy-efficient and fast training of memristor
networks. In this paper, we compared four different programming schemes, which are F-F, C-F,
F-C, and C-C, respectively. C-C means both HRS and LRS are coarse-programmed. C-F has the
coarse-programmed HRS and fine LRS, respectively. F-C is vice versa of C-F. In F-F, both HRS and
LRS are fine-programmed. Comparing the error-energy products among the four schemes, C-F shows
the minimum error with the minimum energy consumption. The asymmetrical coarse HRS and fine
LRS can reduce the time and energy during the crossbar training significantly, because only LRS is
fine-programmed. Moreover, the asymmetrical C-F can maintain the network’s error as small as F-F,
which is due to the coarse-programmed HRS that slightly degrades the error.

Keywords: asymmetrical training scheme; binary memristor crossbar; neural networks;
energy-efficient edge computing; nanoscale systems

1. Introduction

The increase in the number of edge devices such as mobile devices, smart phones, etc. demand
a larger amount of data processing with higher energy efficiency. Edge computing is defined as the
method that can move the control of data processing from the high-performance cloud systems to
the last-edge devices of Internet of Things such as smart sensors, etc., where various data are sensed,
collected, and generated from the physical environment. Currently, most data collected from the
physical world are unstructured data such as images, voices, anomaly patterns, etc., [1,2]. In order
to interpret a vast amount of unstructured data from the physical world, neural network techniques
such as deep learning should be embedded in the edge-computing devices. If we try to process all
these unstructured data only by the cloud systems, the power consumption of cloud servers and data
centers may jump up to an uncontrollable level. Thus, it is widely expected that the edge computing
technique may be in the mainstream in 2 to 5 years, as neural-network-based deep learning, Internet of
Things, and smart sensors contribute to each other mutually to advance the edge-computing technique
further [3,4].
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The memristor-based neural networks can be integrated to the edge-computing nanoscale systems
easily. The memristive networks are inspired from the biological concepts of human brain processing
that has been developed to replace the conventional Von Neumann computing architecture in the
future [5–8]. For implementing the non-Von-Neumann computing architecture, memristors can
provide various advantages of scalability, low-energy consumption, non-volatility, and potential
3-dimensional stacking [9–11] since its first experimental demonstration [12]. Figure 1a shows the
conceptual diagram of the cloud systems, edge-computing devices, and Internet-of-Things (IoT)
sensors [13–15]. Figure 1b shows the block diagram of the edge-computing device composed of
memristor-crossbar-based neural networks.

Figure 1. (a) The conceptual diagram of cloud, edge-computing devices, and sensors. (b) The block
diagram of an edge-computing device composed of memristor-crossbar-based neural networks for
processing the unstructured data.

The sensors in the conceptual diagram collect a huge amount of unstructured data from the
physical environment, as shown in Figure 1a. The increased demand of the information processing
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of the huge amount of unstructured data makes the memristive neural networks useful in future
edge-computing applications [16,17]. The unstructured data can be delivered to the next edge devices
such as smartphones, or they can be directly connected to the cloud servers for higher-level data
processing. The cloud systems are the final destination of all these data, where they are stored,
interpreted, re-organized, and understood intelligently to make them useful in human life [13–15].
Thus, the memristive neural networks are needed to process the unstructured data at the edge instead of
transferring the physical-world data directly to the cloud systems [17]. The memristor-crossbar-based
neural networks can be very useful in these various edge-computing applications, where low-energy
consumption is needed [17]. Saving the training energy and training time of memristor-crossbar
networks can be very useful in the nanoscale edge-computing systems.

For developing memristor-based neural networks, we can start from both analog and binary
memristors. First, for analog memristors, they were observed to show a gradual change in memristor’s
conductance, according to the electrical pulses applied [18–20]. They can be used as analog memories
in neuromorphic applications. However, unlike the analog memristors, the other memristors show
the switching behaviors that seem abrupt and sharp between the High Resistance State (HRS) and
the Low Resistance State (LRS) instead of changing gradually between two states [21–25]. They are
switched just from LRS to HRS and vice versa and do not allow any intermediate states between
LRS and HRS for the applied voltage or current pulses. In this study, LRS and HRS mean a Low
Resistance State and a High Resistance State, respectively. Since many memristors are based on the
filamentary conduction mechanism with the abrupt transition between LRS and HRS [26], in this
paper, we focus on binary memristor crossbars. In the binary memristors, only HRS and LRS are
used in programming. One advantage of binary crossbars is that binary states of HRS and LRS can be
programmed more reliably than the intermediate states between HRS and LRS. For both analog and
binary memristors, a selector such as transistor can be used to reduce the disturbance problems in read
and write operations like the sneak leakage [27–29].

For realizing neural networks with binary memristor crossbars, memristors should be
programmed by HRS and LRS, according to the training algorithms such as the backpropagation [30].
Unfortunately, it takes a very long time and consumes a large amount of power in training memristor
crossbars because the program-verify scheme such as Incremental Step Pulse Programming (ISPP)
is based on the incremental pulse steps [31]. Thus, reducing the programming time and power
of memristors is very essential for energy-efficient and fast training of memristor neural networks.
Figure 2a shows the program-verify scheme of memristors, where the pulse amplitude is modulated
gradually, according to the number of programming pulses. After the programming pulse, the verifying
pulse follows. Here ∆V and N mean the incremental voltage step and the number of programming
pulses applied to memristors, respectively.

To explain the memristor-crossbar-realized networks in detail, see Figure 2b, which is composed
of the input, hidden, and output neurons represented with xi, yi, and zi, respectively. In this
case, i means the neuron index. We assumed the numbers of input, hidden, and output neurons
are n, m, and k, respectively. W0,0 W1,0, etc. are the synaptic weights for layer #0. W0,1 and
W1,1, etc. are for layer #1. The synaptic weights are represented with only −1, 0, and 1, in the
binary-crossbar-based networks. The binary-crossbar-based networks can be thought one of the
ternary neural networks that were proposed to solve the computational overloading problem of
full-precision neural networks. The full-precision networks are known to demand very large amounts
of computation with floating-point numbers [32,33]. In the ternary networks, the high-precision
multiplication can be replaced with the simple bitwise operation [34,35]. By doing so, the computing
power and hardware complexity can be greatly reduced in the ternary networks, in spite of some loss
of accuracy, compared to the high-precision neural networks [34].
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Figure 2. (a) The program-verify scheme for programming memristors. (b) The diagram of
multiple-layer neural networks. (c) The schematic of binary-memristor-based networks. (d) The
memristance distributions on Low Resistance State (LRS) cells with the percentage σ = 30% and 5%
are shown in the upper region, respectively. σ = 30% and σ = 5% mean the memristor programing
precision is coarse and fine, respectively. ‘pdf’ means the probability density function. The network
accuracy of Modified National Institute of Standards and Technology (MNIST) data-set while varying
the programming precision is shown in the lower. (1) The programming precision of HRS is changed
from 5% to 30%, while maintaining the LRS precision is 5%. (2) The programming precision of LRS is
changed from 5% to 30%, while maintaining the HRS precision at 5%. (3) The programming precision
of both HRS and LRS is changed from 5% to 30%.

The schematic of binary-memristor-based networks is shown in Figure 2c. In this case, HRS
and LRS are represented as white and gray, respectively. In Figure 2c, the memristors are connected
to the selectors. In this scenario, (+) and (−) columns mean the positive and negative columns,
respectively [36]. The input signals are applied to the rows of the crossbar. For the first (+) and (−)
columns and the first row of V0, we can calculate the column current of (g00+ − g00−) V0. If both g00+

and g00− are HRS, the calculated (g00+ − g00−) V0 is regarded zero. If g00+ and g00− are LRS and HRS,
respectively, the column current becomes positive. If they are HRS and LRS, the current becomes
negative. By doing so, we can represent 0, +1, and −1 with (g00+ = HRS, g00− = HRS), (g00+ = LRS,
g00− = HRS), and (g00+ = HRS, g00− = LRS), respectively.

For simulating the binary memristor crossbar in Figure 2c, first, we assume that the memristors
programmed during the training time have Gaussian statistical distribution, as shown in the upper
region in Figure 2d. The variance of the Gaussian distribution function, σ2 can be affected by
the programming precision of memristors. If the memristors are programmed with fine precision,
the memristance distribution becomes more narrow, which results in a smaller value of σ. On the
contrary, the coarse programming can increase σ larger in the memristance distribution, as shown in
Figure 2d. The upper region in Figure 2d shows the distributions of memristance with the percentage
σ = 30% and 5%, respectively. σ = 30% and σ = 5% mean the corresponding precision of memristor
programming is coarse and fine, respectively. The network’s accuracy was tested with Modified
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National Institute of Standards and Technology (MNIST) data-set [37] with a few cases of HRS and LRS
programming precisions, as shown in the lower region in Figure 2d. In this study, we simulated three
cases. (1) The programming precision of HRS is changed from 5% to 30% while maintaining the LRS
precision at 5%. (2) The programming precision of LRS is changed from 5% to 30%, while maintaining
the HRS precision at 5%. (3) The programming precision of both HRS and LRS is changed from 5% to
30%. The lower region in Figure 2d indicates clearly that the network’s accuracy is more affected by
the programming precision of LRS than the precision of HRS.

Based on this asymmetrical effect of HRS and LRS programming on the network’s accuracy,
in this paper, we propose a new asymmetrical scheme of the fine-LRS and coarse-HRS programming.
The proposed programming scheme can minimize the programming time and power, while maintaining
the network’s accuracy as high as possible. In the following section, we analyze how the programming
precision is related to the programming time, power, and the network’s accuracy. Based on the analysis,
we verify that the proposed asymmetrical programming scheme is very energy-efficient and fast in
training the binary-memristor-crossbar networks. This memristor-crossbar-based network can be very
useful in the edge-computing nanoscale systems, which demand the low-energy consumption desperately
to process the vast amount of unstructured data from the physical environment.

2. Materials and Methods

Figure 3a shows the measured and calculated current-voltage relationship of the fabricated memristors.
The open-circle symbol and the red line in Figure 3 represent the measured data and its behavioral model,
respectively. The mathematical model equations of the measured memristive behavior can be found in
the previous publication [16]. The equations were implemented in Verilog-A in the CADENCE SPECTRE
(Cadence Design Systems, Inc., San Jose, CA, USA) for the hybrid circuit simulation of memristors and
complementary metal-oxide-semiconductor (CMOS) circuits. The cross-sectional view is also shown
in the inset of Figure 3a, where the device has the film structure of the Pt/LaAlO3/Nb-doped SrTiO
stacked layer [38]. The microscope picture of the measured device is also shown in Figure 3a, where the top
electrode area is 100µm× 100µm. The top and bottom electrodes were formed by Platinum (Pt) and SrTiO3,
respectively [38]. The measurement was performed with Keithley-4200 (Semiconductor Characterization
System, Tektronix, Inc., Beaverton, OR, USA) combined with the Keithley-3706 Switching Matrix.
To program the memristor device, we used the program-verify scheme with the new pulse-amplitude
modulation [16]. Figure 3b shows the coarse programming scheme with the memristor’s conductance
change and the applied programming pulses. In this case, we changed the pulse amplitude very coarsely,
as shown in the lower region in Figure 3b. The number of programming pulses modulated in Figure 3b
is just as small as three for the coarse programming scheme. To do so, the average ∆V per pulse was
adjusted as large as 0.75 V and the average conductance change per pulse was measured as large as 67 µS.
In this case, the target conductance values of LRS and HRS are assumed to be 105 µS and 2 µS, respectively.
The measured HRS/LRS ratio is ~50. The measured conductance can be calculated with the mathematical
model equations in Reference [25]. In Figure 3b, the red line shows the programmed conductance calculated
by the model equations in Reference [25]. Figure 3c shows the moderate programming scheme, where we
increased the number of programming pulses from three of the coarse programming to 10 of the moderate
scheme. The average ∆V per pulse is reduced from 0.75 V to 0.34 V for the moderate scheme. By doing so,
in Figure 3c, the average conductance change is decreased from 67 µS to 15 µS. Figure 3d shows the fine
programming scheme, where the number of programming pulses is as large as 30. In this case, the average
∆V per pulse should be as small as 0.05 V. We can adjust the memristor’s conductance as fine as 4.4 µS on
average for each programming pulse, as shown in Figure 3d. In Figure 3c,d, the open circle and the red
line represent the measured and the calculated conductance, respectively, like Figure 3b. From Figure 3b–d,
we can see that the measured conductance values are in good agreement with the calculation, for the
coarse, moderate, and fine programming schemes, respectively.

To analyze how the programming precision is related to the programming time and power,
we compared the coarse, moderate, and fine programming schemes in this paper. For the programming
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time, the coarse, moderate, and fine schemes need 3, 10, and 30 programming pulses, respectively, for
changing memristance from HRS to LRS. Similarly, we can calculate the energy consumption for the
three programming schemes during the training time. From the circuit simulation with the Verilog-A
model of memristors measured in Figure 3a, we can calculate the memristor’s current response changed
dynamically with respect to the programming time, according to the applied programming voltage pulse.
The programming energy can be calculated by integrating the product of the applied voltage pulse and
the memristor’s current response over the programming time. In this study, the CMOS programming
circuit was not considered in calculating the programming energy because the power consumption of
CMOS programming circuit was estimated to be much smaller than the power consumption in the
memristor array. The calculated programming energy of the coarse and fine schemes are 680 nJ and
1600 nJ, respectively, for programming the memristor from HRS to LRS. As expected, the fine scheme
needs 2.4× larger energy and 10× longer time in HRS-to-LRS programming than the coarse one. On the
contrary, for the programming precision, the fine scheme can adjust the conductance change, ∆G, which is
as precise as 4.4 µS, compared to ∆G = 67 µS of the coarse programming.

Figure 3. (a) The measured and calculated current-voltage relationships of the fabricated memristor,
the cross-sectional view of the measured device, and the microscope picture of the measured device.
(b) The coarse programming scheme and the memristor’s conductance changes. (c) The moderate
programming scheme with the memristor’s conductance changes. (d) The fine programming scheme
and the memristor’s conductance changes.

3. Results

Figure 4a shows the measured and calculated distributions of HRS and LRS, respectively, which
are programmed by the coarse scheme in Figure 3b. In this scenario, the percentage σwas measured
around 30% for both HRS and LRS distributions. In Figure 4a, the red line represents the calculated
probability density function and the columns are obtained from the measured probability density
of memristor’s conductance. From this figure, we can see the measurement agrees well with the
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calculated probability density function. Similarly, we trained memristors with the moderate and fine
programming schemes of Figure 3c,d, respectively. Using the moderate and fine training, the narrower
distributions of programmed HRS and LRS are obtained, as shown in Figure 4b,c, respectively. In this
scenario, we measured σ as small as 10% and 5% for Figure 4b,c, respectively. Combining Figure 4a–c,
the percentage σ values of 30%, 10%, and 5% are obtained from the measured memristor’s conductance
with the coarse, moderate, and fine programming schemes, respectively. In addition, we can program
memristor crossbars with a very fine or very coarse distribution such as σ = 1% or σ = 50%. If the lowest
error rate is required, we should try to program the crossbar with a very tight distribution such as σ = 1%.
Yet, if the error rate can be very bad, we can program the crossbar as coarse as σ = 50%. By doing so,
we can use the trade-off relationship of the error rate and the training energy to optimize the network
performance and energy in a given circumstance. However, in terms of real programming, it is very
difficult to control the conductance distribution within σ = 1%. For σ = 1%, the conductance change per
pulse should be controlled within ~1 µS. This fine resolution of conductance change needs an infinitely
large number of programming pulses, a very small ∆V, and a very precise control of voltage amplitude
modulation. Thus, this fine resolution within ~1 µS cannot be realized in the real programming circuit.
In this paper, considering the practical programming circuit, we chose σ = 5%, σ = 10%, and σ = 30%,
for three schemes of memristor programming. Particularly, the σ as small as 5% of the fine scheme is
very similar to the standard deviation of memristor’s conductance programmed in the training of the
analog memristor-based neural network [29]. In addition, for a very coarse distribution such as σ = 50%,
the number of pulses can be just one or two. If so, some high conductance values of HRS distribution
can be overlapped with some low conductance values of LRS. Thus, to avoid the overlap between HRS
and LRS distributions, we limited the σ to less than 30% in this paper.

Figure 4. The memristance distributions of HRS and LRS for (a) the coarse programming, (b) the
moderate programming, and (c) the fine programming schemes, respectively.
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As mentioned in Figure 3, HRS and LRS can be trained by various combinations of the coarse,
moderate, and fine programming schemes. In this paper, we compared various combinations of
programming schemes by testing the MNIST recognition error. The MNIST vectors of the hand-written
digits of 0–9 are shown in Figure 5a. In this paper, we used 60,000 MNIST vectors for training the
binary-memristor-based crossbar. After training the crossbar, we tested 10,000 MNIST execution
vectors for evaluating the recognition error with different programming schemes.

The MNIST recognition rate is simulated with a SPICE-like framework implemented in the
MATLAB software (MathWorks, Inc., Natick, MA, USA) [39]. In this case, we considered various
non-ideal effects in the memristor crossbar such as source resistance, neuron resistance, and wire
resistance, as shown in Figure 5b [39–41]. In Figure 5b, RS, RN, and RW mean the parasitic source,
neuron resistance, [39] and wire resistance, [40,41] respectively. In the simulation, we assumed RS

= 0.27% of RHRS, RN = 0.067% of RHRS, RW = 1–5 Ω, respectively. These parasitic resistance values
were obtained by measuring the fabricated crossbar [39,40]. The MATLAB simulation results were
also verified with the CADENCE circuit simulation [42]. In the MATLAB simulation, first, a netlist
of memristor synapses, voltage sources, source resistance, neuron resistance, and wire resistance
are generated as shown in Figure 5b [39]. In addition, the generated netlist is solved by MATLAB
to calculate the crossbar’s column current. The simulation steps used in the paper are the same as
the previous publication [39]. For training the synaptic weights, the conventional backpropagation
algorithm was implemented in the MATLAB simulation [39].

In Figure 5c, REF represents the crossbar programmed with the ideal σ(HRS) = 0% and σ(LRS)
= 0%. The zero σ means the conductance values of HRS and LRS are fixed by 2 µS and 100 µS,
respectively. Because this zero σ could not happen in programming real crossbars, we assumed
the crossbar programmed with zero σ as the reference value in this paper. From the measurement,
the HRS/LRS ratio was observed to be around 50, as measured in Figure 3. In Figure 5c, C-C
means both HRS and LRS are programmed by the coarse scheme with a low precision of memristor
programming. C-F means HRS and LRS are programmed by the coarse and fine scheme, respectively.
On the other hand, F-C is for HRS and LRS programmed by the fine and coarse, respectively. Lastly,
F-F means both HRS and LRS are programmed by the fine scheme with high precision. As a proof of
concept, even though a large amount of programming error is observed in the coarse programming
scheme on HRS cells in C-F, the network’s error of C-F can be maintained as low as 6.4% compared to
4.4% of F-F, as shown in Figure 5c. The effect of the coarse-programming of HRS cells is negligible in
terms of the network’s error. On the contrary, when both HRS and LRS cells are controlled with the
coarse-programming scheme of C-C, the network’s error becomes as large as 36.9%. The narrow gap
of the recognition error between F-F and C-F in Figure 5c clearly emphasizes that the programming
precision of LRS cells is more important than the precision of HRS in terms of the network’s error.
Thus, C-F can be more energy-efficient than F-F, where both HRS and LRS are programmed by the
fine scheme. In C-F, HRS can be coarse-programmed to save the programming energy and time.
To consider both the recognition error and the programming energy, we define a new metric of the
‘error-energy product’ in this paper, which is calculated with the following Equation (1).

Error − Energy Product = Recognition error × Training energy (1)

In this scenario, the recognition error is obtained from Figure 5c. The training energy can be
calculated with the programming time and power of the binary-memristor crossbar during the training
time for 60,000 MNIST vectors. By doing so, Figure 5d compares F-F, C-F, F-C, and C-C, in terms of
the error-energy product defined in Equation (1). As expected, C-F shows the smallest error-energy
product. It means that C-F has the best energy efficiency in recognizing MNIST vectors among the four
schemes of F-F, C-F, F-C, and C-C.
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Figure 5. (a) The MNIST vectors. (b) The binary-memristor crossbar with RS, RN, and RW. (c) The
recognition error with HRS/LRS = 50 and RW = 1 Ω. (d) The error-energy product with the HRS/LRS
ratio = 50 and RW = 1 Ω. (e) The recognition error with HRS/LRS = 10 and RW = 1 Ω. (f) The
error-energy product with HRS/LRS = 10 and RW = 1 Ω. (g) The recognition rate with HRS/LRS = 50
and RW = 5 Ω. (h) The error-energy product with HRS/LRS = 50 and RW = 5 Ω.
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For implementing the memristor-based network on large-size crossbars, the HRS/LRS ratio
is very important. With a high HRS/LRS ratio, the network’s error can be improved. However,
if the HRS/LRS ratio becomes smaller, the recognition error can be degraded to worse levels. Thus,
we evaluated the recognition error when the HRS/LRS ratio is decreased from 50 to 10. In Figure 5e,
we assumed the HRS/LRS ratio is as low as 10 and calculated the recognition error and the error-energy
products of the four cases of coarse and fine schemes. Figure 5e shows the recognition errors of F-F,
C-F, F-C, and C-C, with the HRS/LRS = 10. Figure 5f compares the error-energy products of F-F, C-F,
F-C, and C-C, with the HRS/LRS = 10. In Figure 5f, C-F also shows the smallest error-energy product
such as in Figure 5d.

Figure 5g shows the recognition errors of F-F, C-F, F-C, and C-C, when the wire resistance is
increased from 1 Ω to 5 Ω and the HRS/LRS ratio is fixed by 50. In this case, F-F and C-F show the
errors as low as 6.8% and 8.3%, respectively. The gap of the recognition error between F-F and C-F is
as narrow as 1.5%. In Figure 5h, among F-F, C-F, F-C, and C-C, C-F shows the smallest error-energy
product like the previous comparison cases.

4. Discussion

We have a couple of things to discuss in this paper. First, generally, the probability density
of the measured memristance distribution was known as the log-normal function instead of the
Gaussian one [43]. However, it should be noted that the log-normal distribution of memristance
was observed only when a single programming pulse was applied to the memristor instead of using
the program-verify scheme shown in Figure 2a [43]. In this paper, we used the program-verify
scheme with the pulse-amplitude modulation for programming memristors instead of the single-pulse
programming. In the program-verify scheme, a programming pulse is generated first and then the
conductance measured by the verifying pulse is compared with the target value. According to the
measured difference with the target, the following programming pulse is generated to decrease or
increase the conductance. In this program-verify scheme, the conductance measured in this paper was
observed to have Gaussian distribution instead of the log-normal. The Gaussian distribution observed
in this paper was also mentioned in the recent experiment of the HfO2-based memristor array [29].
The Gaussian distribution function can also be found in the threshold voltage of flash memory cells
programmed by the program-verify scheme such as ISPP [44,45].

The second discussion is that the number of programming pulses and the interval time may
affect the retention time of programmed HRS and LRS. As stated earlier, the coarse scheme has a
smaller number of programming pulses than the fine scheme. Thus, if the retention time of the coarse
scheme is shorter than that of the fine scheme, the neural network’s performance can be degraded
more by the shorter retention time of the coarse scheme. This can make it very difficult to estimate
the network’s performance accurately. To maintain the network’s performance constant, we should
recover the synaptic weights to the originally-programmed values within the retention time. In this
paper, we performed the analysis on the retention time of the measured memristors, as explained
below. Based on the analysis, it has been verified that the retention time of the coarse scheme is almost
the same with that of the fine scheme. It means that the network’s performance can be maintained at
an almost constant rate, if the crossbar is reprogrammed within the retention time.

The previous publications reported that the number of programming pulses, and the interval
time may affect the retention loss in some memristors such as WOx [46]. Quantitatively, the retention
loss can be modeled with the stretched-exponential Equation (2) [46–48].

ϕ(t) = ϕ0 exp (−
(

t
τ

)β

) (2)

Here ϕ(t) is the relaxation function, τ is the characteristic relaxation time, ϕ0 is the pre-factor,
and β is the stretch index ranging between 0 and 1 [46]. In this case, we extracted τ and β of LRS
retention loss for the fine and coarse programming, respectively. Figure 6a shows the coarse and fine
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programming schemes. For the coarse scheme, the number of programming pulses is only 3 and
the pulse width and interval time are 1 ms and 3 ms, respectively. For the fine scheme, the number
of programming pulses applied to the memristor is as many as 30. The pulse width and interval
time are the same with the coarse scheme. Figure 6b shows the LRS retention loss from 0 s to 900 s
with the coarse and fine programming schemes, which are represented by the circle symbol and red
line, respectively. From this figure, β was found to be 0.26 for both the coarse and fine schemes.
The extracted relaxation time, τ, is 1400 s and 1464 s, for the coarse and fine schemes, respectively.
While the fine scheme has a relaxation time that is slightly longer than the coarse one, the difference in
τ between the coarse and fine schemes seems very small. Similarly, the HRS retention loss also shows
very little discrepancy between the coarse and fine schemes. Thus, in this paper, we can ignore the
retention loss problem that may be caused by the different numbers of programming pulses of coarse
and fine schemes.

Figure 6. (a) The coarse and fine programming schemes showing the pulse width and interval time.
(b) The LRS retention loss from 0 s to 900 s with the coarse and fine programming schemes.

The memristance statistical distributions in Figure 4 caused from device-to-device variation are
obtained from the memristors fabricated as an isolated device instead of a crossbar array. Fabricating
a memristor crossbar needs much more complicated process steps than manufacturing memristors
such as the isolated device. The number of measured memristors are around 50 in this paper. Actually,
if we consider the memristor crossbar with a selector, as shown in Figure 2c, we can think the dynamic
behavior measured from the isolated memristor can predict the dynamic behavior of the memristor
crossbar very accurately because the selector can minimize the non-ideal effects such as sneak leakage,
as shown in the recent experiment [29]. Additionally, in the network simulation, we considered
various parasitic effects such as source resistance, neuron resistance, and wire resistance, as shown in
Figure 5b [39–41]. By doing so, the non-ideal effects in the real fabricated crossbar could be taken into
account by simulating the network’s accuracy, as shown in Figure 5, in this paper. Though we could not
fabricate and measure the real memristor crossbar due to the complicated fabrication steps, we think
that the measurement and simulation performed in this paper can validate the proposed asymmetrical
scheme that is useful in saving the programming time and power in training the binary-crossbar-based
neural networks.

In addition to the non-ideal effects such as source, neuron, and wire resistance, the other effects
generated from inside the memristor devices cause the read-and-write noise when reading and
updating the synaptic weights of memristor-crossbar networks [49]. They are thermal noise, random
telegraph noise, wear-out mechanisms, etc., [49]. These noises can degrade the programming accuracy
of memristor synapses when compared to the accuracy that we expected before without considering
these memristor noises [49].
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5. Conclusions

For realizing neural networks with binary memristor crossbars, memristors should be
programmed by HRS and LRS, according to the training algorithms such as the backpropagation.
Unfortunately, it takes a very long time and consumes a large amount of power in training memristor
crossbars, because the program-verify scheme of memristors is based on the incremental pulse
steps, where many programming and verifying pulses are repeated over until reaching to the target
conductance. Thus, reducing the programming time and power during the crossbar training time is
very essential for energy-efficient and fast training of memristor-based neural networks. In this paper,
we compared four different programming schemes, which are F-F, C-F, F-C, and C-C, respectively.
C-C means both HRS and LRS are programmed coarsely. C-F has the coarse-programmed HRS
and the fine-programmed LRS, respectively. F-C is vice versa of C-F. In F-F, both HRS and LRS are
fine-programmed. In terms of the product of the recognition error and training energy, C-F shows
the best energy-efficiency among the four schemes. It means that the minimum error is achieved
with the minimum energy consumption for C-F. The asymmetrical coarse-programmed HRS and
fine-programmed LRS could reduce the programming time and energy during the training time of
memristor crossbars because only LRS should be fine-programmed, while HRS is coarse-programmed.
Moreover, the asymmetrical C-F can maintain the network’s error as low as F-F, due to the fact that the
coarse-programmed HRS slightly degrades the recognition error. This energy-efficient and fast training
of memristor-crossbar-based networks can be very useful in the nanoscale edge-computing systems,
which demand the low-energy consumption desperately to process the vast amount of unstructured
data from the physical environment.
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